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Abstract – In this research, we examine some fundamental characteristics of 𝜆-statistical convergence in 

probabilistic generalized metric spaces (𝒫𝒢ℳ𝒮). Additionally, we define and explore the concept of 𝜆-

statistical Cauchyness and investigate their interrelationships. 

Keywords – Probabilistic Generalized Metric Space, 𝜆-Statistical Convergence, 𝜆-Statistical Cauchyness. 

 

I. INTRODUCTION 

For many years, one of the most important and active areas of research in pure mathematics has been the 

study of sequence convergence and summability theory. Moreover, it has made significant contributions 

to a wide range of fields, including computer science, mathematical modeling, functional analysis, 

topology, measure theory, and applied mathematics. In recent years, the idea of statistical convergence of 

sequences has been applied widely in mathematics. Fast [2] conducted a first exploration of statistical 

convergence. Since then, a number of mathematicians have investigated the statistical convergence and 

convergence features and applied these ideas to many disciplines.  

Mursaleen [11] further extended the concept of natural density of subsets of ℕ to the concept of 𝜆-density. 

Using 𝜆-density, he further extended the concept of statistical convergence of real sequences to the 

concept of 𝜆-statistical convergence. If 𝜆 = {𝜆𝑢}𝑢∈ℕ is a non-decreasing sequence of positive real 

numbers tending to ∞ such that 𝜆1 = 1, 𝜆𝑢+1 ≤ 𝜆𝑢 + 1, 𝑢 ∈ ℕ, then any subset ℭ of ℕ is said to have 𝜆-

density 𝑑𝜆(ℭ) if  

𝑑𝜆(ℭ) = lim
𝑢→∞

|{𝑘 ∈ 𝐼𝑢: 𝑘 ∈ ℭ}|

𝜆𝑢
, 

where 𝐼𝑢 = [𝑢 − 𝜆𝑢 + 1, 𝑢]. It is clear that if 𝔘, 𝔙 ⊂ ℕ and 𝑑𝜆(𝔘) = 0, 𝑑𝜆(𝔙) = 0 then 𝑑𝜆(𝔘𝑐) = 1 =

𝑑𝜆(𝔙𝑐), 𝑑𝜆(𝔘 ∪ 𝔙) = 0. Also if 𝔘, 𝔙 ⊂ ℕ, 𝔘 ⊂ 𝔙 and 𝑑𝜆(𝔙) = 0, then 𝑑𝜆(𝔘) = 0. In this study, 𝜆 

represents such a sequence.  

If a sequence 𝜛 = {𝜛𝑢}𝑢∈ℕ is said to satisfy the condition 𝒫 for "𝜆-almost all 𝑢," or more succinctly, " 𝜆-

 𝑎. 𝑎. 𝑢.", if it satisfies the property 𝒫 for all 𝑢 with the exception of a set of 𝜆-density zero. When 

𝑑𝜆(ℭ(𝜀)) = 0 for each 𝜀 > 0, where ℭ(𝜀) = {𝑢 ∈ ℕ: |𝜛𝑢 − 𝜍| ≥ 𝜀}, then a series of real numbers, 𝜛 =
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{𝜛𝑢}𝑢∈ℕ, is said to be 𝜆-statistically convergent or 𝑆𝜆 -convergent to 𝜍 ∈ ℝ. The concepts of 𝜆-density 

and 𝜆-statistical convergence correspond with the ideas of natural density and statistical convergence, 

respectively, if 𝜆𝑢 = 𝑢, ∀𝑢 ∈ ℕ. 

 

Instead of utilizing a real integer to determine the distance between two locations, 𝒶 and 𝒷, Menger [10] 

investigated the idea of "probabilistic metric spaces (𝒫ℳ𝒮)" in 1942. When 𝓉 > 0, the function 𝐹𝒶𝒷 

indicates the likelihood that 𝒶 and 𝒷's distance is smaller than 𝓉. The likelihood that the distance between 

𝒶 and 𝒷 is shorter than 𝓉 is indicated by the function 𝐹𝒶𝒷(𝑡), where 𝓉 > 0. Many researchers, including 

Tardiff [17] and Schwiezer and Sklar [14, 15], have expanded the theory of probabilistic metric spaces by 

building on Menger's groundbreaking work. Refer to the extensive work on probabilistic metric spaces 

[16] for further details. 

