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Abstract – One of the critical issues in financial management is the investment decision-making process, 

and one of the main goals of investment management is optimal stock portfolio selection. In this context, 

there are various criteria and methods for optimal stock portfolio selection in the literature. This article 

first calculates investment return and investment risk using data from 6 companies such as Amazon, 

Yahoo, Microsoft, IBM, Apple, and Google for a one-month period from January 2014 to November 

2014. Investment is calculated by 4 classical methods (mean-variance, mean-semi variance, mean 

absolute deviation, conditional value at risk). As a result of these calculations, 0.05706, 0.028409, 

0.028871, and 0.032995 with maximum ROI (0.0142 respectively) and Risk are calculated for each 

classical method. Then, meta-heuristic methods (PSO, NSGA-II) are used for optimal selection of the 

portfolio. As a result of the calculations, it can be seen that the NSGA-II meta-heuristic algorithm tends to 

achieve the highest return on investment with a lower risk. These results suggest that the integration of 

advanced computational methods, such as multi-objective optimization algorithms, may be important to 

improve the precision and efficiency of portfolio selection in financial management. This can provide 

valuable insights for investors and financial analysts. 
 
Keywords – Modern Portfolio Theory, Markowitz Mean-Variance, Mean Semi Variance, Mean Absolute Deviation, 

Conditional Value at Risk, Portfolio Optimization, Particle Swarm Optimization, Non-Dominated Sorting Genetic Algorithm-II 

 

I. INTRODUCTION 

Selecting the right portfolio is one of the most 

common problems and complex issues that 

different investors face with different levels of 

capital in the world of finance [1]. There for, one 

of the most important issues in modern capital 

markets and financial management is asset 

allocation for portfolio optimization [2]. 

The most important parameters in portfolio 

optimization issues are expected return and risk. 

Investors generally prefer to maximize returns and 

minimize risk. However, higher returns often 

require increased risk. Return and risk can be 

considered as two influential and important 

variables in the subject of investment. On the other 

hand, due to fluctuations in financial markets such 

as the stock market, investing will be associated 

with uncertainty and risk. Therefore, choosing a 

portfolio that has less risk and higher returns, as 

well as measuring portfolio risk is of particular 

importance to investors [3]. To solve this problem, 

Harry Markowitz in 1952, proposed a mean 

variance model for selecting the appropriate 

portfolio. The solution to the problem in the mean 

variance model is to choose portfolios of the best 

variation between the expected return (mean) and 

the risk measured by variance. While the expected 

return is maximized, the variance is minimized at 

https://alls-academy.com/index.php/ijanser


International Journal of Advanced Natural Sciences and Engineering Researches 

 

383 
 

the same time. Finding these exchange portfolios 

requires solving a multi-objective nonlinear 

optimization problem [4]. 

In recent years, stock investment is not only 

heavily traded by organizations, but it has become 

quite common for household investors to invest in 

the stock market as well. Investors usually do not 

like and avoid risk-taking and always look to invest 

in commodities and stocks of assets that have the 

highest returns and the least risk for them. In other 

words, return on investment is considered as a 

favorable factor and risk variance is considered as 

an undesirable element. In portfolio optimization 

issues, the main issue is the optimal selection of 

assets and securities that can minimize risk and 

maximize return on investment. There are many 

ways to create an optimal stock [5]. The concepts 

of portfolio optimization and diversity are useful in 

developing and understanding financial markets 

and decision making in this area. The publication 

of Harry Markowitz's portfolio theory was also the 

main and most important achievement in this field. 

Markowitz suggested that investors accept risk and 

return together and choose the amount of capital 

allocation between different investment 

opportunities based on the interaction between the 

two [6]. 

One of the methods that has been used in recent 

years to solve many optimization problems is the 

use of heuristic algorithms. Innovative methods 

that have been introduced to address the 

shortcomings of classical optimization methods 

with a comprehensive and random search, greatly 

guarantee the possibility of better results. In this 

paper, meta-heuristic methods and algorithms 

(PSO and NSGA-II) have been used to select the 

appropriate portfolio. In reviewing the results 

obtained from portfolios, meta-heuristic methods 

have less risk and higher returns than classical 

methods. 

