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Abstract – Electricity consumption forecasting plays a crucial role in effective electricity management, 

particularly for city-specific predictions made by distribution and retail companies, as it enables optimized 

operations and efficient electricity allocation. In the context of the Turkish electricity market, inaccurate 

forecasts can lead to substantial financial burdens, underscoring the need for accurate and reliable 

predictions to ensure the smooth functioning of the market. This study focuses on forecasting hourly 

electricity consumption for the following day using data available up to the previous day for the Aydın, 

Denizli, and Muğla regions. A three-year dataset was employed to compare the performance of two 

powerful machine learning models, CatBoost and Bidirectional Long Short-Term Memory (BiLSTM), 

known for their ability to handle complex data and capture patterns over time. The results show that both 

models are effective in short-term electricity consumption forecasting. CatBoost demonstrated higher 

accuracy in capturing daily consumption fluctuations, while BiLSTM exhibited superior performance 

during high-demand periods, highlighting its ability to manage complex seasonal consumption patterns. 

This study contributes to electricity forecasting by offering insights into the application of these models in 

real-world scenarios, particularly in the context of the Turkish electricity market. Future work could explore 

additional factors influencing consumption and further refine the models for enhanced forecasting accuracy. 
 
Keywords – Electricity Consumption Forecasting, Machine Learning, Deep Learning, Bidirectional Long Short-Term 

Memory, Catboost. 

 

I. INTRODUCTION 

Electric energy is a critical energy source with a wide range of applications, from daily life to industrial 

activities. This energy is generated by converting primary energy sources such as oil, coal, natural gas, 

nuclear power, hydropower, biomass, tidal, solar, and wind energy. However, the continuously growing 
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demand for electricity, limitations on resources, and the challenges associated with electricity storage 

compel countries and sector participants to implement various planning strategies.[1] 

With its growing population and expanding economy, Turkey faces an increasingly high demand for 

energy, particularly in electricity consumption. The country’s total annual electricity consumption is 

289,372 GWh [2], with an average per capita electricity consumption of approximately 3,389 kWh. The 

development of electricity consumption in Turkey from 1970 to 2023 is shown in Figure 1. 

 

 
 

Fig. 1 Türkiye electricity consumption by year [2] 

 

Electricity is a form of energy that must be consumed immediately after it is produced. However, the 

amount of consumption fluctuates over time, varying monthly, daily, and even by the hour. Electricity grids 

must be able to meet these instantaneous load demands and increasing energy needs in the long term [3]. 

On the other hand, when demand forecasts exceed supply, excessively high costs may be incurred for 

electricity production. At this point, predicting future electricity demand becomes a crucial step for the 

effective planning of electricity grids [4]. 

Long-term electricity consumption forecasting is essential for shaping strategic investment decisions. 

Investment decisions based on these forecasts play a critical role in determining the required capacity in 

the energy sector. However, overinvestment may result in wasted capacity and ineffective use of resources 

allocated for investment. Conversely, underestimating demand, leading to inaccurate system design and 

planning, could cause various challenges such as essential power outages. This situation would negatively 

impact individual welfare and economic growth. Thus, accurate and reliable long-term forecasts are vital 

for sustainability and efficient resource utilization in the energy sector [5]. 

Electric load forecasting is based on analyzing historical and current conditions in detail to identify 

patterns of change and predict future demand. Various factors influence electric load, including population 

growth, geographical conditions of the region, historical load characteristics, gross national product (GNP), 

and technological advancements. These factors help us understand changes in electricity demand and make 

more accurate future forecasts [6]. 

In Turkey's electricity market, privatization efforts began in the 1980s but gained significant momentum 

with the Electricity Market Law No. 4628, enacted in 2001. This law aimed to establish a market structure 

that promotes competition, ending the public monopoly and encouraging greater private sector 

involvement. Following its implementation, production, transmission, distribution, and retail sales were 

unbundled, and privatizations, particularly in production and distribution sectors, commenced. While the 

privatization of distribution companies was completed in 2013, the privatization of production facilities 

continues gradually [7]. 
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Electricity production and trading in Turkey’s electricity market are managed through several primary 

market mechanisms that regulate transactions: the Day-Ahead Market (DAM), the Intra-Day Market 

(IDM), and the Balancing Power Market (BPM). The Day-Ahead Market (DAM) is where offers are 

collected, and transactions are conducted to balance supply and demand for the following day. In this 

market, producers and consumers submit price bids, setting the electricity price and volume one day in 

advance. The Intra-Day Market (IDM) offers more flexibility to respond to intraday changes in electricity 

supply and demand, allowing participants to conduct real-time purchases and sales as needed. The 

Balancing Power Market (BPM), managed by the Turkish Electricity Transmission Corporation (TEİAŞ), 

ensures system balance by issuing additional supply or demand instructions to address short-term 

imbalances. These three market mechanisms work together to maintain electricity supply security and price 

stability [8]. 