 

𝐺-metric spaces are the foundation of 𝒫𝒢ℳ𝒮 theory. Understanding asymptotically lacunary statistically 

equivalent sequences [6], extended statistical convergence [9], and the convergence of double sequences 

in 𝐺-metric spaces have all benefited from recent research. Further reading on 𝐺-metric spaces may be 

found in [3, 7, 12, 13]. 

 

Zhou et al. [18] presented and investigated the hypothesis of 𝒫𝒢ℳ𝒮, which is an expansion of 𝒫ℳ𝒮, in 

2014. It is anticipated that 𝒫𝒢ℳ𝒮 will show to be extremely useful in the future, given the known uses of 

𝒫ℳ𝒮. Regarding current studies on 𝒫𝒢ℳ𝒮, see [1, 19]. Let's go back to the definition of PGMS that was 

given in [18]. 

 

Let's now review the definition of 𝒫𝒢ℳ𝒮 found in [18]. 

 

Definition 1.1. ([18]). Let Ξ be a nonempty set, 𝔜 be a function from Ξ × Ξ × Ξ into 𝒟+and 𝛿 be a 

continuous 𝑡-norm such that for each 𝛼, 𝛽, 𝛾 ∈ Ξ, we have 

(1) 𝔜(𝛼,𝛽,𝛾)(𝑞) = 1,  for all 𝛼, 𝛽, 𝛾 ∈ Ξ and 𝑞 > 0 iff 𝛼 = 𝛽 = 𝛾; 

(2) 𝔜(𝛼,𝛼,𝛽)(𝑞) ≥ 𝔜(𝛼,𝛽,𝛾)(𝑞) for each 𝛼, 𝛽, 𝛾(≠ 𝛽), and 𝑞 > 0; 

(3) 𝔜(𝛼,𝛽,𝛾)(𝑞) = 𝔜(𝛽,𝛼,𝛾)(𝑞) = 𝔜(𝛾,𝛼,𝛽)(𝑞) = ⋯ (symmetry in 𝛼, 𝛽, 𝛾 ∈ Ξ); 

(4) 𝔜(𝛼,𝛽,𝛾)(𝑢 + 𝑣) ≥ 𝛿(𝔜(𝛼,𝑤,𝑤)(𝑢), 𝔜(𝑤,𝛽,𝛾)(𝑣)) for each 𝛼, 𝛽, 𝛾, 𝑤 ∈ Ξ and 𝑢, 𝑣 ≥ 0. 

Then, (Ξ, 𝔜, 𝛿) is referred to as a Menger 𝒫𝒢ℳ𝒮 (in short a 𝒫𝒢ℳ𝒮). 

Let 𝛼0 ∈ Ξ. Then, for each 𝜚 and 0 < 𝜍 < 1 the (𝜚, 𝜍)-neighbourhood of 𝑎0 is given by 𝔦𝑎0
(𝜌, 𝜎) and is 

described as 

𝔞𝑎0
(𝜚, 𝜍) = {𝛽 ∈ Ξ: 𝔊(𝛼0,𝛽,𝛽)(𝜚) > 1 − 𝜍, 𝔊(𝛽,𝛼0,𝛼0)(𝜚) > 1 − 𝜍}. 

This paper presents and explores the theory of 𝜆-statistical convergence sequences within probabilistic generalized 

metric spaces, considering that different concepts of sequence convergence are essential for examining the 

topological features of topological spaces and that the topological properties of Menger 𝒫𝒢ℳ𝒮 have not been 

thoroughly studied. 
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Definition 1.2. ([18]) Suppose that (𝜔𝑢) is a sequence in a 𝒫𝒢ℳ𝒮 (Ξ, 𝔜, 𝛿) and 𝜛 ∈ Ξ. Then, Ξ is stated 

to be 

(i) converges to 𝜛 if for each 𝜚 and 0 < 𝜍 < 1, there is a non-zero non-negative integer 𝔐𝜚,𝜍 such that 

𝜔𝑢 ∈ 𝔦𝜛(𝜚, 𝜍) whenever 𝑢 ≥ 𝔐𝜚,𝜍. 

(ii) Cauchy if for each 𝜚 and 0 < 𝜍 < 1, there is an 𝔐𝜚,𝜍 ∈ ℕ such that 

𝔜(𝜔𝑢,𝜔𝑖,𝜔𝑙)(𝜚) > 1 − 𝜍 whenever 𝑢, 𝑖, 𝑙 ≥ 𝔐𝜚,𝜍. 

