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Abstract – For double sequences in probabilistic generalized metric spaces (PGMS), we establish the 

notions of ℑ2-statistical convergence and ℑ2-statistical Cauchyness in this work and investigate their 

fundamental properties, including their interrelationships. 
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I. INTRODUCTION 

In 1951, Fast [9] and later, in 1959, Schoenberg [22], independently developed and examined the theory 

of statistical convergence of real sequences. They based their work on the concept of asymptotic density 

of subsets within the set of natural numbers ℕ. Convergence for double sequences was first proposed by 

Pringsheim in [21]. Mursaleen and Edely [18] went on to expand this idea to statistical convergence. 

The concept of ℑ-convergence was first proposed by Kostyrko et al. [16] as a generalization of statistical 

convergence. Gürdal introduced the concept of ℑ-Cauchy sequences of real numbers, examining their 

connections with ℑ-convergence for sequences of real numbers (see also [10]). In the same thesis, he 

defined the concepts of ℑ-Cauchy sequences and ℑ∗-Cauchy sequences in a metric space (𝑋, 𝑑) (see also 

[10]). Additionally, he explored the relationships between ℑ-convergence and ℑ-Cauchy sequences. Das 

et al. [4] later adapted this idea to double sequences within a metric space, highlighting several properties 

of this form of convergence. Building on this, Das et al. [5] further advanced the concept, evolving it into 

ℑ-statistical convergence. Additional research in this area can be found in studies conducted by 

[6,7,8,11,14]. 

Definition 1.1. ([16]) Let ℨ ≠ ∅. A non-void class ℑ ⊂ 2ℨ
 is stated to be an ideal, if 

(a) ℰ, ℱ ∈ ℑ ⇒ ℰ ∪ ℱ ∈ ℑ 
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(b) ℰ ∈ ℑ, ℱ ⊂ ℰ ⇒ ℰ ∈ ℑ. 

Definition 1.2. ([16]) An ideal ℑ will be termed non-trivial in ℨ if ℑ ≠ {∅} and ℨ ∉ ℑ. 

Definition 1.3. ([16]) An ideal ℑ in ℨ is stated to be admissible if it is non-trivial and for each 𝑦 ∈

ℨ, {𝑦} ∈ ℑ. 

Definition 1.4. ([16]) For each ideal ℑ in ℨ, we can associate a filter called the associated filter ℱ(ℑ) =

{𝑀 ⊂ ℨ: ℨ ∖ 𝑁 = 𝑀 for some 𝑁 ∈ ℑ}. 

Definition 1.5. ([5]) 𝐴 real number sequence (𝜔𝑢) is stated to be ℑ-statistically convergent to 𝜔 if for 

each 𝜚 and 0 < 𝜍 < 1 

{𝑠:
1

𝑠
|{𝑢 ≤ 𝑠: |𝜔𝑢 − 𝜔| ≥ 𝜚}| ≥ 𝜍} ∈ ℑ. 

In this scenario, we will put ℑ − 𝑠𝑡 − lim𝑢→∞  𝜔𝑢 = 𝜔 

In 1942, Menger [17] explored the concept of "probabilistic metric spaces (PMS)" by using a distribution 

function 𝐹𝑎𝑏 to define the distance between two points 𝑎 and 𝑏, rather than relying on a real number. The 

function 𝐹𝑎𝑏(𝑡), where 𝑡 > 0, denotes the probability that the distance between 𝑎 and 𝑏 is less than 𝑡. 

Building on Menger's pioneering work, numerous scholars, such as Schwiezer and Sklar [23, 24] and 

Tardiff [26], have advanced the theory of probabilistic metric spaces. For additional information, consult 

the comprehensive book on probabilistic metric spaces [25]. 

The theory of PGMS builds upon the concept of G-metric spaces. Recent studies have made substantial 

contributions to understanding generalized statistical convergence [15], asymptotically lacunary 

statistically equivalent sequences [12], and the convergence of double sequences in G-metric spaces. For 

additional information on G-metric spaces, refer to [3, 13, 19, 20]. 

In 2014, Zhou et al. [27] introduced and explored the theory of PGMS, an extension of PMS. Given the 

well-established uses of PMS, it is expected that PGMS will also prove to be highly applicable in the 

future. For recent research on PGMS, refer to [1, 28]. We will now revisit the definition of PGMS as 

presented in [27]. 

Now, let’s recall the definition of PGMS from [27]. 