In the electricity spot market, price risk increases, and predictability decreases as real-time approaches. 

In other words, market clearing prices set in the Day-Ahead Market are more stable compared to system 

marginal prices in the Balancing Power Market, where prices are highly volatile and carry substantial risk; 

the primary objective here is to provide rapid solutions to ensure system reliability [8]. 

Accurately forecasting electricity demand is critical for efficient market operations and ensuring system 

security. Short-term electricity demand forecasts, in particular, directly impact the efficiency of dynamic 

market mechanisms such as the Day-Ahead Market (DAM) and the Intra-Day Market (IDM). While DAM 

and IDM help market participants balance electricity supply and demand, accurate forecasts allow energy 

producers and distribution companies to minimize price fluctuations due to supply-demand imbalances. In 

this context, the effective and rapid performance of short-term electricity demand forecasting algorithms 

supports the efficient and reliable operation of the energy system, providing both economic and 

environmental benefits [9]. 

Upon reviewing the literature, electricity consumption forecasting methods can be categorized into three 

main types: statistical methods, machine learning (ML) methods, and hybrid methods. Statistical methods 

include Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), and Linear 

Regression. Among machine learning methods, Artificial Neural Networks (ANN) and modified neural 

networks—such as Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Gated 

Recurrent Unit (GRU), and Convolutional Neural Networks (CNN)—are commonly used. In addition to 

ANN-based methods, decision tree and gradient boosting algorithms have also been employed. 

Furthermore, hybrid models that combine statistical and machine learning methods have been developed to 

improve forecasting accuracy. Table 1 below provides a summary of studies related to forecasting Turkey's 

electricity consumption or demand. 
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Table 1. Overview of the studies on electricity consumption or demand forecasting of Turkey 

Forecasting Methodologies Authors Year 

ARIMA, Regression analyses, ANN Hamzacebi and Kutay [10] 2024 

Genetic algorithm Ozturk et al [11] 2005 

Regression analyses and ANN Topalli et al. [12] 2006 

ANFIS, ARMA and ARIMA Erdogdu [13] 2007 

Curve fitting and genetic algorithm Karabulut [14] 2008 

Regression analyses, Nonlinear Regression, ANN Bilgili [15] 2009 

Optimization algorithm Toksari [16] 2009 

Fuzzy logic Kucukali and Baris [17] 2010 

ANN Cunkas and Altun [18] 2010 

ANFIS, ARMA and ARIMA Demirel et al [19] 2010 

Genetic algorithm Yigit [20] 2011 

ANN Sözen et al. [21] 2011 

Regression analyses Kavaklioglu [22] 2011 

Singh’s Method Boltürk et al. [23] 2012 

ANFIS, ARMA and ARIMA Boran [24] 2014 

Regression analyses Kavaklioglu [25] 2014 

ANN, LS-SVM Kaytez et al. [26] 2015 

ANN Esener et al. [27] 2015 

ANFIS, ARMA, ARIMA, fuzzy logic Cevik and Cunkas [28] 2015 

ANN Tanidir and Tor [29] 2015 

Multiple linear regression and ANN Gunay [30] 2016 

Regression analyses Karaca and Karacan [31] 2016 

SARIMA and ANN Hamzacebi [32] 2017 

Linear model Yükseltan [33] 2017 

EPSİM-NN Başoglu and Bulut [34] 2017 

ANN Toros and Aydın [35] 2018 

Regression analyses Haliloglu and Tutu [36] 2018 

RNN, LSTM, GRU Tokgoz [37] 2018 

ANN Hamzeçebi et al [38] 2019 

ARMA, ARIMA, SARIMA Doruk [39] 2019 

ANN Özkurt et al. [40] 2020 

ARIMA and LR-SVM Kaytez [41] 2020 

Naive forecast, ridge regression and SARIMAX Cetinkaya and Acarman [42] 2021 

ANN Ozbay and Dalcali [43] 2021 

ANN Unutmaz et al. [44] 2021 

LSTM, GRU and CNN Unlu [45] 2021 

ANN Saglam et al. [46] 2022 

Regression Analysis Emec and Akkaya [47] 2022 

ANN Comert and Yildiz [48] 2022 

Extreme learning machine and ANN Agır [49] 2022 

Xgboost Guven and Kayalica [50] 2023 

ARIMA, Extreme learning machine and ANN Pala [51] 2023 

Heckman sample selection Yarbasi and Celik [52] 2023 

ANN, SVM and WOA Saglam et al. [53] 2023 

Regression analyses and ANN Yigit et al. [54] 2024 
 

 

In this study, deep learning and gradient boosting-based methods, namely BiLSTM and CatBoost, are 

employed to forecast the total electricity consumption of the cities of Aydın, Denizli, and Muğla one day 

in advance. The performance of the methods used in this study is evaluated using performance metrics such 

as Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). 
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The remainder of the study is organized as follows: Section 2 provides a brief introduction to the models, 

including BiLSTM and CatBoost. Section 3 presents the dataset and numerical experimental results. 