Definition 1.3. ([1]) Suppose that (𝜔𝑢) is a sequence in a 𝒫𝒢ℳ𝒮 (Ξ, 𝔜, 𝛿). Then (𝜔𝑢) is stated to be 

statistically 

(i) converges to 𝜛 if for each 𝑞 > 0, 

𝑑({𝑢: 𝜔𝑢 ∉ 𝔦𝜛(𝑞)}) = 0. 

(ii) Cauchy if for each 𝑞 > 0, there is 𝑙𝑞 ∈ ℕ such that 

𝑑 ({𝑢: 𝜔𝑢 ∉ 𝔦𝑤𝑙𝑞
(𝑞)}) = 0. 

II. THE MAIN RESULTS 

 

We define and examine 𝜆-statistical convergence as well as 𝜆-statistical Cauchy sequence theory in this chapter. 

 

Definition 2.1. Let (Ξ, 𝔜, 𝛿) be a 𝒫𝒢ℳ𝒮. A sequence (𝜔𝑢) in Ξ is considered 𝜆-statistically convergent 

to 𝜛 ∈ Ξ if, for each 𝜚 and 0 < 𝜍 < 1 and 𝜅 > 0, 

𝑑𝜆({𝑢 ≤ 𝛼 ∶ 𝜔𝑢 ∉ 𝔦𝜛(𝜚, 𝜍)}) = 0. 

In this context, we express  𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝜔𝑢 = 𝜛. 

Proposition 2.2. Let (Ξ, 𝔜, 𝛿) be a 𝒫𝒢ℳ𝒮. If (𝜔𝑢) is a sequence in Ξ such that  𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝜔𝑢 =

𝜛1 and  𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝜔𝑢 = 𝜛2, then 𝜛1 = 𝜛2. 

Theorem 2.3. Let (Ξ, 𝔜, 𝛿) be a 𝒫𝒢ℳ𝒮. Let (𝜔𝑢), (𝛾𝑢) and (𝜂𝑢) be sequences in Ξ and 𝜛, 𝛾, 𝜁 ∈ Ξ. If 

 𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝜔𝑢 = 𝜛, 𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝛾𝑢 = 𝛾, and  𝜆 − 𝑠𝑡𝔊 − lim𝑢→∞𝜂𝑢 = 𝜂, then the sequence 

(𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜚)) is 𝜆-statistically convergent to 𝔜𝜛,𝛾,𝜁(𝜚) for each 𝜚. 

Proof. Let 𝜚 be given. Choose 𝜍 > 0 such that 𝜚 − 2𝜍 > 0. Then we get 
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𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜚)

≥𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜚 − 𝜍)

≥𝛿 (𝔜(𝜔𝑢,,𝜔,𝜔) (
𝜍

3
) , 𝔜(𝜛,𝛾𝑢,𝜂𝑢) (

3𝜚 − 4𝜍

3
))

≥𝛿 (𝔜(𝜔𝑢,,𝜛,𝜛) (
𝜍

3
) , 𝜏 (𝔜(𝛾𝑢,𝛾,𝛾) (

𝜍

3
) , 𝔜(𝛾,𝜛,𝜂𝑢) (𝜚 −

5𝜍

3
)))

≥𝛿 (𝔜(𝜔𝑢,,𝜛,𝜛) (
𝜍

3
) , 𝜏 (𝔜(𝛾𝑢,𝛾,𝛾) (

𝜍

3
) , 𝜏 (𝔜(𝜂𝑢,𝜂,𝜂) (

𝜍

3
) , 𝔜(𝜛,𝛾,𝜂)(𝜚 − 2𝜍)))) .

 

Additionally, the following is held: 

𝔜(𝜛,𝛾,𝜂)(𝜚)

≥𝔜(𝜛,𝛾,𝜂)(𝜚 − 𝜎)

≥𝛿 (𝔜(𝜛,𝜔𝑢,𝜔𝑢) (
𝜍

3
) , 𝔜(𝜔𝑢,𝛾,𝜂) (

3𝜚 − 4𝜍

3
))

≥𝛿 (𝔜(𝜛,𝜔𝑢,𝜔𝑢) (
𝜍

3
) , 𝜏 (𝔜(𝛾,𝛾𝑢,𝛾𝑢) (

𝜍

3
) , 𝔜(𝛾𝑢,𝜔𝑢,,𝜂) (𝜚 −

5𝜍

3
)))

≥𝛿 (𝔜(𝜛,𝜔𝑢,𝜔𝑢) (
𝜍

3
) , 𝜏 (𝔜(𝛾,𝛾𝑢,𝛾𝑢) (

𝜍

3
) , 𝜏 (𝔜(𝜂,𝛾𝑢,𝛾𝑢) (

𝜍

3
) , 𝔜(𝜔𝑢,,𝛾𝑢,𝜂𝑢)(𝜚 − 2𝜍)))) .

