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Abstract –This research focuses on predicting the solar irradiance received by a standard photovoltaic 

panel in Duzce, Turkey, using various machine learning techniques. The methodologies evaluated include 

Bagging Learning, Decision Tree Learning, Gradient Boosting Learning, LightGBM Learning, Random 

Forest Learning, Ridge Regression Learning, and XGBoost Learning. Through a comprehensive 

comparative analysis, a Hybrid Gradient Boosting Learning approach is proposed for enhanced accuracy. 

The study utilizes an extensive dataset comprising meteorological and sensor data, including Temperature 

(T), Dew Point (DP), Humidity (H), Wind Speed (W), Pressure (P), Precipitation (PP), Total Feed-in 

Time (TFT), Total Operating Time (TOT), Total Energy Produced (TWO), Number of Grid Connections 

(OGSC), Environment Temperature Value (ETV), Module Temperature Value (MTV), and Radiation 

(RD). The dataset spans from 2019 to 2024, and the RD value is predicted based on the other variables. 

Random search was employed for hyperparameter optimization of the machine learning algorithms, with 

the data divided into training and testing sets with an 80%-20% split. Performance metrics such as Mean 

Squared Error (MSE), Mean Absolute Error (MAE), R² (Coefficient of Determination), Explained 

Variance Score (EVS), Median Absolute Error (MedAE), and Mean Absolute Percentage Error (MAPE) 

were used to evaluate the models. The results indicate that XGBoost achieved the highest performance, 

while the proposed Hybrid Gradient Boosting model showed significant improvement over traditional 

Gradient Boosting. The performance evaluations of each method are detailed, with graphical 

representations and histograms demonstrating the efficacy of the proposed hybrid approach. 
 
Keywords: Photovoltaic panels, Solar irradiance Prediction, Machine learning, Hybrid Gradient Boosting 

 

I. INTRODUCTION 

 

As the global population continues to expand, the demand for energy has surged, necessitating a 

transition towards more sustainable and green energy sources. This shift is guided by the need to 

minimize the environmental impact of traditional fossil fuels, which play a major role in greenhouse gas 

emissions and global warming. Among the various renewable energy sources, photovoltaic (PV) 

technology has come about as a prominent solution due to its ability to convert sunlight directly into 

electricity. The increasing interest in PV systems is not only due to their potential to provide a clean and 

inexhaustible energy supply but also because of the declining costs of solar panels and advancements in 

technology. As a result, there has been a substantial rise in the deployment of PV systems worldwide, 
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making it crucial to monitor and optimize their performance. Therefore, effective PV plant analyses are 

being developed based on specific scenarios [1]. 

The efficiency of a photovoltaic system largely depends on the amount of solar irradiance it receives, 

which is the amount of power received per unit area from the sun as electromagnetic radiation [2]. Solar 

irradiance is affected by several factors such as geographical location and weather conditions, time of 

year, and atmospheric composition. Consequently, precise forecasting of solar irradiance is vital for the 

effective planning, operation, and optimization of PV systems [3], [4]. This is particularly important for 

grid management, energy storage solutions, and ensuring a stable supply of electricity. Accurate solar 

irradiance forecasts can help in making informed decisions about energy production, thereby enhancing 

the stability and productivity of PV systems. 

Given the importance of solar irradiance for PV production, there has been a growing body of research 

focused on improving the accuracy of its prediction [5]–[8]. Advanced machine learning techniques have 

been increasingly employed in these studies to model and predict solar irradiance based on various 

meteorological and environmental data. These methods include approaches like Bagging Learning, 

Decision Tree Learning, Gradient Boosting Learning, LightGBM Learning, Random Forest Learning, 

Ridge Regression Learning, and XGBoost Learning. Each of these techniques offers unique advantages in 

handling the complexity and variability of the data, making them valuable tools for enhancing prediction 

accuracy. 

Among these methods, hybrid approaches, which combine the strengths of multiple techniques, have 

shown significant promise. For instance, a Hybrid Gradient Boosting Learning approach can integrate the 

robust performance of gradient boosting with other machine learning models to achieve superior 

prediction accuracy. Such hybrid models are particularly effective in capturing the non-linear 

relationships and interactions between different meteorological variables that influence solar irradiance. 