II. MATERIALS AND METHOD 

A. Classic Methods for Portfolio Optimization 

Harry Markowitz's work formed the basis of 

what is now known as the Modern Portfolio 

Theory. Modern portfolio theory (MPT) is an 

investment framework for selecting and building 

an investment portfolio based on maximizing the 

expected return on the portfolio while minimizing 

investment risk [7]. The problem of selecting the 

optimal portfolio was proposed in 1952 by Harry 

Markowitz with the aim of maximizing the 

expected returns, provided the variance is limited 

from above [8]. 

In generally, parametric risk can be measured 

using various mathematical formulas and through 

the concept of diversification, which aims to select 

the correct weighted set of investment assets, 

which together are less risky factors than investing 

in any single asset or asset class. Diversity is the 

main concept of modern portfolio theory [7]. 

Markowitz showed that under certain conditions, 

investor portfolio selection can be reduced by 

balancing the expected portfolio return and 

portfolio risk (variance). Given the potential for 

diversity risk reduction, portfolio investment risk, 

measured as its variance, depends on both the 

variances of individual asset returns and the 

"covariance" of asset pairs [9]. In this part of the 

article, we review the classical methods used in 

optimal portfolio selection. 

1) Mean Variance Model 

The issue of portfolio allocation in financial 

subjects is of great theoretical and practical 

importance. The main goal of investors is to divide 

their capital among different assets in the best way. 

The first fundamental solution to this problem was 

proposed by Harry Markowitz. Markowitz 

considered the portfolio selection process as a 

matter of optimizing the mean variance, the basic 

idea of which is to balance risk and return [10]. In 

the old approach to portfolio selection, the investor 

must estimate the expected return on stocks at t = 0 

and then invest in the stocks with the highest 

expected returns. According to Markowitz's theory, 

this decision is irrational because the investor, in 

addition to maximizing the expected return, also 

wants to ensure the return as safe as possible, so 

the investor should seek to balance maximizing the 

expected return and reducing investment 

uncertainty. Markowitz also suggested that 

investors should consider risk and return together 

and allocate their budgets between investment 

options based on risk-return swaps [11]. The 

Markowitz model assumes that investors make 

their decision to build a portfolio by selecting 

assets that maximize the return on their portfolio at 

the end of the investment period. The mean 

variance of the Markowitz portfolio can be 

expressed mathematically as follows [4]: 
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𝜇𝑝 =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

= 𝑊𝑇𝜇 (1) 

𝜎𝑝
2 =∑∑𝑤𝑖

𝑛

𝑗=1

𝑤𝑗

𝑛

𝑖=1

𝜎𝑖𝑗 = 𝑊
𝑇𝛴 𝑤 (2) 

𝑠. 𝑡 {
∑𝑤𝑖 = 1

𝑛

𝑖=1

𝑤𝑖 ≥ 0

 (3) 

Where 𝑤𝑖 is weight or proportion of asset 𝑖 in in 

the portfolio 𝑝, 𝜇𝑖 is expected return of asset 𝑖, 𝜇𝑝 

is the expected return of the portfolio, 𝜎𝑖𝑗 is 

covariance between asset 𝑖 and 𝑗, if 𝑖 = 𝑗, it is 

variance of asset 𝑖 and 𝜎𝑝
2 is variance of the 

portfolio assets. 

The problem of portfolio optimization is 

formulated as maximizing the expected return by 

considering the upper limit for variance of the 

investment portfolio (equation 4 and 5) or 

minimizing the variance by considering the lower 

limit for the expected return (equation 6 and 7) 

[11]: 

max   𝜇𝑝 =∑𝑤𝑖𝜇𝑖

𝑛
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 (5) 
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𝑤𝑗

𝑛
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𝜎𝑖𝑗 = 𝑊
𝑇𝛴 𝑤 (2) 

𝑠. 𝑡

{
  
 

  
    𝜇𝑝 =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

= 𝑊𝑇𝜇 ≥ 𝜇𝑝0

∑𝑤𝑖 = 1

𝑛

𝑖=1

𝑤𝑖 ≥ 0

 (3) 

2) Mean Semi Variance Model 

The mean variance method for portfolio 

optimization has been widely criticized by 

researchers in this field. Markowitz later criticized 

the use of mean-variance as a measure of risk in 

portfolio management. This criterion is more 

acceptable than variance because it is applicable 

even when the distribution of return on assets 

shows a wider sequence [4]. Mao [12] supports the 

fact that investors are only interested in downside 

risks and that the semi-variance criterion is more 

appropriate for use than the average variance 

criterion. The semi variance defined as [4]: 