 

Since 𝛿 is continuous, it follows from Theorem 2 in [2] that it is statistically continuous. Therefore, there 

exist sets 𝒜 and ℬ of non-zero non-negative integers with 𝜆-density 1 such that 𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜚 − 2𝜍) ≥

𝔜(𝜛,𝛾,𝜂)(𝜚) for all 𝑢 ∈ 𝒜, and 𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜌) ≥ 𝔜(𝜛,𝛾,𝜂)(𝜚 − 2𝜍) for all 𝑢 ∈ ℬ. Set 𝐶 = 𝒜 ∩ ℬ. Then 

𝑑𝜆(𝐶) = 1. In addition, 𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜚 − 2𝜍) ≥ 𝔜(𝜛,𝛾,𝜂)(𝜚) and 𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢

(𝜚) ≥ 𝔜(𝜛,𝛾,𝜂)(𝜚 − 2𝜍) for all 𝑢 ∈

𝐶. Since 𝔜 is left-continuous, it follows that  𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝔜𝜔𝑢,𝛾𝑢,𝜂𝑢
(𝜚) = 𝔜(𝜛,𝛾,𝜂)(𝜚) for each 𝜚. 

Theorem 2.4. Let (Ξ, 𝔜, 𝛿) be a 𝒫𝒢ℳ𝒮 and (𝜔𝑢) be a sequence in Ξ. The condition  𝜆 − 𝑠𝑡𝔜 −

lim𝑢→∞𝜔𝑢 = 𝜛 is equivalent to the existence of a subset 𝔛 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1} of ℕ such that 𝑑𝜆(𝔛) = 1 

and 𝔜 − lim𝑢→∞  𝜔𝑘𝑢
= 𝜛. 

Proof. Let there is a subset 𝔛 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1} of ℕ such that 𝑑𝜆(𝔛) = 1 and 𝔜 − lim𝑢→∞  𝜔𝑘𝑢
= 𝜛. 

Let 𝜚 and 0 < 𝜍 < 1 be given. Then, there is a non-zero non-negative integer 𝑛𝜚,𝜍 such that 𝜔𝑘𝑢
∈

𝔦𝜛(𝜚, 𝜍) whenever 𝑢 ≥ 𝑛𝜚,𝜍. Thus 

{𝑢: 𝜔𝑢 ∈ 𝔦𝜛(𝜚, 𝜍)} ⊃ {𝑘𝑢: 𝑢 ≥ 𝑛𝜚,𝜍}. 

Since the latter set has 𝑑𝜆-density 1, 𝑑𝜆({𝑢: 𝜔𝑢 ∈ 𝔦𝜛(𝜚, 𝜍)}) = 1. Hence,  𝑑𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝜔𝑢 = 𝜛. 

Conversely, let  𝜆 − 𝑠𝑡𝔜 − lim𝑢→∞𝜔𝑢 = 𝜛. Then, for each 𝜚 and 0 < 𝜍 < 1, 

𝑑𝜆({𝑢: 𝜔𝑢 ∈ 𝔦𝜛(𝜚, 𝜍)}) = 1. 
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Set 