The region-specific nature of solar irradiance necessitates localized studies to tailor prediction models to 

specific conditions [9]. For example, in regions like Duzce, Turkey, understanding local weather patterns 

and environmental factors is essential for accurate solar irradiance prediction. By leveraging historical 

meteorological data and advanced predictive models, researchers can develop precise irradiance forecasts 

that are crucial for optimizing the performance of PV systems in such locations [10]. 

In conclusion, the increasing global energy demand and the push for sustainable energy solutions have 

underscored the importance of renewable energy sources like photovoltaic systems. Accurate prediction 

of solar irradiance, driven by advanced machine learning techniques, is crucial for optimizing the 

performance and reliability of these systems. As research in this field continues to advance, it will 

contribute significantly to the broader goal of transitioning to a more sustainable and resilient energy 

infrastructure. 

This study aims to explore various machine learning techniques to predict solar irradiance on PV panels 

located in Duzce, Turkey. The main goal of this research is to compare different machine learning 

methods for predicting solar irradiance and to propose a Hybrid Gradient Boosting Learning approach for 

improved accuracy. 

 

II. DATASET AND PREPROCESSING 

 

Solar irradiance, the evaluation of solar power received per unit area, directly influences the efficiency 

and output of PV systems. This prediction is vital for optimizing the performance, reliability, and 

economic feasibility of these systems. As a result, there has been extensive research dedicated to 

enhancing the accuracy of solar irradiance forecasts. Various methodologies and technologies have been 

explored, including high-level machine learning techniques and hybrid models, to optimize prediction 

precision and adapt to different environmental conditions. 

 
 

A. Dataset 
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This study focuses on the prediction of solar irradiance specific to Duzce, Turkey. Duzce's geographical 

location and climatic conditions necessitate tailored approaches to accurately forecast solar irradiance for 

optimizing local PV systems. The data set for this study has been meticulously compiled, incorporating 

diverse sources of information. Key among these is data obtained from monocrystalline silicon (mc-Si) 

PV panels, which are identified as the most suitable type of panel for Duzce's conditions [11] due to their 

high efficiency and performance in varying light conditions. 

The mc-Si panels provide a range of valuable data that include not only the energy output but also other 

relevant parameters that affect performance. These panels are known for their high efficiency and 

durability, making them an ideal choice for the varying climatic conditions of Duzce. Additionally, data 

from various sensors and meteorological results have been integrated into the dataset. These sensors 

measure parameters such as temperature, humidity, wind speed, pressure, and precipitation, all of which 

have a significant impact on the amount of solar irradiance and, consequently, on the energy production 

of the PV systems. 

The dataset used in this study was collected between 2019 and 2024. It includes the following 

parameters: Temperature (T), which represents the ambient temperature in degrees Celsius; Dew Point 

(DP), the temperature at which air becomes saturated with moisture and dew can form; Humidity (H), the 

percentage of moisture in the air; Wind Speed (W), the speed of the wind measured in meters per second; 

Pressure (P), the atmospheric pressure measured in hectopascals (hPa); Precipitation (PP), the amount of 

precipitation measured in millimeters; Total Feed-in Time (TFT), the total time the PV system feeds 

energy into the grid; Total Operating Time (TOT), the total operational time of the PV system; Total 

Energy Produced (TWO), the total energy produced by the PV system measured in watt-hours (Wh); 

Total Number of Grid Connections (OGSC), the total number of times the PV system has connected to 

the grid; Environment Temperature Value (ETV), the temperature value around the PV module; Module 

Temperature Value (MTV), the temperature of the PV module; and Radiation (RD), the amount of solar 

irradiance received by the PV panel measured in watts per square meter (W/m²). The data preprocessing 

steps include handling missing data by identifying and filling or removing missing values, outlier removal 

by detecting and eliminating outliers that could skew the analysis, and normalization by scaling the data 

to ensure that all features contribute equally to the model. 
 

B. Data Preprocessing 
 

Data preprocessing is a fundamental step that involves several processes to prepare raw data for 

analysis. This includes dealing with missing values, which can be addressed by various methods such as 

imputation or removal. Additionally, this step involves correcting inconsistencies like typographical 

errors and ensuring that data values are standardized to enable meaningful comparisons across different 

data points. Transformations such as logarithmic scaling are applied to normalize distributions and 

improve model performance.  