Definition 1.6. ([27]). Let Θ be a nonempty set, 𝔜 be a function from Θ × Θ × Θ into 𝒟+and 𝛿 be a 

continuous 𝑡-norm such that for each 𝛼, 𝛽, 𝛾 ∈ Θ, we have 

(1) 𝔜(𝛼,𝛽,𝛾)(𝑞) = 1,  for all 𝛼, 𝛽, 𝛾 ∈ Θ and 𝑞 > 0 if and only if 𝛼 = 𝛽 = 𝛾; 

(2) 𝔜(𝛼,𝛼,𝛽)(𝑞) ≥ 𝔜(𝛼,𝛽,𝛾)(𝑞) for each 𝛼, 𝛽, 𝛾(≠ 𝛽), and 𝑞 > 0; 

(3) 𝔜(𝛼,𝛽,𝛾)(𝑞) = 𝔜(𝛽,𝛼,𝛾)(𝑞) = 𝔜(𝛾,𝛼,𝛽)(𝑞) = ⋯ (symmetry in 𝛼, 𝛽, 𝛾 ∈ Θ); 

(4) 𝔜(𝛼,𝛽,𝛾)(𝑢 + 𝑣) ≥ 𝛿(𝔜(𝛼,𝑤,𝑤)(𝑢), 𝔜(𝑤,𝛽,𝛾)(𝑣)) for each 𝛼, 𝛽, 𝛾, 𝑤 ∈ Θ and 𝑢, 𝑣 ≥ 0. 

Then, (Θ, 𝔜, 𝛿) is referred to as a Menger PGMS (in short a PGMS). 
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Let 𝛼0 ∈ Θ. Then, for each 𝜚 and 0 < 𝜍 < 1 the (𝜚, 𝜍)-neighbourhood of 𝑎0 is given by 𝔦𝑎0
(𝜌, 𝜎) and is 

described as 

𝔞𝑎0
(𝜚, 𝜍) = {𝛽 ∈ Θ: 𝔊(𝛼0,𝛽,𝛽)(𝜚) > 1 − 𝜍, 𝔊(𝛽,𝛼0,𝛼0)(𝜚) > 1 − 𝜍}. 

Given that various notions of sequence convergence are crucial for investigating the topological 

characteristics of topological spaces, and considering that the topological properties of Menger PGMS 

have yet to be extensively explored, this article introduces and investigates the theory of ℑ2-statistical 

convergence sequences within probabilistic generalized metric spaces. 

Definition 1.7. ([27]) Suppose that (𝜔𝑢) is a sequence in a PGMS (Θ, 𝔜, 𝛿) and 𝜔 ∈ Θ. Then, Θ is stated 

to be 

(1) converges to 𝜔 if for each 𝜚 and 0 < 𝜍 < 1, there is a non-zero non-negative integer 𝑀𝜚,𝜍 such that 

𝜔𝑢 ∈ 𝔦𝜔(𝜚, 𝜍) whenever 𝑢 ≥ 𝑀𝜚,𝜍. 

(2) Cauchy if for each 𝜚 and 0 < 𝜍 < 1, there is an 𝑀𝜚,𝜍 ∈ ℕ such that 

𝔜(𝜔𝑢,𝜔𝑖,𝜔𝑙)(𝜚) > 1 − 𝜍 whenever 𝑢, 𝑖, 𝑙 ≥ 𝑀𝜚,𝜍. 

Definition 1.8. ([1]) Suppose that (𝜔𝑢) is a sequence in a PGMS (Θ, 𝔜, 𝛿). Then (𝜔𝑢) is stated to be 

statistically 

(1) converges to 𝜔 if for each 𝑞 > 0, 

𝑑({𝑢: 𝜔𝑢 ∉ 𝔦𝜔(𝑞)}) = 0. 

(2) Cauchy if for each 𝑞 > 0, there is 𝑙𝑞 ∈ ℕ such that 

𝑑 ({𝑢: 𝜔𝑢 ∉ 𝔦𝑤𝑙𝑞
(𝑞)}) = 0. 

II. ℑ2-STATISTICAL CONVERGENCE IN PGMS 

 

In this section, we institute and examine the theory of ℑ2-statistically Cauchy sequence. 

