
Uluslararası İleri Doğa 

Bilimleri ve Mühendislik 

Araştırmaları Dergisi 

Sayı 8, S. 108-119, 7, 2024 

© Telif hakkı IJANSER’e aittir  

Araştırma Makalesi 

   
 

https://as-proceeding.com/index.php/ijanser 

 ISSN: 2980-0811 

 International Journal of Advanced 

Natural Sciences and Engineering 

Researches 

Volume 8, pp. 108-119, 7, 2024 

Copyright © 2024 IJANSER 

Research Article 

 

 

108 

 

 

Evaluating Optimizable Machine Learning Models for Anemia Type 

Prediction from Complete Blood Count Data 

Ladislav Végh 1*, Ondrej Takáč 1, Krisztina Czakóová 1, Daniel Dancsa 2 and Melinda Nagy 2 

1 Department of Informatics, Faculty of Economics and Informatics, J. Selye University, Slovakia  
2 Department of Biology, Faculty of Education, J. Selye University, Slovakia 

 

*(veghl@ujs.sk) Email of the corresponding author 

 

(Received: 21 August 2024, Accepted: 28 August 2024) 

 

(5th International Conference on Engineering and Applied Natural Sciences ICEANS 2024, August 25-26, 2024) 

 
ATIF/REFERENCE: Végh, L., Takáč, O., Czakóová, K., Dansca, D. & Nagy, M.  (2024). Evaluating Optimizable Machine 

Learning Models for Anemia Type Prediction from Complete Blood Count Data. International Journal of Advanced Natural 

Sciences and Engineering Researches, 8(7), 108-119. 

 

Abstract – This paper compares different optimizable machine learning classification models to predict 

eight types of anemia from complete blood count (CBC) data. For the research, we used a publicly 

available Kaggle dataset containing 1281 observations, 14 predictors, and the diagnosis as the categorical 

target variable with nine categories (eight types of anemia and the healthy category). First, we examined 

the dataset and observed the histograms of some of the predictors. We compared the values of predictors 

of observations with no anemia to the observations where any anemia was diagnosed. Next, we used 

MATLAB R2024a to train and test nine optimizable machine-learning classification models. These 

models were Ensemble, Tree, SVM, Efficient Linear, Neural Network, Kernel, KNN, Naïve Bayes, and 

the Discriminant. Bayesian optimization was used to optimize the hyperparameters of all these models. 

We used 90% of observations for training and 10% of observations for testing. During the training, 10-

fold cross-validation was used to prevent overfitting. The results showed the best accuracy was reached 

with the Ensemble classification model using the bag ensemble method (validation accuracy: 99.22%, test 

accuracy: 100%). Finally, we inspected our best classification model in more detail. We calculated the 

permutation feature importance to determine the contribution of each predictor to the final model. The 

results showed 6–7 important predictors, while the most important feature was the amount of hemoglobin. 

 
Keywords – Data Exploration, Machine Learning, Multiclass Classification, Anemia Types, Complete Blood Count, CBC Test. 

 

I. INTRODUCTION 

Artificial intelligence, deep learning, and machine learning can be used in various fields to recognize 

patterns from data [1], [2], [3], [4]. Many deep learning and machine learning classification models can 

be efficiently used in healthcare, as well, e.g., for diagnosis of different types of cancer [5], predicting 

diabetes [6], [7], cardiovascular disease [8], [9], or anemia [10], [11], [12]. In this paper, we use machine 

learning techniques to diagnose various anemia types from complete blood count (CBC) data. 

Many of the surveys related to diet and nutrition uncovered that almost a quarter of the world’s 

population is anemic [12]. Typical symptoms of anemia include fatigue, weakness, and shortness of 

breath, caused mainly by low hemoglobin levels or insufficient oxygen-carrying capacity. Timely and 

correct diagnosis, followed by appropriate treatment, are vital steps in curing anemia [10], [13]. 
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Traditionally, hematologists manually examine blood tests to diagnose different types of anemia. 

However, this process might be time-consuming and prone to human errors, which might delay the proper 

treatment [10], [11]. Furthermore, discriminating iron deficiency anemia (IDA) from other types of 

anemia requires a more expensive test (serum ferritin) than the CBC test [14].  Machine learning can help 

to less costly, time-savingly, and accurately diagnose various types of anemia from CBC data [14], [15]. 

In the following parts of this paper, we focused on exploring a dataset containing CBC data of 1281 

patients. We compared the accuracy of nine optimizable machine-learning classification models for 

classifying eight different types of anemia. These anemia types are iron deficiency anemia, leukemia, 

leukemia with thrombocytopenia, macrocytic anemia, normocytic hypochromic anemia, normocytic 

normochromic anemia, other microcytic anemia, and thrombocytopenia. We trained, tested, and 

optimized various classification models to find the best model for the given dataset. Finally, we calculated 

permutation feature importance to determine which of the 14 predictors of the dataset are the most 

important. 