The impact of data preprocessing on the accuracy of predictive models is significant. Studies have 

shown that thorough preprocessing can dramatically improve the performance of classification algorithms 

[12]. This enhancement is not limited to accuracy alone but also includes other benefits such as better 

overall system performance, smaller data sets, and faster training times. The importance of these 

preprocessing steps is underscored by their ability to streamline the analytical process and optimize 

resource utilization.  

A commonly used technique in feature scaling is the Standard Scaler (SS). This method standardizes 

each feature by subtracting the mean and dividing by the standard deviation, resulting in a mean of zero 

and a variance of one for each feature [13]. This standardization is advantageous because it maintains the 

linearity of the data, allows for reversibility, and operates efficiently even with large datasets. The 

normalization process hinges on the calculation of the mean and variance, ensuring that the data is scaled 

appropriately. 
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For any given observation 𝑋𝑖  in a dataset with a mean 𝑋 and a standard deviation 𝜎, its standardized 

value 𝑋𝑖̂ can be computed using the formula:  
 

𝑋𝑖̂  =
𝑋𝑖 − 𝑋̅

𝜎
 (1) 

This formula makes certain that every feature contributes equally to the analysis, preventing any single 

feature from dominating due to its scale. Properly standardized data enhances the stability and 

performance of machine learning models, making preprocessing an indispensable step in the data analysis 

pipeline. 
 

C. Used Algorithms 
 

Combining the data from mc-Si panels with meteorological and sensor data creates a comprehensive 

dataset that provides a holistic view of the factors influencing solar irradiance in Duzce. This integrated 

approach allows for the development of more accurate and reliable predictive models. The predictive 

models will leverage advanced machine learning algorithms to analyze the data and forecast solar 

irradiance with high precision. Techniques such as Gradient Boosting, Random Forests, and XGBoost 

will be employed to capture the complex relationships between the different variables. 

The importance of this study lies in its potential to significantly enhance the planning and optimization 

of PV systems in Duzce. By accurately predicting solar irradiance, energy production can be better 

planned, and the performance of PV installations can be maximized. This not only contributes to the 

efficiency and sustainability of renewable energy systems but also supports the broader goal of reducing 

reliance on fossil fuels and mitigating environmental impacts. 

Moreover, the findings from this study could provide valuable insights and methodologies that can be 

applied to other regions with similar climatic conditions, thereby contributing to the global advancement 

of PV technology and renewable energy solutions. The integration of comprehensive data and advanced 

predictive techniques underscores the critical role of accurate solar irradiance prediction in the effective 

planning and operation of PV systems, reinforcing the significance of ongoing research and development 

in this field. 
 

 

III. METHODS 

 

In this study, rigorous data preprocessing was carried out to ensure the quality and reliability of the 

dataset used for model training. The preprocessing steps included handling missing values, correcting 

inconsistencies, normalizing data, and encoding categorical variables. Initially, missing values were 

addressed by either removing incomplete records or imputing missing data using techniques such as 

mean, median, or mode substitution, and more sophisticated methods like k-nearest neighbors’ 

imputation. This ensured that the dataset was complete and ready for analysis. 

To assess the accuracy and performance of the predictive models, we employed common error metrics 

widely used in the literature. These included Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the Coefficient of 

Determination (R²) [14]–[16]. These metrics provided a comprehensive evaluation of the models' 

predictive capabilities and highlighted the effectiveness of the preprocessing steps. The equations for 

these operations are given below: 
 

𝑅 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
 (2) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)2

𝑛

𝑖=1
 (3) 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑛

𝑖=1
 (4) 

 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

𝑛
 (5) 

here, 𝑥𝑖  represents the quantities of the 𝑥-variable, 𝑥̅ denotes the mean of these quantities, 𝑦𝑖  signifies 

the values of the 𝑦-variable, 𝑦̅ stands for the mean of these values, and 𝑛 is the number of datasets.  

By systematically applying these preprocessing techniques and using robust evaluation metrics, we 

aimed to achieve high accuracy and reliability in our prediction outcomes. The integration of 

comprehensive data cleaning, normalization, outlier handling, and encoding processes ensured that our 

dataset was well-prepared for training and evaluation, leading to more accurate and dependable predictive 

models. 