𝜇𝑝 =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

= 𝑊𝑇𝜇 (4) 

𝜎𝑝
2 =∑∑𝑤𝑖

𝑛

𝑗=1

𝑤𝑗

𝑛

𝑖=1

𝜎𝑖−𝜎𝑗−𝜌𝑖𝑗 = 𝑊
𝑇𝛴− 𝑤 (5) 

𝑠. 𝑡 {
∑𝑤𝑖 = 1

𝑛

𝑖=1

𝑤𝑖 ≥ 0

 (6) 

Where 𝑤𝑖 is weight or proportion of asset 𝑖 in in 

the portfolio 𝑝, 𝜇𝑖 is expected return of asset 𝑖, 𝜇𝑝 

is the expected return of the portfolio, 𝜎𝑝
2 is 

variance of the portfolio assets. 

The following formulas are used to calculate 

downside risk: 

𝜎𝑝
2 = 𝑣𝑎𝑟{𝑅𝑝(𝑡)} = 𝔼 {(𝑅𝑝(𝑡) − 𝜇𝑝)

2
} (7) 

𝜎𝑝−
2 = 𝔼 {(𝑅𝑝(𝑡) − 𝜇𝑝)

2
  | 𝑅𝑝(𝑡) < 𝜇𝑝} (8) 

𝜎𝑖𝑗 = 𝜎𝑖𝜎𝑗𝜌𝑖𝑗 ⇒ 𝜎𝑖𝑗− = 𝜎𝑖−𝜎𝑗−𝜌𝑖𝑗  (9) 

Where 𝜎𝑝−
2  is semi variance of the portfolio 

assets and  𝑅𝑝(𝑡) < 𝜇𝑝 is the downside risk. 

3) Mean Absolute Deviation Model 

The mean absolute deviation (MAD) approach 

has been proposed by Konno and Yamazaki 

[13]and is now widely used by experts to solve a 

portfolio optimization problem on a very large 

scale. The MAD model uses absolute deviation of 

the portfolio rate of return instead of variance as a 

risk measure. These two criteria are 

mathematically equivalent to each other. However, 

they are computationally different because the 

former can be reduced to a linear programming 

problem, while the latter leads to a convex 

quadratic programming problem [14]. MAD leads 

to a linear programming model that has been 

proven to be equivalent to the Markowitz model 

but much more computationally tractable [15]. 

Mean absolute deviation defined as [13]: 
𝑠𝑖 = 𝔼{|𝑟𝑖(𝑡) − 𝜇𝑖|} (10) 
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𝑠𝑝 =∑𝑤𝑖𝑠𝑖 = 𝑤
𝑇𝑠

𝑛

𝑖=1

 (11) 

Minimizing 𝑠𝑖 is equivalent to minimizing 𝜎𝑖 if 
(𝑟1, 𝑟2, … , 𝑟𝑛) is multivariate and normally 

distributed, leading to the following mean absolute 

deviation model [13]: 
min𝑠𝑖 = 𝔼{|𝑟𝑖(𝑡) − 𝜇𝑖|} (12) 

𝑠. 𝑡

{
 
 

 
 
𝑟𝑖(𝑡) ≥ 𝑟𝑖0(𝑡)

∑𝑤𝑖 = 1

𝑛

𝑖=1

𝑤𝑖 ≥ 0

 (13) 

Where 𝑟𝑖0(𝑡) is the minimum return set by the 

investor. 

4) Conditional Value at Risk Model 

One of the most well-known risk measures is the 

measurement of risk value (VaR). At a given 

confidence level of α, 𝑣𝑎𝑟𝛼 represents the 

maximum expected loss over a given period of 

time. Although this criterion is widely used by 

researchers, VaR has also been widely criticized as 

an incompatible risk criterion [16]. Also, using 

VaR in optimization is difficult because it requires 

solving a non-convex problem [17]. Alternatively, 

Rockafellar and Uryasev [18] introduced 

conditional VaR (CVaR), which was defined as the 

conditional expectation of losing a basket at least 

equal to VaR. Formally, to distribute the 

probability of a stable return on assets, CVaR is 

defined at the 𝛼% confidence level for a portfolio 

with x composition as follows [19]: 

𝐶𝑉𝑎𝑅𝛼(𝑥) =
1

1 − 𝛼
∫ 𝑓(𝑥, 𝑟)𝑝(𝑟)𝑑𝑟
∞

𝑓(𝑥,𝑟)≥𝛼𝛽(𝑥)

 (14) 

where 𝑟 is the vector of random assets’ returns, 

𝑝(𝑟) is the associated probability density function, 

𝑓(𝑥, 𝑟) denotes the portfolio loss function, and 

𝛼𝛽(𝑥) denotes the 𝑉𝑎𝑅𝛽 threshold for the portfolio 

weights 𝑥. 