II. MATERIALS AND METHOD 

For this research, we used Anemia Types Classification [16] dataset downloaded from Kaggle. For data 

exploration, SPSS [17] and MATLAB [18] software were used. For training, testing, optimizing the 

classification models, and calculating permutation feature importance, MATLAB [18] software was used.  

A. Dataset 

The dataset [16] contains 1281 observations, 14 predictors (CBC data), and the diagnosis as a 

categorical target variable. 

The 14 predictors are the amount of hemoglobin (HGB), the number of platelets (PLT), the count of 

white blood cells (WBC), the count of red blood cells (RBC), the hematocrit test (HCT), the mean 

corpuscular volume (MCV), the mean corpuscular hemoglobin (MCH), the mean corpuscular hemoglobin 

concentration (MCHC), the variability in platelet size distribution in the blood (PDW), the procalcitonin 

test (PCT), the percent of lymphocytes (LYMp), the percent of neutrophils (NEUTp), the number of 

lymphocytes (LYMn), and the number of neutrophils (NEUTn). 

The target variable contains nine categories: one for healthy patients and eight for different types of 

anemia. The dataset includes the following categories for various anemia types: iron deficiency anemia, 

leukemia, leukemia with thrombocytopenia, macrocytic anemia, normocytic hypochromic anemia, 

normocytic normochromic anemia, other microcytic anemia, and thrombocytopenia. 

B. Data Exploration 

First, we wanted to know how the data is distributed by diagnosis. Fig. 1 shows the distribution of 

observations by target variable. As we can see, the dataset contains more observations for some categories 

and less for others. There are 336 observations in the Healthy category, 279 observations in the 

Normocytic hypochromic anemia category, and 269 observations in the Normocytic normochromic 

anemia category, but only 18 observations in the Macrocytic anemia category and 11 observations in the 

Leukemia with thrombocytopenia category. 

Next, we were curious if there is a significant difference in any predictors between observations without 

anemia (healthy patients) and observations with any anemia. For this reason, we calculated the mean, 

standard deviation, and median values for every predictor of the two groups. Table 1 shows the results. 

By examining the values in this table, we can observe differences for some of the predictors, but for 

others, there is only a slight difference or no difference at first sight. 
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Fig. 1 Number of observations by target variable 

 

Table 1. Comparison predictors’ means, standard deviations, and medians of the observations without anemia (healthy 

patients) to the observations with some anemia diagnosed 

Predictor 
Observations without anemia (N=336) Observations with anemia (N=945) 

Mean Std. Dev. Median Mean Std. Dev. Median 

HGB  13.99 0.71 13.90 11.54 4.24 11.60 

PLT 297.34 83.08 330.00 206.03 84.23 192.00 

WBC 7.74 1.31 8.00 7.92 4.08 7.10 

RBC 5.25 0.40 5.28 4.55 3.25 4.41 

HCT 45.75 1.30 46.15 46.30 122.13 46.15 

MCV 90.46 4.56 91.00 84.14 31.36 85.00 

MCH 29.58 1.98 30.00 32.97 129.44 27.00 

MCHC 32.63 3.52 32.35 31.42 3.16 31.70 

PDW 14.62 2.02 14.31 14.20 3.28 14.31 

PCT 0.25 0.03 0.26 0.27 0.80 0.26 

LYMp 26.11 4.27 25.85 25.75 7.79 25.85 

NEUTp 77.29 33.08 77.51 77.59 170.91 77.51 

LYMn 1.88 0.29 1.88 1.88 1.55 1.88 

NEUTn 5.04 0.66 5.14 5.18 3.32 5.14 

 

Afterward, we used statistical tests to evaluate the significance of the differences between the two 

groups. We tested the normality of data using Shapiro-Wilk tests. Because the results showed no normal 

distribution in any of the groups for any of the predictors, we used Mann-Whitney U tests to determine if 

there was a significant difference in predictors between observations without anemia (group 0) and 

observations with any anemia (group 1). In Table 2, we can see the results of the Mann-Whitney U tests. 

According to the test results, group 0 (healthy patients) has significantly higher values for every predictor 

than group 1 (patients with anemia diagnosed), except for the predictor LYMp, where there is no 

significant difference between the groups. 

 



International Journal of Advanced Natural Sciences and Engineering Researches 

111 
 

Table 2. Results of the Mann-Whitney U tests 

Predictor 

Mean Rank of 

Group 0 

(Healthy, N=336) 

Mean Rank of 

Group 1 

(Anemia, N=945) 

Mann-Whitney U Z 
Asymp. Sig. 