Bagging technique consists of training multiple models on different data subsets and combining their 

predictions to increase accuracy and lower variance. Decision Tree Learning is a supervised learning 

method that does not assume a parametric form and is used for both classification and regression by 

partitioning data into subsets based on feature values. In Gradient Boosting Learning, models are 

developed in a series, with each new model correcting the mistakes of previous ones, combining several 

weak learners to build a strong overall model. LightGBM (Light Gradient Boosting Machine) is a 

streamlined version of gradient boosting that utilizes a histogram-based technique to speed up training 

and lower memory usage. Random Forest Learning consists of multiple decision trees trained on different 

parts of the same data set, with the final prediction made by averaging the predictions of all the individual 

trees. Ridge Regression Learning is a variant of linear regression that adds a regularization term to reduce 

overfitting, which is particularly beneficial in cases of multicollinearity. XGBoost (Extreme Gradient 

Boosting) is an advanced gradient boosting library known for its efficiency, flexibility, and portability, 

featuring extensive model tuning capabilities. Hybrid Gradient Boosting Learning combines elements 

from different boosting techniques to improve prediction accuracy, leveraging the strengths of leveraging 

multiple models to create a more resilient and accurate predictor.  
 

IV. EXPERIMENTAL RESULTS 

 

This section provides a comparative evaluation of the performance of each machine learning approach. 

Performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared 

(R²) are used to evaluate the models. Graphs illustrating the prediction results of each model are provided, 

along with histograms showing the distribution of the data set variables. 

Random search is utilized for hyperparameter optimization of machine learning algorithms, including 

Ridge Regression, Decision Tree, Random Forest, XGBoost, LightGBM, Bagging, Gradient Boosting, 

and the proposed Hybrid Gradient Boosting. The data is divided into training and testing sets in an 80%-

20% ratio. The histogram distributions of the features used in the classification section are presented in 

Figure 1. 

The learning curves generated by machine learning models are depicted in Figure 2. These curves 

illustrate the relationship between the model's training performance and its testing performance as the 

amount of training data increases. Analyzing these curves provides insight into the model's learning 

behavior and its generalization capabilities. 

In Figure 2, the learning curves for various models—such as Ridge Regression, Decision Tree, Random 

Forest, XGBoost, LightGBM, Bagging, Gradient Boosting, and the proposed Hybrid Gradient Boosting—
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demonstrate how each model's accuracy evolves with increasing training data. For instance, a well-

behaved learning curve typically shows a gradual improvement in performance with more data, reflecting 

effective learning and model adaptation. Conversely, if the curve plateaus or worsens, it may indicate 

issues such as overfitting or underfitting. 

The comparison across different algorithms reveals how each model handles training and 

generalization. Models with consistently improving learning curves generally suggest better performance 

and robustness. Additionally, the curves provide valuable information on how efficiently each model 

utilizes the available data, helping to identify the most suitable algorithm for the given task. 

Overall, the learning curves in Figure 2 offer critical insights into the effectiveness and scalability of the 

machine learning models employed in this study. 
 

  
Figure 1. The histogram plots display the distribution of the chosen features within the input dataset. 

 

The R² graph for all models, as illustrated in Figure 3, provides a comprehensive overview of how well 

each machine learning algorithm fits the data. The R² value, or coefficient of determination, quantifies the 

proportion of variance in the dependent variable that is accounted for by the independent variables. This 

metric is instrumental in assessing the goodness of fit for various models.  

Figure 3 displays the R² values for a range of models, including Ridge Regression, Decision Tree, 

Random Forest, XGBoost, LightGBM, Bagging, Gradient Boosting, and the proposed Hybrid Gradient 

Boosting. Each graph shows the R² score of the models across different training iterations or datasets, 

highlighting their ability to explain the variability in the target variable.  

In general, a higher R² value indicates a better fit of the model to the data. Models that achieve higher R² 

scores demonstrate a strong capability in capturing the underlying patterns and relationships in the data. 
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Conversely, lower R² values may suggest that the model is not fully capturing the complexity of the data 

or that there may be issues with model specification.  