ℰ(𝜚, 𝜍) = {𝑢: 𝜔𝑢 ∈ 𝔦𝜛(𝜚, 𝜍)} 

for each 𝜚 and 0 < 𝜍 < 1. Clearly, 𝑑ℑ2(ℰ(𝜚, 𝜍)) = 1. Now for 𝜚𝛼 =
1

𝛼
 and 𝜍𝛼 =

1

𝛼
 with 𝛼 ≥ 2, we have 

𝔦𝜔 (
1

2
,

1

2
) ⊃ 𝔦𝜔 (

1

3
,

1

3
) ⊃ ⋯ ⊃ 𝔦𝜔 (

1

𝛼
,

1

𝛼
) ⊃ 𝔦𝜔 (

1

𝛼+1
,

1

𝛼+1
) ⊃ ⋯ 

Consequently, 

ℰ(1/2,1/2) ⊃ ℰ(1/3,1/3) ⊃ ⋯ ⊃ ℰ(1/𝛼, 1/𝛼) ⊃ ℰ(1/(𝛼 + 1),1/(𝛼 + 1)) ⊃ ⋯ 

Note that 𝑑𝜆(ℰ(1/𝛼, 1/𝛼)) = 1 for each 𝛼(> 1) ∈ ℕ. Set 𝑡1 = 1. Since 𝑑𝜆(ℰ(1/2,1/2)) = 1, there is 

𝑡2 ∈ ℰ(1/2,1/2) and 𝑡2 > 𝑡1 such that for each 𝛼 ≥ 𝑡2, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/2,1/2)}|

𝛼
> 1 − 1/2. 

Since 𝑑𝜆(ℰ(1/3,1/3)) = 1, there is 𝑡3 ∈ ℰ(1/3,1/3) with 𝑡3 > 𝑡2 such that for each 𝛼 ≥ 𝑡3, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/3,1/3)}|

𝛼
> 1 − 1/3. 

Again, since 𝑑𝜆(ℰ(1/4,1/4)) = 1, there is 𝑡4 ∈ 𝑣(1/4,1/4) with 𝑡4 > 𝑡3 such that ∀𝛼 ≥ 𝑡4, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/4,1/4)}|

𝛼
> 1 − 1/4. 

Continue in this manner, we will get a strictly increasing sequence of nonzero non-negative integers (𝑡𝑚) 

such that 𝑡𝑚 ∈ ℰ(1/𝑚, 1/𝑚) and for each 𝛼 ≥ 𝑡𝑚, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼
> 1 − 1/𝑚. 

We now construct a set 𝒜 as follows: 

𝒜 = {𝑢: 𝑢 ∈ [𝑡1, 𝑡2]} ⋃  { ⋃  

𝑚∈ℕ

  {𝑢: 𝑢 ∈ [𝑡𝑚, 𝑡𝑚+1] ∩ ℰ(1/𝑚, 1/𝑚)}}. 

Then, for each 𝑟 ∈ ℕ with 𝑡𝑚 ≤ 𝑟 < 𝑡𝑚+1, we have 

|{𝑢 ≤ 𝛼: u ∈ 𝒜}|

𝛼
≥

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼
≥ 1 −

1

𝑚
. 

Thus, 𝑑𝜆(𝒜) = 1. Let 𝜚 and 0 < 𝜍 < 1. We choose a large 𝑞 ∈ ℕ such that 

1

𝑞
< 𝜚 and 

1

𝑞
< 𝜍. 
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Let 𝑢 ≥ 𝑡𝑞, and 𝑟 ∈ 𝒜. Then, there is 𝑗 ∈ ℕ such that 𝑡𝑗 ≤ 𝑢 < 𝑡𝑗+1 and 𝑗 > 𝑞. Clearly, 𝑢 ∈ 𝒜 (
1

𝑗
,

1

𝑗
). 

Thus, 

𝜔𝑢 ∈ 𝔦𝜛 (
1

𝑗
,
1

𝑗
) ⊂ 𝔦𝜛 (

1

𝑞
,
1

𝑞
) ⊂ 𝔦𝜛(𝜚, 𝜍). 

Therefore 𝜔𝑢 ∈ 𝔦𝜛(𝜚, 𝜍) for each 𝑢 ∈ 𝒜 with 𝑢 ≥ 𝑡𝑞. Write 𝒜 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1}. Hence 𝔜 −

lim𝑢→∞  𝜔𝑘𝑢
= 𝜛. 

Corollary 2.5. Let (Ξ, 𝔜, 𝛿) be a 𝒫𝒢ℳ𝒮 and (𝜔𝑢) be a sequence in Ξ. Then, 𝜔𝑢 →
 𝜆−𝑠𝑡𝔜

𝜛 iff there exists a 

sequence (𝜁𝑢) such that 𝜔𝑢 = 𝜁𝑢 for almost all u (𝜆) and 𝜁𝑢 →
𝔜

𝜛. 

We now provide a necessary condition for a sequence to be 𝜆-statistically convergent. 