(2-tailed) 

HGB  1029.38 502.91 28264.000 -22.409 0.000 

PLT 907.07 546.40 69362.000 -15.351 0.000 

WBC 742.70 604.84 124589.500 -5.868 0.000 

RBC 993.47 515.68 40329.500 -20.336 0.000 

HCT 810.79 580.63 101711.500 -11.138 0.000 

MCV 935.95 536.13 59657.000 -17.018 0.000 

MCH 927.85 539.01 62380.000 -16.562 0.000 

MCHC 841.24 569.80 91479.000 -11.618 0.000 

PDW 713.32 615.29 134459.500 -4.247 0.000 

PCT 777.83 592.35 112783.500 -8.978 0.000 

LYMp 661.96 633.55 151717.000 -1.375 0.169 

NEUTp 740.18 605.74 125437.000 -6.506 0.000 

LYMn 694.45 622.00 140802.000 -3.506 0.000 

NEUTn 682.43 626.27 144841.000 -2.718 0.007 

 

Next, we wanted to see the data visually, especially the difference between the two groups; for this 

reason, we created a histogram for every predictor (see Fig. 2–8). In these histograms, observations of 

healthy patients are marked with green color, while observations of patients with any anemia are marked 

with red. By observing these charts, we might notice a clear visual difference between the two groups for 

some predictors; however, there is no noticeable difference for other predictors, even though the Man-

Whitney U tests showed significant differences. 

 

    

Fig. 2 Distribution by the amount of hemoglobin (HGB) and by the number of platelets in the blood (PLT)  
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Fig. 3 Distribution by the count of white blood cells (WBC) and by the count of red blood cells (RBC)  

    

Fig. 4 Distribution by the hematocrit (HTC) and by the mean corpuscular volume (MCV)  

    

Fig. 5 Distribution by the mean corpuscular hemoglobin (MCH) and by the mean corpuscular hemoglobin concentration 

(MCHC)  
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Fig. 6 Distribution by the platelet distribution width (PDW) and by the level of procalcitonin (PCT)  

    

Fig. 7 Distribution by the percentage of lymphocytes (LYMp) and by the percentage of neutrophils (NEUTp)  

    

Fig. 8 Distribution by the number of lymphocytes (LYMn) and by the number of neutrophils (NEUTn)  
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C. Training and Testing Classification Models 

After data exploration, our goal was to find a machine learning classification model that not only 

classifies observations into two groups (healthy and anemia) but also accurately classifies the eight types 

of anemia categories.  

We split the dataset into a training set (90% of observations) and a test set (10% of observations for 

testing). Using the training set and MATLAB R2024a [18] we trained nine optimizable machine learning 

classification models in MATLAB’s Classification Learner App [19]. These models were Ensemble, 

Tree, SVM, Efficient Linear, Neural Network, Kernel, KNN, Naïve Bayes, and Discriminant. Bayesian 

optimization was used to optimize the hyperparameters of all these models. During the training, 10-fold 

cross-validation was used to prevent overfitting. After training, the final classification models were tested 

on the test data set. 

III. RESULTS 

Table 3 shows the validation and test accuracies of the machine learning classification models. The best 

result was reached with the Ensemble classification model, which had a validation accuracy of 99.22% 

and a test accuracy of 100%.   

 

Table 3. Validation and test accuracies of the classification models 

# Model Type 
Accuracy % 

(Validation) 

Accuracy % 

(Test) 

1 Ensemble 99.22 100 

2 Tree 99.05 100 

3 SVM 91.76 91.41 

4 Efficient Linear 89.51 94.53 

5 Neural Network 88.03 89.06 

6 Kernel 81.35 82.81 

7 KNN 75.80 77.34 

8 Naive Bayes 67.30 67.19 

9 Discriminant 54.38 52.34 

 

All these models were optimizable machine learning models, where Bayesian optimization was used to 

find the models’ minimum error and best point hyperparameters. Table 4 shows the minimum error (also 

best point) hyperparameters of model #1, the Ensemble classification model. 