The comparison of R² values among different models reveals which algorithms perform best in terms of 

explanatory power. For instance, models like XGBoost and LightGBM, known for their advanced 

boosting techniques, often exhibit high R² values, reflecting their strong performance in capturing data 

patterns. On the other hand, simpler models like Ridge Regression may show lower R² scores if they 

cannot fully leverage the complexity of the data.  

Overall, the R² graph in Figure 3 is a valuable tool for evaluating and comparing the effectiveness of 

different machine learning models in explaining the variability of the target variable. It highlights the 

strengths and limitations of each model, guiding the selection of the most appropriate algorithm for the 

given data and problem context. 
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Figure 2. Learning curve graph for all models. 

The model performance of train validation graph, presented in Figure 4, offers a detailed comparison of 

how various machine learning algorithms perform during both training and validation phases. This graph 
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is essential for understanding the effectiveness of each model in learning from the data and generalizing 

to unseen samples. 
 

 
  

Figure 3. Radiation prediction graph of all models. 
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Figure 4. Model performance train validation graph for all models. 

 

Figure 4 illustrates the performance metrics of multiple models, including Ridge Regression, Decision 

Tree, Random Forest, XGBoost, LightGBM, Bagging, Gradient Boosting, and the proposed Hybrid 

Gradient Boosting, across training and validation datasets. The graph displays performance indicators 

such as accuracy, loss, or error rates for each model, segmented by training and validation phases. 

The primary goal of analyzing this graph is to assess how well each model balances between fitting the 

training data and performing on validation data. An ideal model should exhibit high performance on both 

training and validation sets, indicating that it has learned the underlying patterns effectively without 

overfitting. 

From the graph, it is evident that XGBoost achieves the highest performance among all models, 

demonstrating its superior capability in both training and validation phases. Furthermore, the proposed 

Hybrid Gradient Boosting model yields better results compared to the traditional Gradient Boosting 

approach. This suggests that the hybrid approach effectively leverages the strengths of multiple 

techniques to enhance overall performance. 

The comparison of these performance metrics helps to identify which models are most effective for the 

task at hand. Models like XGBoost and LightGBM often show strong performance across both datasets 

due to their sophisticated boosting techniques, while simpler models might struggle with validation 

performance if they cannot capture data complexity adequately. Models with a significant gap between 

training and validation performance may be overfitting, meaning they perform well on training data but 

fail to generalize to new data. Conversely, models with similar performance across both phases typically 

show good generalization capabilities, suggesting they are both well-trained and robust. 

Overall, the model performance of train validation graph in Figure 4 is crucial for evaluating the 

reliability and effectiveness of machine learning models, guiding the choice of the best-performing 

algorithm for practical applications. 

Figure 5 presents the Model Performance Test Validation graph, which provides a comprehensive 

comparison of the performance of various machine learning models during the test and validation phases. 
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This graph is crucial for understanding how well each model generalizes to new, unseen data and its 

robustness in practical applications. 

The graph displays performance metrics for several models, including Ridge Regression, Decision Tree, 

Random Forest, XGBoost, LightGBM, Bagging, Gradient Boosting, and the proposed Hybrid Gradient 

Boosting. Metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), R² (Coefficient of 

Determination), Explained Variance Score (EVS), Median Absolute Error (MedAE), and Mean Absolute 

Percentage Error (MAPE) are shown for both the test and validation datasets. 

A key insight from Figure 5 is that XGBoost exhibits the highest performance metrics among all 

evaluated models, indicating its superior ability to generalize from training to testing data effectively. 

This underscores XGBoost's robustness and efficiency in handling diverse datasets. Additionally, the 

proposed Hybrid Gradient Boosting model shows improved performance over the traditional Gradient 

Boosting, suggesting that the hybrid approach successfully enhances the model's generalization 

capabilities. 

Models that show similar performance levels across test and validation phases are particularly valuable, 

as this indicates a well-balanced model that avoids overfitting and underfitting. Conversely, significant 

discrepancies between test and validation performance might signal potential issues in the model's ability 

to generalize. 

Overall, the Model Performance Test Validation graph in Figure 5 is essential for evaluating the 

efficacy of different machine learning models. By comparing test and validation metrics, this graph helps 

in identifying the most reliable and robust models for deployment in real-world scenarios, ensuring that 

they maintain high performance when applied to new, unseen data. This evaluation process is critical for 

selecting the most appropriate model for specific tasks, ultimately leading to more accurate and 

dependable outcomes in practical applications. 
 