Definition 2.2. Let (Θ, 𝔜, 𝛿) be a PGMS. A sequence (𝜔𝑢𝑣) in Θ is considered ℑ2-statistically convergent 

to 𝜔 ∈ Θ if, for each 𝜚 and 0 < 𝜍 < 1 and 𝜅 > 0, 

{(𝛼, 𝛽) ∈ ℕ2:  
1

𝛼𝛽
|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: 𝜔𝑢𝑣 ∉ 𝔦𝜔(𝜚, 𝜍)}| ≥ 𝜅} ∈ ℑ2, 

to put it differently, 

𝑑ℑ2({(𝑢, 𝑣): 𝜔𝑢𝑣 ∉ 𝔦𝜔(𝜚, 𝜍)}) = 0. 

In this context, we express  ℑ2 − 𝑠𝑡𝔜 − lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔. 
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Remark 2.3. Every statistically convergent sequence is also ℑ2-statistically convergent in a PGMS 

(Θ, 𝔜, 𝜏). 

Proposition 2.4. Let (Θ, 𝔜, 𝛿) be a PGMS. If (𝜔𝑢𝑣) is a sequence in Θ such that  ℑ2 − 𝑠𝑡𝔜 −

lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔1 and  ℑ2 − 𝑠𝑡𝔜 − lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔2, then 𝜔1 = 𝜔2. 

Theorem 2.5. Let (Θ, 𝔜, 𝛿) be a PGMS and ℑ2 be an nontrivial admissible ideal of ℕ2. Let (𝜔𝑢𝑣), (𝛾𝑢𝑣) 

and (𝜂𝑢𝑣) be sequences in Θ and 𝜔, 𝛾, 𝜁 ∈ Θ. If  ℑ2 − 𝑠𝑡𝔜 − lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔,  ℑ2 − 𝑠𝑡𝔜 −

lim𝑢,𝑣→∞𝛾𝑢𝑣 = 𝛾, and  ℑ2 − 𝑠𝑡𝔊 − lim𝑢,𝑣→∞𝜂𝑢𝑣 = 𝜂, then the sequence (𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜚)) is ℑ2-

statistically convergent to 𝔜𝜔,𝛾,𝜁(𝜚) for each 𝜚. 

Proof. Let 𝜚 be given. Choose 𝜍 > 0 such that 𝜚 − 2𝜍 > 0. Then we get 

𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜚)

≥𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜚 − 𝜍)

≥𝛿 (𝔜(𝜔𝑢𝑣,,𝜔,𝜔) (
𝜍

3
) , 𝔜(𝜔,𝛾𝑢𝑣,𝜂𝑢𝑣) (

3𝜚 − 4𝜍

3
))

≥𝛿 (𝔜(𝜔𝑢𝑣,,𝜔,𝜔) (
𝜍

3
) , 𝜏 (𝔜(𝛾𝑢𝑣,𝛾,𝛾) (

𝜍

3
) , 𝔜(𝛾,𝜔,𝜂𝑢𝑣) (𝜚 −

5𝜍

3
)))

≥𝛿 (𝔜(𝜔𝑢𝑣,,𝜔,𝜔) (
𝜍

3
) , 𝜏 (𝔜(𝛾𝑢𝑣,𝛾,𝛾) (

𝜍

3
) , 𝜏 (𝔜(𝜂𝑢𝑣,𝜂,𝜂) (

𝜍

3
) , 𝔜(𝜔,𝛾,𝜂)(𝜚 − 2𝜍)))) .

 

Additionally, the following is held: 

𝔜(𝜔,𝛾,𝜂)(𝜚)

≥𝔜(𝜔,𝛾,𝜂)(𝜚 − 𝜎)

≥𝛿 (𝔜(𝜔,𝜔𝑢𝑣,𝜔𝑢𝑣) (
𝜍

3
) , 𝔜(𝜔𝑢𝑣,𝛾,𝜂) (

3𝜚 − 4𝜍

3
))

≥𝛿 (𝔜(𝜔,𝜔𝑢𝑣,𝜔𝑢𝑣) (
𝜍

3
) , 𝜏 (𝔜(𝛾,𝛾𝑢𝑣,𝛾𝑢𝑣) (

𝜍

3
) , 𝔜(𝛾𝑢𝑣,𝜔𝑢𝑣,,𝜂) (𝜚 −

5𝜍

3
)))

≥𝛿 (𝔜(𝜔,𝜔𝑢𝑣,𝜔𝑢𝑣) (
𝜍

3
) , 𝜏 (𝔜(𝛾,𝛾𝑢𝑣,𝛾𝑢𝑣) (

𝜍

3
) , 𝜏 (𝔜(𝜂,𝛾𝑢𝑣,𝛾𝑢𝑣) (

𝜍

3
) , 𝔜(𝜔𝑢𝑣,,𝛾𝑢𝑣,𝜂𝑢𝑣)(𝜚 − 2𝜍)))) .