The portfolio composition 𝑥, which optimizes 

CVaR at the 𝛽 confidence level, while having the 

minimum expected yield level  𝜇∗ , is obtained by 

solving the following linear program: 

min𝛼 +
1

(1 − 𝛽)𝑇
1𝑦 (15) 

𝑠. 𝑡 {

𝛼 + 𝑦 + 𝑅𝑥 ≥ 0
�̂� ≥ 𝜇∗

1𝑥 = 1 , 𝑥, 𝑦 ≥ 0 , 𝛼 ∈ 𝑅 
 (16) 

Here 𝛼 is a decision variable representing 𝑉𝑎𝑅𝛽 , 

and 𝑦 = {𝑦1, … , 𝑦𝑇} is a vector of decision 

variables denoting losses that are at least equal to 

𝑉𝑎𝑅𝛽 . 

B. Intelligent Methods for Portfolio Optimization 

While the main problem of Markowitz theory can 

be solved using quadratic programming, 

metaheuristic algorithms have been used 

significantly to solve this optimization problem 

[20]. The classical branch of the portfolio 

optimization problem can be solved Considered as 

a one-objective optimization problem in which the 

investor minimizes his risk exposure provided the 

minimum expected return is achieved, or the 

investor maximizes the expected return for a 

certain level of risk [21]. In this article, we use the 

Particle Swarm Optimization algorithm to optimize 

the single-objective modern portfolio theory. 

While Single-Objective Optimization methods 

consider the minimum risk for a given return or the 

maximum risk for a given expected return, or a 

goal function that weighs two goals and therefore 

must be performed several times with the 

corresponding weights [22], Multi-Object 

Optimization Methods use two or more sets of 

Pareto solutions while balancing the objective 

function simultaneously [23]. In this article, we use 

the Non-Dominated Genetic Algorithm-II to 

optimize the multi-objective modern portfolio 

theory. 

1) Particle Swarm Optimization 

Particle swarm optimization is an evolutionary 

computational method proposed by Kennedy and 

Eberhart in 1995 [24]. The particle swarm 

optimization algorithm simulates animal social 

behavior, including insects, swarms, birds, and 

fish. These groups participate in a collaborative 

way to find food, and each member of the herd 

continues to change their search pattern according 

to their own learning experiences and those of 

other members [25]. 

Particle swarm optimization algorithm is a 

swarm-based search process in which each 

individual is called a particle, as a potential 

solution to the optimized problem in the next 

search space D, and can remember the speed as 

well as the optimal position [26]. Congestion and 

itself In each generation, particle information is 

combined to adjust the velocity of each dimension 
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and used to calculate the new position of the 

particle. Particles are constantly changing their 

state in multidimensional search space until they 

reach equilibrium or optimality, or beyond 

computational constraints. The unique connection 

between the different dimensions of the problem 

area is achieved through the objective functions. 

The general flowchart of the particle swarm 

optimization algorithm is shown in Figure 1 [25]. 

 

Fig. 1 General flowchart of particle swarm optimization 

algorithm 

There are parameters in the particle swarm 

optimization algorithm that can affect its 

performance. For each optimization problem, some 

values and options of these parameters have a large 

effect on the efficiency of the particle swarm 

optimization method, and other parameters have 

little or no effect. The basic parameters of particle 

swarm optimization are particle swarm size or 

number, number of iterations, velocity components 

and acceleration coefficients [27]. 