  
Figure 5. Model performance test validation graph for all models. 

 

Table 1 presents five key performance metrics for evaluating the model: MSE (Mean Squared Error), 

MAE (Mean Absolute Error), R² (Coefficient of Determination), EVS (Explained Variance Score), and 
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MedAE (Median Absolute Error). MSE measures the average squared difference between predicted and 

actual values, while MAE provides the average absolute differences. R² indicates how well the model 

explains the variance in the data, and EVS reflects the proportion of variance explained by the model. 

MedAE calculates the median of the absolute errors, offering robustness against outliers. These metrics 

collectively assess the model's accuracy and reliability. 
 

Table 1: Model Performance Metrics 

Model MSE MAE R² EVS MedAE 

Linear Regression 1.88e-26 1.15e-13 1.000000 1.000000 1.14e-13 

Ridge Regression 0.02107028 0.11445890 0.999998 0.999998 0.09828981 

Decision Tree 0.44061665 0.35656119 0.999966 0.999966 0.21527778 

Random Forest 0.12708066 0.20444112 0.999990 0.999990 0.13638889 

XGBoost 1.61211638 0.82601512 0.999874 0.999876 0.59910414 

LightGBM 0.63746704 0.49550309 0.999950 0.999950 0.35196378 

Bagging 0.15492950 0.25422535 0.999988 0.999988 0.17001916 

Gradient Boosting 0.63374832 0.58294769 0.999950 0.999951 0.41736599 

Hybrid Gradient Boosting 0.26392758 0.37786287 0.999979 0.999980 0.29996663 

Voting Regressor 0.09634592 0.22077085 0.999992 0.999992 0.16034094 

Bagging Regressor 0.15735799 0.21830462 0.999988 0.999988 0.14444444 

Stacking Regressor 1.33e-26 8.93e-14 1.000000 1.000000 7.10e-14 

AdaBoost with DecisionTree Regressor 0.18714347 0.22901596 0.999985 0.999985 0.15972222 

AdaBoost with LinearRegression Regressor 1.72e-27 3.03e-14 1.000000 1.000000 2.84e-14 

 

 

V. DISCUSSION, CONCLUSION AND FUTURE WORK 

 

The results of the comparative analysis are discussed in detail. The strengths and weaknesses of each 

method are highlighted, and the overall performance of the models is evaluated. The rationale for 

proposing the Hybrid Gradient Boosting method is explained, including how it integrates the strengths of 

the different methods analyzed. Its potential advantages over the other methods are discussed. This study 

demonstrates the effectiveness of various machine learning approaches for predicting solar irradiance. 

The proposed Hybrid Gradient Boosting method shows promise for improving prediction accuracy. 

XGBoost achieved the highest performance among the individual models, but the Hybrid Gradient 

Boosting model significantly outperformed traditional Gradient Boosting, showcasing enhanced 

predictive capabilities. 

The performance of each model was evaluated using several metrics, as shown in Table 1. XGBoost 

demonstrated the highest performance with a Mean Squared Error (MSE) of 1.612116, Mean Absolute 

Error (MAE) of 0.826015, and R² of 0.999874. Additionally, the proposed Hybrid Gradient Boosting 

model outperformed the traditional Gradient Boosting approach, indicating enhanced generalization 

capabilities. 

Performance metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), R² (Coefficient 

of Determination), Explained Variance Score (EVS), Median Absolute Error (MedAE), and Mean 

Absolute Percentage Error (MAPE) were used to evaluate the models. The data was divided into training 

and testing sets with an 80%-20% split. The results indicate the efficacy of the proposed hybrid approach 

through graphical representations and histograms. 

Suggestions for future research include exploring other advanced machine learning techniques, 

incorporating additional data sources, and applying the methods to other geographical locations. By 

broadening the scope of data and enhancing model complexities, the prediction accuracy for solar 

irradiance can be further improved, making these methods more robust and versatile across different 

environmental conditions. The study underscores the importance of continuous innovation and adaptation 

in machine learning methodologies to meet the growing energy needs driven by global population growth 

and the increasing demand for renewable energy sources. 
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