 

Since 𝛿 is continuous, it follows from [2, Theorem 2] that it is statistically continuous. Therefore, there 

exist sets 𝒜 and ℬ of non-zero non-negative integers with ℑ2-density 1 such that 𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜚 − 2𝜍) ≥

𝔜(𝜔,𝛾,𝜂)(𝜚) for all (𝑢, 𝑣) ∈ 𝒜, and 𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜌) ≥ 𝔜(𝜔,𝛾,𝜂)(𝜚 − 2𝜍) for all (𝑢, 𝑣) ∈ ℬ. Set 𝐶 = 𝒜 ∩ ℬ. 

Then 𝑑𝐼2(𝐶) = 1. In addition, 𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜚 − 2𝜍) ≥ 𝔜(𝜔,𝛾,𝜂)(𝜚) and 𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣

(𝜚) ≥ 𝔜(𝜔,𝛾,𝜂)(𝜚 − 2𝜍) 

for all (𝑢, 𝑣) ∈ 𝐶. Since 𝔜 is left-continuous, it follows that  ℑ2 − 𝑠𝑡𝔜 − lim𝑢,𝑣→∞𝔜𝜔𝑢𝑣,𝛾𝑢𝑣,𝜂𝑢𝑣
(𝜚) =

𝔜(𝜔,𝛾,𝜂)(𝜚) for each 𝜚. 
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Theorem 2.6. Let (Θ, 𝔜, 𝛿) be a PGMS and (𝜔𝑢𝑣) be a sequence in Θ. The condition  ℑ2 − 𝑠𝑡𝔜 −

lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔 is equivalent to the existence of a subset 𝔛 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 < 𝑘𝑢+1, 𝑙𝑣 < 𝑙𝑣+1} of ℕ2 

such that 𝑑ℑ2(𝔛) = 1 and 𝔜 − lim𝑢,𝑣→∞  𝜔𝑘𝑢𝑙𝑣
= 𝜔. 

Proof. Let there is a subset 𝔛 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 < 𝑘𝑢+1, 𝑙𝑣 < 𝑙𝑣+1} of ℕ2 such that 𝑑ℑ2(𝔛) = 1 and 𝔜 −

lim𝑢,𝑣→∞  𝜔𝑘𝑢𝑙𝑣
= 𝜔. Let 𝜚 and 0 < 𝜍 < 1 be given. Then, there is a non-zero non-negative integer 𝑛𝜚,𝜍 

such that 𝜔𝑘𝑢𝑙𝑣
∈ 𝔦𝜔(𝜚, 𝜍) whenever 𝑢, 𝑣 ≥ 𝑛𝜚,𝜍. Thus 

{(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔(𝜚, 𝜍)} ⊃ {(𝑘𝑢, 𝑙𝑣): 𝑢, 𝑣 ≥ 𝑛𝜚,𝜍}. 

Since the latter set has ℑ2-density 1, 𝑑ℑ2({(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔(𝜚, 𝜍)}) = 1. Hence,  ℑ2 − 𝑠𝑡𝔜 −

lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔. 

Conversely, let  ℑ2 − 𝑠𝑡𝔜 − lim𝑢,𝑣→∞𝜔𝑢𝑣 = 𝜔. Then, for each 𝜚 and 0 < 𝜍 < 1, 

𝑑ℑ2({(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔(𝜚, 𝜍)}) = 1. 

Set 

ℰ(𝜚, 𝜍) = {(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔(𝜚, 𝜍)} 

for each 𝜚 and 0 < 𝜍 < 1. Clearly, 𝑑ℑ2(ℰ(𝜚, 𝜍)) = 1. Now for 𝜚𝛼𝛽 =
1

𝛼𝛽
 and 𝜍𝛼𝛽 =

1

𝛼𝛽
 with 𝛼, 𝛽 ≥ 2, we 

have 𝔦𝜔 (
1

2
,

1

2
) ⊃ 𝔦𝜔 (

1

3
,

1

3
) ⊃ ⋯ ⊃ 𝔦𝜔 (

1

𝛼𝛽
,

1

𝛼𝛽
) ⊃ 𝔦𝜔 (

1

𝛼𝛽+1
,

1

𝛼𝛽+1
) ⊃ ⋯ 

Consequently, 

ℰ(1/2,1/2) ⊃ ℰ(1/3,1/3) ⊃ ⋯ ⊃ ℰ(1/𝛼𝛽, 1/𝛼𝛽) ⊃ ℰ(1/(𝛼𝛽 + 1),1/(𝛼𝛽 + 1)) ⊃ ⋯ 

Note that 𝑑ℑ2(ℰ(1/𝛼𝛽, 1/𝛼𝛽)) = 1 for each 𝛼, 𝛽(> 1) ∈ ℕ. Set 𝑡1 = 1. Since 𝑑ℑ2(ℰ(1/2,1/2)) = 1, 

there is 𝑡2 ∈ ℰ(1/2,1/2) and 𝑡2 > 𝑡1 such that for each 𝛼, 𝛽 ≥ 𝑡2, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/2,1/2)}|