1) Non-Dominated Sorting Genetic Algorithm-II 

The genetic algorithm was created and developed 

thanks to the theory of biological evolution and the 

theory of genetics. It is a random search algorithm 

that mimics natural biological selection and natural 

genetic machinery [28]. However, there are some 

improved versions of the genetic algorithm. One of 

them, the NSGA (Non-Dominant Genetic 

Algorithm) was proposed by Srinivas and Deb in 

1995 [29] and an improved version [30] was 

introduced. This algorithm uses the density and 

density comparison operator and transfers good 

people to the next generation through the elite 

strategy method. Thus, population levels are 

increasing rapidly [31]. 

The NSGA-II procedure begins by establishing a 

population of individuals. It then ranks each 

individual according to a rule of dominance. It then 

applies the evolutionary operators i.e. crossover 

and mutation to find a new population of offspring. 

After creating two equally sized populations, it 

combines parents and descendants to share half of 

the newly combined population on Pareto fronts. 

To ensure the diversity of the front, the NSGA-II 

adds a crowding distance to each individual. This 

ensures the diversity of the population and 

improves the exploration of the fitness 

environment [32]. Figure 2 clearly explains the 

general flowchart of the NSGA-II algorithm. 

 

Fig. 2 General flow chart of NSGA II algorithm. 

III. RESULTS 

In this part of the article, we review the results of 

classical and intelligent methods for portfolio 

optimization. 

A. Results of Classical Methods for Portfolio 

Optimization 

In this section, we tried to find the optimum 

portfolio by using the classical methods determined 

earlier. The data we use is the closing prices of 6 

different companies in February 2014. As a result 

of the study, it was proven that the mean semi 

variance model performed better as seen in Figure 

3. Also, when we look at Table 1, we found the 

highest return expectation (0.01423), with a risk of 

0.02841 when we run the mean semi variance 

model. therefore, as stated in the above sections, it 
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is seen that the mean semi variance model gives 

better results. 

 

Fig. 3 Approximated pareto front for the mean variance 

(MV), mean semi variance (MSV), mean absolute deviation 

(MAD) and conditional value at risk (CVaR) 

Table 1. Weight Values, Return and Risk for classical 

methods: mean variance (MV), mean semi variance (MSV), 

mean absolute deviation (MAD) and conditional value at risk 

(CVaR) 

 MV MSV MAD CVaR 

IBM 0.00056 0.00056 0.00056 0.00056 

GOOGL 0.00507 0.00507 0.00507 0.00507 

MSFT -0.00184 -0.00184 -0.00184 -0.0018 

AAPL -0.00920 -0.00920 -0.00920 -0.0092 

YHOO 0.00869 0.00869 0.00869 0.00869 

AMZN 0.01423 0.01423 0.01423 0.01423 

Return 0.01423 0.01423 0.01423 0.01423 

Risk 0.05706 0.02841 0.02889 0.03300 
 

B. Results of Intelligent Methods for Portfolio 

Optimization 

In this part, portfolio optimization is performed 

using single-objective meta-heuristic algorithms 

(particle swarm optimization). For single-objective 

optimization, the objective function was designed 

to minimize risk and the expectation return was 

desired as 0.0060. Particle swarm optimization was 

run with 100 iterations and 40 populations, and 

when looking at the results, pso-msv (particle 

swarm optimization-mean semi variance) found the 

lowest risk (0.0090). Therefore, looking at the 

Figure 4, it is seen that the best cost graph belongs 

to the mean variance model, and when looking at 

Table 2, it is seen that the lowest risk belongs to 

the mean semi variance model. As stated in the 

classical models, the mean semi variance model 

works better. 

 

Fig. 4 The best cost graph by desired expectation return 

(0.0060) ,100 iterations and 40 population for pso-mv, pso-

msv, pso-mad and pso-cvar 

Table 2. Weight Values, Return and Risk for intelligent 

methods (particle swarm optimization) by desired expectation 

return (0.0060), 100 iteration and 40 population 

 
PSO-

MV 

PSO-

MSV 

PSO-

MAD 

PSO-

CVaR 

IBM 0.2274 0.4006 0.3620 0.3379 

GOOGL 0.4857 0.0653 0.3068 0.3941 

MSFT 
3.3849e-

05 
0.0166 0.0029 

3.0328e-

04 

AAPL 0 0 0 0 

YHOO 0.1219 0.3410 0.0771 0 

AMZN 0.1650 0.1764 0.2511 0.2677 

Return 0.0060 0.0060 0.0060 0.0060 

Risk 0.0153 0.0090 0.0114 0.0155 

In this part, portfolio optimization is performed 

using multi-objective meta-heuristic algorithms 

(Non-Dominated Sorting Genetic Algorithm-II). 