 

Table 4.  Minimum error hyperparameters of the Ensemble classification model 

Hyperparameter Value 

Ensemble method Bag 

Number of learners 104 

Maximum number of splits 1065 

Number of predictors to sample 11 

 

Fig. 9 shows the validation confusion matrix of the Ensemble classification model. We can observe that 

most cases were correctly predicted; however, the false discovery rate is higher in some categories, 

especially Leukemia with thrombocytopenia. Fig. 10 shows all categories' positive predictive values 

(PPV) and false discovery rates (FDR). This figure shows that the PPV for the category of Leukemia with 

thrombocytopenia is only 76.9%. The low value in Leukemia with thrombocytopenia might be because 

the dataset is imbalanced, containing only 11 observations for this category, which is only 0.86% of all 

observations. However, the PPV is satisfactory for all other categories, between 97.7% and 100%.  
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Fig. 9 Validation confusion matrix of the Ensemble classification model 

 

Fig. 10 Positive predictive values (PPV) and false discovery rates (FDR) in the validation confusion matrix of the Ensemble 

classification model 

 

After training and validation, the final classification models were tested on unseen data (10% of 

observations). As we have seen in Table 3, the test accuracy was 100% for model #1, the Ensemble 

classification model. Fig. 11 shows the test confusion matrix of this model. This model correctly 

classified all observations in the test set.  
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Fig. 11 Test confusion matrix of the Ensemble classification model 

 

Finally, we wanted to determine how much each predictor contributed to the final Ensemble 

classification model. For this reason, we calculated the permutation feature importance. The results are 

shown in Fig. 12. As we can see on the chart, there were 6-7 important predictors; the most important 

feature was the amount of hemoglobin (HGB), followed by mean corpuscular volume (MCV), mean 

corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH), the number of 

platelets in the blood (PLT), the count of white blood cells (WBC), and the hematocrit test (HCT). The 

mean importance values of other predictors of the Ensemble classification model are very low; their 

values are near zero. 
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Fig. 12 Mean importance per predictor of the Ensemble classification model  

 

IV. DISCUSSION 

As we can see in the results, machine learning can help correctly diagnose amnesia and classify it into 

various types. However, finding the suitable classification model with the best accuracy is crucial. For 

this reason, we trained and tested nine optimizable classification models. The best model for our 

classification was the Ensemble model, where 99.22% validation and 100% test accuracy were reached. 

However, the positive prediction value (PPV) for one of the categories was lower (76.9%) than for other 

categories (97.7– 100%), probably because of the low number of observations for this category in the 

dataset. Furthermore, after calculating the permutation feature importance, we observed that the most 

important predictor of the Ensemble model was the amount of hemoglobin in the blood. 

We can find similar results in the literature related to the anemia classification using the CBC data. 

Pullakhandam and McRoy [14] used a dataset containing about 20,000 samples to classify iron deficiency 

anemia from CBC data using machine learning. They trained and tested multiple machine learning 

algorithms, reaching 97% accuracy with Logistic Regression, Random Forest, KNN, Gradient Boosting, 

and XGBoost classification models. 

Vohra et al. [15] also used CBC data to classify anemia using machine learning algorithms. The dataset 

contained 11 attributes and 364 observations. First, they used the original dataset on several classification 

models. The best accuracy was reached using the Logistic Regression classification model (94.44% 

accuracy using the hold-out method and 92.85% using the 10-fold cross-validation). Next, after feature 

selection, the accuracy increased; the best models in this case were the Decision Tree classification model 

(96.1% accuracy using the hold-out method) and the Multilayer Perceptron classification model (95.31% 

accuracy using the 10-fold cross-validation). Finally, they utilized the synthetic minority oversampling 

technique (SMOTE) to balance the dataset; the best model in this case was the Multilayer Perceptron 

classification model (99.35% accuracy using the hold-out method and 94.21% using the 10-fold cross-

validation). 

Yıldız et al. [13] used a dataset containing 1663 samples and 25 attributes to predict 12 different anemia 

types. They reached 85.6% accuracy using the Bagged Decision Trees classification model. 

Even though our model’s validation accuracy is 99.22%, we believe there are possibilities to improve 

the model. As we saw in the results, the PPV was low for one of the categories (76.9%) because of the 

imbalanced data. This could be improved by using more observations for the problematic category. If 

there is no way to get more real observations, generating synthetic data might help. After applying some 
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oversampling techniques [20], [21] and training the classification models with the modified dataset, the 

accuracy might improve for all categories. This could be part of future research. 

V. CONCLUSION 

After data exploration, we compared the accuracy of 9 optimizable classification models to diagnose 

anemia and classify them into eight anemia types. For our dataset, the best model was the Ensemble 

classification model using the bag ensemble method, which reached 99.22% validation accuracy and 

100% test accuracy. Among other important predictors in the dataset, the most important feature for our 

Ensemble classification model was the amount of hemoglobin in the blood.   

These results could be used in further research related to healthcare to diagnose anemia and its types 

automatically, time-savingly, less costly, and accurately from CBC data. The steps and methodology used 

in this paper can be applied to other datasets for anemia diagnosis and in other areas where it is needed to 

identify different categories from various data. Even though our best model was the Ensemble 

classification model, other machine learning models might achieve better results for other datasets. 

Training and testing different classification models to find the best, usually with the highest accuracy, that 

suits our needs is always recommended. 
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