𝛼𝛽
> 1 − 1/2. 

Since 𝑑ℑ2(ℰ(1/3,1/3)) = 1, there is 𝑡3 ∈ ℰ(1/3,1/3) with 𝑡3 > 𝑡2 such that for each 𝛼, 𝛽 ≥ 𝑡3, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ 𝔼(1/3,1/3)}|

𝛼𝛽
> 1 − 1/3. 

Again, since 𝑑ℑ2(ℰ(1/4,1/4)) = 1, there is 𝑡4 ∈ 𝑣(1/4,1/4) with 𝑡4 > 𝑡3 such that ∀𝛼, 𝛽 ≥ 𝑡4, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/4,1/4)}|

𝛼𝛽
> 1 − 1/4. 

Continue in this manner, we will get a strictly increasing sequence of nonzero non-negative integers (𝑡𝑚) 

such that 𝑡𝑚 ∈ ℰ(1/𝑚, 1/𝑚) and for each 𝛼, 𝛽 ≥ 𝑡𝑚, we have 
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|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼𝛽
> 1 − 1/𝑚. 

We now construct a set 𝒜 as follows: 

𝒜 = {(𝑢, 𝑣): 𝑢, 𝑣 ∈ [𝑡1, 𝑡2]} ⋃  { ⋃  

𝑚∈ℕ

  {(𝑢, 𝑣): 𝑢, 𝑣 ∈ [𝑡𝑚, 𝑡𝑚+1] ∩ ℰ(1/𝑚, 1/𝑚)}}. 

Then, for each 𝑟 ∈ ℕ with 𝑡𝑚 ≤ 𝑟 < 𝑡𝑚+1, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ 𝒜}|

𝛼𝛽
≥

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼𝛽
≥ 1 −

1

𝑚
. 

Thus, 𝑑ℑ2(𝒜) = 1. Let 𝜚 and 0 < 𝜍 < 1. We choose a large 𝑞 ∈ ℕ such that 

1

𝑞
< 𝜚 and 

1

𝑞
< 𝜍. 

Let 𝑢, 𝑣 ≥ 𝑡𝑞, and 𝑟 ∈ 𝒜. Then, there is 𝑗 ∈ ℕ such that 𝑡𝑗 ≤ 𝑢, 𝑣 < 𝑡𝑗+1 and 𝑗 > 𝑞. Clearly, (𝑢, 𝑣) ∈

𝒜 (
1

𝑗
,

1

𝑗
). Thus, 

𝜔𝑢𝑣 ∈ 𝔦𝜔 (
1

𝑗
,
1

𝑗
) ⊂ 𝔦𝜔 (

1

𝑞
,
1

𝑞
) ⊂ 𝔦𝜔(𝜚, 𝜍). 

Therefore 𝜔𝑢𝑣 ∈ 𝔦𝜔(𝜚, 𝜍) for each (𝑢, 𝑣) ∈ 𝒜 with 𝑢, 𝑣 ≥ 𝑡𝑞. Write 𝒜 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 < 𝑘𝑢+1, 𝑙𝑣 <

𝑙𝑣+1}. Hence 𝔜 − lim𝑢,𝑣→∞  𝜔𝑘𝑢𝑙𝑣
= 𝜔. 

Corollary 2.7. Let (Θ, 𝔜, 𝛿) be a PGMS and (𝜔𝑢𝑣) be a sequence in Θ. Then, 𝜔𝑢𝑣 →
 ℑ2−𝑠𝑡𝔜

𝜔 if and only if 

there exists a sequence (𝜁𝑢𝑣) such that 𝜔𝑢𝑣 = 𝜁𝑢𝑣  for almost all u,v (ℑ2) and 𝜁𝑢𝑣 →
𝔜

𝜔. 

We now provide a necessary condition for a sequence to be ℑ2-statistically convergent. 