Theorem 2.6. Let (Ξ, 𝔜, 𝛿) be a 𝒫𝒢ℳ𝒮 and (𝜔𝑢) be a sequence in Ξ. If (𝜔𝑢) is 𝜆-statistically convergent 

to 𝜛, then for each 𝜚 and 0 < 𝜍 < 1, there is a non-zero non-negative integer 𝑖0 = 𝑖0(𝜚, 𝜍) such that 

𝜆 − lim
𝛼→∞

 
1

𝛼
|{𝑢 ≤ 𝛼: 𝔜(𝜔𝑢,𝜔𝑖0 ,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢,𝜔𝑢)(𝜚) > 1 − 𝜍}| = 1. 

Proof. Let 𝜚 as well as 0 < 𝜍 < 1 be given. Since 𝛿 is continuous, there is 𝜍0 ∈ (0,1) such that 

𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍. 

Again, since 𝜔𝑢 →
 𝜆−𝑠𝑡𝔜

𝜛, we have 𝑑𝜆 ({𝑢: 𝜔𝑢 ∈ 𝔦𝜛 (
𝜚

2
, 𝜍0)}) = 1. Set 

𝒜 = {𝑢: 𝜔𝑢 ∈ 𝔦𝜛 (
𝜚

2
, 𝜍0)}. 

Clearly, 𝑑𝜆(𝒜) = 1. Let 𝑛0 be an arbitrary but fixed element of 𝒜. Then 𝜔𝑖0
∈ 𝔦𝜛 (

𝜚

2
, 𝜍0). Then for each 

𝑢 ∈ 𝒜, we have 

𝔜(𝜔𝑢,𝜔𝑖0 ,𝜔𝑖0
)(𝜚)

≥  𝛿 (𝔜(𝜔𝑢,𝜛,𝜛) (
𝜚

2
) , 𝔜(𝜛,𝜔𝑖0 ,𝜔𝑖0

) (
𝜚

2
))

>  𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Also, 

𝔜(𝜔𝑖0 ,𝜔𝑢,𝜔𝑢)(𝜚)

≥𝛿 (𝔜(𝜔𝑖0 ,𝜛,𝜛) (
𝜚

2
) , 𝔜(𝜛,𝜔𝑢,𝜔𝑢) (

𝜚

2
))

>𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Therefore, 
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𝒜 ⊂ {𝑢: 𝔜(𝜔𝑢,𝜔𝑖0
,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0
,𝜔𝑢,𝜔𝑢)(𝜚) > 1 − 𝜍}. 

Thus, 

𝜆 − lim
𝛼→∞

 
1

𝛼
|{𝑢 ≤ 𝛼: 𝔜(𝜔𝑢,𝜔𝑖0 ,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0 ,𝜔𝑢,𝜔𝑢)(𝜚) > 1 − 𝜍}| = 1. 

Let 𝜚 as well as 0 < 𝜍 < 1 be given. Since 𝛿 is continuous, there is 𝜍0 ∈ (0,1) such that 

𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍. 

Again, since 𝜔𝑢 →
 𝜆−𝑠𝑡𝔜

𝜛, we have 𝑑𝜆 ({𝑢: 𝜔𝑢 ∈ 𝔦𝜛 (
𝜚

2
, 𝜍0)}) = 1. Set 

𝒜 = {𝑢: 𝜔𝑢 ∈ 𝔦𝜛 (
𝜚

2
, 𝜍0)} 

Clearly, 𝑑𝜆(𝒜) = 1. Let 𝑛0 be an arbitrary but fixed element of 𝒜. Then 𝑥𝑖0
∈ 𝔦𝑥 (

𝜌

2
, 𝜎0). Then for each 

𝑘 ∈ 𝒜, we have 

𝔜(𝜔𝑢,𝜔𝑖0 ,𝜔𝑖0
)(𝜚)

≥ 𝛿 (𝔜(𝜔𝑢,𝜛,𝜛) (
𝜚

2
) , 𝔜(𝜛,𝜔𝑖0 ,𝜔𝑖0

) (
𝜚

2
))

> 𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Also, 

𝔜(𝜔𝑖0 ,𝜔𝑢,𝜔𝑢)(𝜚)

≥𝛿 (𝔜(𝜔𝑖0 ,𝜛,𝜛) (
𝜚

2
) , 𝔜(𝜛,𝜔𝑢,𝜔𝑢) (

𝜚

2
))

>𝛿(1 − 𝜍0, 1 − 𝜍0) > 1 − 𝜍.