The difference between this method and the single-

objective method is to solve the problem as it is. 

Therefore, in this method, there is no limit on the 

objective function and both forms are considered 

minimum and maximum. NSGA-II was run with 

100 iterations and 40 populations, and when 

looking at the Figure 4, Table 3 and Table 4 

minimum risk results, NSGA-II-MSV and NSGA-

II-MAD found the lowest risk respectively 0.0073 

and 0.0060. when looking at the maximum return 

(0.0142) results, NSGA-II-MSV found the lowest 

risk 0.0284. 
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Fig. 5 Approximated pareto front for the NSGA-II-MV, 

NSGA-II-MSV, NSGA-II-MAD and NSGA-II-CVaR 

Table 3. Weight Values, Return and Risk for minimum risk 

by intelligent methods (Non-Dominated Sorting Genetic 

Algorithm): NSGA-II-MV, NSGA-II-MSV, NSGA-II-MAD 

and NSGA-II-CVaR 

 
NSGAII

-MV 

NSGAII

-MSV 

NSGAII

-MAD 

NSGAII

-CVaR 

IBM 0.4636 0.5579 0.7083 0.5233 

GOOG

L 
0.2889 0 0.1496 0.4767 

MSFT 0.1728 0.1060 0.0489 0 

AAPL 0.0050 0.0089 0.0075 0 

YHOO 0.0696 0.2739 0.0763 0 

AMZN 0 0.0533 0.0094 0 

Return 0.0020 0.0032 0.0018 0.0027 

Risk 0.0090 0.0073 0.0060 0.0125 
 

Table 4. Weight Values, Return and Risk for maximum 

return by intelligent methods (Non-Dominated Sorting 

Genetic Algorithm): NSGA-II-MV, NSGA-II-MSV, NSGA-

II-MAD and NSGA-II-CVaR 

 
NSGAII

-MV 

NSGAII

-MSV 

NSGAII

-MAD 

NSGAII

-CVaR 

IBM 0 0 0 0 

GOOG

L 
0 0 0.0880 0.1953 

MSFT 0 0 0.0046 0 

AAPL 0 0 0 0 

YHOO 0.1136 0 0.1403 
3.9407e-

04 

AMZN 0.8864 1 0.7670 0.8043 

Return 0.0136 0.0142 0.0126 0.0124 

Risk 0.0501 0.0284 0.0217 0.0269 
 

 

IV. CONCLUSION 

One of the major concerns of financial managers 

today is to make high-speed, optimal decisions 

amid large volumes of stock and capital market 

information and data. Especially when the diversity 

of investments in the investment portfolio 

increases, optimal decisions are very important 

given the constraints on expected returns and the 

level of risk and liquidity of assets and other 

variables. Portfolio optimization makes it possible 

to attract more investors, because with the 

emergence of a proper investment process, fixed 

capital is attracted to the community. Therefore, in 

this article, classical and intelligent methods for 

portfolio optimization were examined. The results 

of this article are generally as follows: 

1. According to the obtained results, the mean 

semi variance method with lower risk 

(0.0284) and higher return (0.0142) than the 

other classical methods has acted on the 

specified data. 

2. According to the results obtained in single-

objective meta-heuristic methods (Particle 

Swarm Optimization), with a desired return 

value of 0.0060 and risk minimization, the 

particle swarm optimization-mean semi 

variance method with a risk of (0.0090) has 

the lowest risk among other methods. 

3. According to the results obtained in multi-

objective meta-heuristic methods (Non-

Dominated Sorting Genetic Algorithm-II), 

in minimizing the risk, the lowest value of 

risk was (0.0060) with a return of (0.0018) 

by the NSGA-II-MAD method, also a 

NSGA-II-MSV method with a risk of 

(0.0073) and a higher return of (0.0032) It 

was more efficient than other methods. But 

in maximizing the expected value of return, 

the highest return value is (0.0142) with a 

lower risk of (0.0284) belonging to the 

NSGA-II-MSV method. 

According to the results, it is clear that the use of 

intelligent methods can provide less risk with more 

returns for financial investors. Therefore, in this 

article, by reviewing the results, it can be said that 

multi-objective meta-heuristic algorithms can help 

financial investors to choose the right portfolio. 
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