Theorem 2.8. Let (Θ, 𝔜, 𝛿) be a PGMS and (𝜔𝑢𝑣) be a sequence in Θ. If (𝜔𝑢𝑣) is ℑ2-statistically 

convergent to Θ, then for each 𝜚 and 0 < 𝜍 < 1, there is a non-zero non-negative integer 𝑖0 = 𝑖0(𝜚, 𝜍) 

such that 

ℑ2 − lim
𝛼,𝛽→∞

 
1

𝛼𝛽
|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: 𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚) > 1 − 𝜍}| = 1. 

Proof. Let 𝜚 as well as 0 < 𝜍 < 1 be given. Since 𝛿 is continuous, there is 𝜍0 ∈ (0,1) such that 

𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍. 

Again, since 𝜔𝑢𝑣 →
 ℑ2−𝑠𝑡𝔜

𝜔, we have 𝑑ℑ2 ({(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔 (
𝜚

2
, 𝜍0)}) = 1. Set 
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𝒜 = {(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔 (
𝜚

2
, 𝜍0)}. 

Clearly, 𝑑ℑ2(𝒜) = 1. Let 𝑛0 be an arbitrary but fixed element of 𝔸. Then 𝜔𝑖0
∈ 𝔦𝜔 (

𝜚

2
, 𝜍0). Then for each 

(𝑢, 𝑣) ∈ 𝒜, we have 

𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0
)(𝜚)

≥  𝛿 (𝔜(𝜔𝑢𝑣,𝜔,𝜔) (
𝜚

2
) , 𝔜(𝜔,𝜔𝑖0

,𝜔𝑖0
) (

𝜚

2
))

>  𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Also, 

𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚)

≥𝛿 (𝔜(𝜔𝑖0 ,𝜔,𝜔) (
𝜚

2
) , 𝔜(𝜔,𝜔𝑢𝑣,𝜔𝑢𝑣) (

𝜚

2
))

>𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Therefore, 

𝒜 ⊂ {(𝑢, 𝑣): 𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0
)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚) > 1 − 𝜍}. 

Thus, 

ℑ2 − lim
𝛼,𝛽→∞

 
1

𝛼𝛽
|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: 𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚) > 1 − 𝜍}| = 1. 

 

Let 𝜚 as well as 0 < 𝜍 < 1 be given. Since 𝛿 is continuous, there is 𝜍0 ∈ (0,1) such that 

𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍. 

Again, since 𝜔𝑢𝑣 →
 ℑ2−𝑠𝑡𝔜

𝜔, we have 𝑑ℑ2 ({(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔 (
𝜚

2
, 𝜍0)}) = 1. Set 

𝒜 = {(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔 (
𝜚

2
, 𝜍0)} 

Clearly, 𝑑ℑ2(𝒜) = 1. Let 𝑛0 be an arbitrary but fixed element of 𝒜. Then 𝑥𝑖0
∈ 𝔦𝑥 (

𝜌

2
, 𝜎0). Then for each 

𝑘 ∈ 𝒜, we have 

𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0
)(𝜚)

≥ 𝛿 (𝔜(𝜔𝑢𝑣,𝜔,𝜔) (
𝜚

2
) , 𝔜(𝜔,𝜔𝑖0

,𝜔𝑖0
) (

𝜚

2
))

> 𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Also, 
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𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚)

≥𝛿 (𝔜(𝜔𝑖0 ,𝜔,𝜔) (
𝜚

2
) , 𝔜(𝜔,𝜔𝑢𝑣,𝜔𝑢𝑣) (

𝜚

2
))

>𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Therefore, 

𝒜 ⊂ {(𝑢, 𝑣): 𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0
)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚) > 1 − 𝜍}. 

Thus, ℑ2 − lim
𝛼,𝛽→∞

 
1

𝛼𝛽
|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: 𝔜(𝜔𝑢𝑣,𝜔𝑖0 ,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢𝑣,𝜔𝑢𝑣)(𝜚) > 1 − 𝜍}| = 1. 

 

III. ℑ2-STATISTICAL CAUCHYNESS IN PGMS 

 

Definition 3.1. Consider (Θ, 𝔜, 𝛿) as a PGMS and let (𝜔𝑢𝑣) be a sequence in Θ. Then, (𝜔𝑢𝑣) is called ℑ2-

statistically Cauchy if, for each 𝜚 and 0 < 𝜍 < 1, there exist 𝑛𝜚,𝜍, 𝑚𝜚,𝜍 ∈ ℕ such that 

𝑑ℑ2 ({(𝑢, 𝑣): 𝜔𝑢𝑣 ∉ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(𝜚, 𝜍)}) = 0. 