 

Therefore, 

𝒜 ⊂ {𝑢: 𝔜(𝜔𝑢,𝜔𝑖0
,𝜔𝑖0

)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0
,𝜔𝑢,𝜔𝑢)(𝜚) > 1 − 𝜍}. 

Thus, 𝜆 − lim
𝛼→∞

 
1

𝛼
|{𝑢 ≤ 𝛼: 𝔜(𝜔𝑢,𝜔𝑖0

,𝜔𝑖0
)(𝜚) > 1 − 𝜍, 𝔜(𝜔𝑖0

,𝜔𝑢,𝜔𝑢)(𝜚) > 1 − 𝜍}| = 1. 

 

We can now give the concept of 𝜆 -statistical Cauchyness in 𝒫𝒢ℳ𝒮 and related results. 

Definition 2.7. Consider (Ξ, 𝔜, 𝛿) as a 𝒫𝒢ℳ𝒮 and let (𝜔𝑢) be a sequence in Ξ. Then, (𝜔𝑢) is called 𝜆-

statistically Cauchy if, for each 𝜚 and 0 < 𝜍 < 1, there exist 𝑛𝜚,𝜍 ∈ ℕ such that 

𝑑𝜆 ({𝑢: 𝜔𝑢 ∉ 𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍)}) = 0. 
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Theorem 2.8. Consider (Ξ, 𝔜, 𝛿) as a 𝒫𝒢ℳ𝒮 and let (𝜔𝑢) be a sequence in Θ. Then (𝜔𝑢) is 𝜆-

statistically Cauchy in Ξ iff there is a subset 𝔓 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1} of ℕ such that 𝑑𝜆(𝔓) = 1 as well as 

(𝜔)𝔓 is a Cauchy sequence. 

Proof. Consider a subset 𝔓 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1} of ℕ such that 𝑑𝜆(𝔓) = 1 and (𝜔)𝔓 is a Cauchy 

sequence. Let 𝜚 and 0 < 𝜍 < 1 be given. Then, there exist non-zero non-negative 𝑛𝜚,𝜍 such that 𝜔𝑘𝑢
∈

𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍) whenever 𝑢 ≥ 𝑛𝜚,𝜍. Thus 

{𝑢: 𝜔𝑢 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍)} ⊃ {𝑘𝑢: 𝑢 ≥ 𝑛𝜚,𝜍}. 

Given that the set has 𝜆-density 1, it follows that 𝑑𝜆 ({𝑢: 𝜔𝑢 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍)}) = 1. Therefore, (𝜔𝑢) is 𝜆-

statistically Cauchy. 

Conversely, (𝜔𝑢) is 𝜆-statistically Cauchy. Then for each 𝜌 as well as 0 < 𝜎 < 1 

𝑑𝜆 ({𝑢: 𝜔𝑢 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍)}) = 1. 

Set ℰ(𝜌, 𝜎) = {𝑢: 𝜔𝑢 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍)} for each 𝜚 and 0 < 𝜍 < 1. Clearly, 𝑑𝜆(ℰ(𝜌, 𝜎)) = 1.  

Now for 𝜚𝛼 =
1

𝛼
 and 𝜍𝛼 =

1

𝛼
 with 𝛼 ≥ 2, we have 𝔦𝜔 (

1

2
,

1

2
) ⊃ 𝔦𝜔 (

1

3
,

1

3
) ⊃ ⋯ ⊃ 𝔦𝜔 (

1

𝛼
,

1

𝛼
) ⊃

𝔦𝜔 (
1

𝛼+1
,

1

𝛼+1
) ⊃ ⋯ 

Consequently, 

ℰ(1/2,1/2) ⊃ ℰ(1/3,1/3) ⊃ ⋯ ⊃ ℰ(1/𝛼, 1/𝛼) ⊃ ℰ(1/(𝛼 + 1),1/(𝛼 + 1)) ⊃ ⋯ 

Note that 𝑑𝜆(ℰ(1/𝛼, 1/𝛼)) = 1 for each 𝛼(> 1) ∈ ℕ. Set 𝑡1 = 1. Since 𝑑𝜆(ℰ(1/2,1/2)) = 1, there is 

𝑡2 ∈ ℰ(1/2,1/2) and 𝑡2 > 𝑡1 such that for each 𝛼 ≥ 𝑡2, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/2,1/2)}|

𝛼
> 1 − 1/2. 