Remark 3.2. If (𝜔𝑢𝑣) is a statistically Cauchy sequence in a PGMS Θ, then it is also ℑ2-statistically 

Cauchy sequence in Θ. 

Theorem 3.3. Consider (Θ, 𝔜, 𝛿) as a PGMS and let (𝜔𝑢𝑣) be a sequence in Θ. Then (𝜔𝑢𝑣) is ℑ2-

statistically Cauchy in Θ if and only if there is a subset 𝔓 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 < 𝑘𝑢+1, 𝑙𝑣 < 𝑙𝑣+1} of ℕ2 such 

that 𝑑ℑ2(𝔓) = 1 as well as (𝜔)ℙ is a Cauchy sequence. 

Proof. Consider a subset 𝔓 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 < 𝑘𝑢+1, 𝑙𝑣 < 𝑙𝑣+1} of ℕ2 such that 𝑑ℑ2(𝔓) = 1 and (𝜔)𝔓 is a 

Cauchy sequence. Let 𝜚 and 0 < 𝜍 < 1 be given. Then, there exist non-zero non-negative 𝑛𝜚,𝜍, 𝑚𝜚,𝜍 such 

that 𝜔𝑘𝑢𝑙𝑣
∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍

(𝜚, 𝜍) whenever ≥ 𝑛𝜚,𝜍, 𝑣 ≥ 𝑚𝜚,𝜍. Thus 

{(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(𝜚, 𝜍)} ⊃ {(𝑘𝑢, 𝑙𝑣): 𝑢 ≥ 𝑛𝜚,𝜍, 𝑣 ≥ 𝑚𝜚,𝜍}. 

Given that the set has ℑ2-density 1, it follows that 𝑑ℑ2 ({(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(𝜚, 𝜍)}) = 1. Therefore, 

(𝜔𝑢𝑣) is ℑ2-statistically Cauchy. 

Conversely, (𝜔𝑢𝑣) is ℑ2-statistically Cauchy. Then for each 𝜌 as well as 0 < 𝜎 < 1 

𝑑ℑ2 ({(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(𝜚, 𝜍)}) = 1. 

Set ℰ(𝜌, 𝜎) = {(𝑢, 𝑣): 𝜔𝑢𝑣 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(𝜚, 𝜍)} for each 𝜚 and 0 < 𝜍 < 1. Clearly, 𝑑ℑ2(ℰ(𝜌, 𝜎)) = 1.  

Now for 𝜚𝛼𝛽 =
1

𝛼𝛽
 and 𝜍𝛼𝛽 =

1

𝛼𝛽
 with 𝛼, 𝛽 ≥ 2, we have 𝔦𝜔 (

1

2
,

1

2
) ⊃ 𝔦𝜔 (

1

3
,

1

3
) ⊃ ⋯ ⊃ 𝔦𝜔 (

1

𝛼𝛽
,

1

𝛼𝛽
) ⊃

𝔦𝜔 (
1

𝛼𝛽+1
,

1

𝛼𝛽+1
) ⊃ ⋯ 
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Consequently, 

ℰ(1/2,1/2) ⊃ ℰ(1/3,1/3) ⊃ ⋯ ⊃ ℰ(1/𝛼𝛽, 1/𝛼𝛽) ⊃ ℰ(1/(𝛼𝛽 + 1),1/(𝛼𝛽 + 1)) ⊃ ⋯ 

Note that 𝑑ℑ2(ℰ(1/𝛼𝛽, 1/𝛼𝛽)) = 1 for each 𝛼, 𝛽(> 1) ∈ ℕ. Set 𝑡1 = 1. Since 𝑑ℑ2(ℰ(1/2,1/2)) = 1, 

there is 𝑡2 ∈ ℰ(1/2,1/2) and 𝑡2 > 𝑡1 such that for each 𝛼, 𝛽 ≥ 𝑡2, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/2,1/2)}|

𝛼𝛽
> 1 − 1/2. 

Since 𝑑ℑ2(ℰ(1/3,1/3)) = 1, there is 𝑡3 ∈ ℰ(1/3,1/3) with 𝑡3 > 𝑡2 such that for each 𝛼, 𝛽 ≥ 𝑡3, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/3,1/3)}|

𝛼𝛽
> 1 − 1/3. 

Again, since 𝑑ℑ2(ℰ(1/4,1/4)) = 1, there is 𝑡4 ∈ ℰ(1/4,1/4) with 𝑡4 > 𝑡3 such that ∀𝛼, 𝛽 ≥ 𝑡4, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/4,1/4)}|

𝛼𝛽
> 1 − 1/4. 

Continue in this manner, we will get a strictly increasing sequence of nonzero non-negative integers (𝑡𝑚) 

such that 𝑡𝑚 ∈ ℰ(1/𝑚, 1/𝑚) and for each 𝛼, 𝛽 ≥ 𝑡𝑚, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼𝛽
> 1 − 1/𝑚. 

We now construct a set 𝒜 as follows: 

𝒜 = {(𝑢, 𝑣): 𝑢, 𝑣 ∈ [𝑡1, 𝑡2]} ⋃  { ⋃  

𝑚∈ℕ

  {(𝑢, 𝑣): 𝑢, 𝑣 ∈ [𝑡𝑚, 𝑡𝑚+1] ∩ 𝔼(1/𝑚, 1/𝑚)}}. 

Then, for each 𝑟 ∈ ℕ with 𝑡𝑚 ≤ 𝑟 < 𝑡𝑚+1, we have 

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ 𝒜}|

𝛼𝛽
≥

|{𝑢 ≤ 𝛼, 𝑣 ≤ 𝛽: (𝑢, 𝑣) ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼𝛽
≥ 1 −

1

𝑚
. 

Thus, 𝑑ℑ2(𝒜) = 1. Let 𝜚 and 0 < 𝜍 < 1. We choose a large 𝑞 ∈ ℕ such that 

1

𝑞
< 𝜚 and 

1

𝑞
< 𝜍. 

Let 𝑢, 𝑣 ≥ 𝑡𝑞, and 𝑟 ∈ 𝒜. Then, there is 𝑗 ∈ ℕ such that 𝑡𝑗 ≤ 𝑢, 𝑣 < 𝑡𝑗+1 and 𝑗 > 𝑞. Clearly, (𝑢, 𝑣) ∈

𝒜 (
1

𝑗
,

1

𝑗
). Thus, 

𝜔𝑢𝑣 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(

1

𝑗
,
1

𝑗
) ⊂ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍

(
1

𝑞
,
1

𝑞
) ⊂ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍

(𝜚, 𝜍). 
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Therefore 𝜔𝑢𝑣 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍𝑣𝑚𝜚,𝜍
(𝜚, 𝜍) for each (𝑢, 𝑣) ∈ 𝒜 with 𝑢, 𝑣 ≥ 𝑡𝑞. Write 𝒜 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 <

𝑘𝑢+1, 𝑙𝑣 < 𝑙𝑣+1}. Hence, (𝜔)𝔓 is a Cauchy sequence. 

Corollary 3.4. Let (Θ, 𝔜, δ) be a PGMS, and let (ωuv) be a sequence in Θ. Then, (ωuv) is a Cauchy 

sequence in Θ implies and implied by there is a sequence (𝑞𝑢𝑣) such that ωuv = 𝑞𝑢𝑣 for almost all u,v 

(ℑ2) and (𝑞𝑢𝑣) is also a Cauchy sequence in Θ. 

Theorem 3.5. Let (Θ, 𝔜, δ) be a PGMS. If (ωuv) is an ℑ2-statistically convergent sequence in Θ, then 

(ωuv) is ℑ2-statistically Cauchy in Θ. 

Proof. The proof follows directly from Theorem 2.8. 

Corollary 3.6. Let (Θ, 𝔜, δ) be a PGMS and (ωuv) be an ℑ2-statistically convergent sequence in Θ. Then, 

there is a subset 𝔓 = {(𝑘𝑢, 𝑙𝑣): 𝑘𝑢 < 𝑘𝑢+1, 𝑙𝑣 < 𝑙𝑣+1} of ℕ2 such that dℑ2(𝔓) = 1 as well as (ω)𝔓 is a 

Cauchy sequence. 

IV. CONCLUSION 
We have presented and examined the fundamental properties and links between the notions of ℑ2-

statistical convergence and ℑ2-statistical Cauchyness for double sequences within probabilistic 

generalized metric spaces (PGMS) in this work. Our findings reveal that these concepts extend traditional 

convergence notions into the probabilistic framework of PGMS, establishing a clear connection between 

ℑ2-statistical convergence and ℑ2-statistical Cauchyness. This work enriches the theoretical 

understanding of sequence behavior in PGMS and sets the stage for further exploration of these ideas in 

more complex mathematical contexts. 
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