Since 𝑑𝜆(ℰ(1/3,1/3)) = 1, there is 𝑡3 ∈ ℰ(1/3,1/3) with 𝑡3 > 𝑡2 such that for each 𝛼 ≥ 𝑡3, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/3,1/3)}|

𝛼
> 1 − 1/3. 

Again, since 𝑑𝜆(ℰ(1/4,1/4)) = 1, there is 𝑡4 ∈ ℰ(1/4,1/4) with 𝑡4 > 𝑡3 such that ∀𝛼 ≥ 𝑡4, we have 

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/4,1/4)}|

𝛼
> 1 − 1/4. 

Continue in this manner, we will get a strictly increasing sequence of nonzero non-negative integers (𝑡𝑚) 

such that 𝑡𝑚 ∈ ℰ(1/𝑚, 1/𝑚) and for each 𝛼 ≥ 𝑡𝑚, we have 
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|{𝑢 ≤ 𝛼: u ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼
> 1 − 1/𝑚. 

We now construct a set 𝒜 as follows: 

𝒜 = {𝑢: 𝑢 ∈ [𝑡1, 𝑡2]} ⋃  { ⋃  

𝑚∈ℕ

  {𝑢: 𝑢 ∈ [𝑡𝑚, 𝑡𝑚+1] ∩ ℰ(1/𝑚, 1/𝑚)}}. 

Then, for each 𝑟 ∈ ℕ with 𝑡𝑚 ≤ 𝑟 < 𝑡𝑚+1, we have 

|{𝑢 ≤ 𝛼: u ∈ 𝒜}|

𝛼
≥

|{𝑢 ≤ 𝛼: u ∈ ℰ(1/𝑚, 1/𝑚)}|

𝛼
≥ 1 −

1

𝑚
. 

Thus, 𝑑𝜆(𝒜) = 1. Let 𝜚 and 0 < 𝜍 < 1. We choose a large 𝑞 ∈ ℕ such that 

1

𝑞
< 𝜚 and 

1

𝑞
< 𝜍. 

Let 𝑢 ≥ 𝑡𝑞, and 𝑟 ∈ 𝒜. Then, there is 𝑗 ∈ ℕ such that 𝑡𝑗 ≤ 𝑢 < 𝑡𝑗+1 and 𝑗 > 𝑞. Clearly, u ∈ 𝒜 (
1

𝑗
,

1

𝑗
). 

Thus, 

𝜔𝑢 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍
(

1

𝑗
,
1

𝑗
) ⊂ 𝔦𝜔𝑢𝑛𝜚,𝜍

(
1

𝑞
,
1

𝑞
) ⊂ 𝔦𝜔𝑢𝑛𝜚,𝜍

(𝜚, 𝜍). 

Therefore 𝜔𝑢 ∈ 𝔦𝜔𝑢𝑛𝜚,𝜍
(𝜚, 𝜍) for each 𝑢 ∈ 𝒜 with 𝑢 ≥ 𝑡𝑞. Write 𝒜 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1}. Hence, (𝜔)𝔓 is a 

Cauchy sequence. 

Corollary 2.9. Let (Ξ, 𝔜, δ) be a 𝒫𝒢ℳ𝒮, and let (𝜔𝑢) be a sequence in Ξ. Then, (ωu) is a Cauchy 

sequence in Ξ implies and implied by there is a sequence (𝑞𝑢) such that ωu = 𝑞𝑢 for almost all u (𝜆) and 

(𝑞𝑢) is also a Cauchy sequence in Ξ. 

Theorem 2.10. Let (Ξ, 𝔜, δ) be a 𝒫𝒢ℳ𝒮. If (ωu) is an 𝜆-statistically convergent sequence in Ξ, then 

(ωu) is 𝜆-statistically Cauchy in Ξ. 

Proof. The proof follows directly from Theorem 2.6. 

 

Corollary 2.11. Let (Ξ, 𝔜, δ) be a 𝒫𝒢ℳ𝒮 and (ωu) be an 𝜆-statistically convergent sequence in Ξ. Then, 

there is a subset 𝔓 = {𝑘𝑢: 𝑘𝑢 < 𝑘𝑢+1} of ℕ such that d𝜆(𝔓) = 1 as well as (ω)𝔓 is a Cauchy sequence. 
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