Section 4 discusses the findings in detail. Finally, the study is concluded in Section 5. 
 

II. MATERIALS AND METHOD 

A. Problem Statement 

In this study, we aim to forecast the total electricity consumption for the provinces of Aydın, Denizli, and 

Muğla using machine learning methods. Forecasting is defined as the process of predicting future values of 

a time series based on its historical data. Let 𝑥 = [𝑥1, … , 𝑥𝑡] represent a time series, where each  𝑥𝑡 ∈ 𝑅𝑑 

and 𝑑 denotes the dimensionality of the time series data. The objective of the forecasting process, then, is 

to predict the future values of the data as 𝑥 = [𝑥𝑡, … , 𝑥𝑡+𝑘] where 𝑘 represents the number of future values 

to be predicted. In this study, CatBoost and BiLSTM models are used to make 24-hour forecasts, and the 

performance of these models is compared using specific performance metrics.  

B. Bidirectional Long Short-Term Memory (BiLSTM) 

BiLSTM (Bidirectional Long Short-Term Memory) is a bidirectional Recurrent Neural Network (RNN) 

model that provides an effective approach for learning long-term dependencies in time series and sequential 

data. While traditional LSTM (Long Short-Term Memory) networks process information flow in a specific 

direction in sequential data, BiLSTM learns all dependencies in the data by utilizing connections in both 

the forward (past to future) and backward (future to past) directions. Figure 2 illustrates the comparison 

between LSTM and BiLSTM architectures. 
 

 
Fig. 2 Comparison between LSTM and Bi-LSTM networks [55] 

 

The basic structure of BiLSTM consists of two LSTM layers that operate bidirectionally: a forward layer 

and a backward layer. The forward LSTM layer processes time steps from the beginning to the end, while 

the backward LSTM layer processes information in reverse, starting from the last time step. This 

bidirectional architecture captures temporal dependencies in both directions, enhancing prediction 

accuracy. The internal architecture of the BiLSTM unit is shown in Figure 3. 
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Fig. 3 Basic structure of the BiLSTM network [56] 

 

 

BiLSTM utilizes the LSTM cell as its fundamental building block. Traditional RNN models may be 

limited in learning long-term dependencies, which can lead to the vanishing gradient problem, especially 

in datasets with dense sequential information flow. To address this issue, LSTM was developed [57]. LSTM 

layers have three gates that regulate the flow of information: the input gate, the forget gate, and the output 

gate. Input gates control the flow of activation information entering the cell, while output gates manage the 

information leaving the cell. Forget gates are used to reset the cell memory when it is no longer needed 

[58]. The structure of the LSTM unit is shown in Figure 4. 

 
Fig. 4 The structure of the LSTM unit [57] 

 

The Input Gate controls the proportion of new information to be added to the cell state. The Forget Gate 

facilitates the forgetting of unnecessary or outdated information, supporting more efficient model 

performance. The Output Gate adjusts the proportion of information to be sent out from the cell state, 

regulating the information passed to the next layers. The input time series data at a given time 𝑡 is 

represented by 𝑥𝑡. 𝑊𝑖, 𝑊𝑜 and 𝑊𝑓 denote the input, output, and forget weight parameters, respectively. 

Accordingly, the input 𝑖𝑡, output 𝑜𝑡 , and forget gates 𝑓𝑡   in the LSTM layer are expressed as follows: 
 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                                                                                                 (1) 

In Equation (1), 𝑏𝑖, 𝑏𝑜, and 𝑏𝑓 represent the bias parameters. ℎ𝑡 and ℎ𝑓 are defined as the hidden state 

vectors at time step 𝑡 (also referred to as the output state). In Equation (1), 𝜎 represents the sigmoid 
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activation function. In the LSTM layer, the hidden state ℎ𝑡 and the cell state 𝑐𝑡 at time step 𝑡 are defined as 

follows: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐�̃�                                                                                                                                        (2) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)                                                                                                                                                  (3) 

Here, ⊙ denotes the Hadamard product, and 𝑡𝑎𝑛ℎ(. ) represents the hyperbolic tangent function. The 𝑐�̃� 

given in Equation (2) is written as follows: 

𝑐�̃� = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                                                                                                               (4) 

Here, 𝑊𝑐  and 𝑏𝑐  represent the weight and bias parameters, respectively [59]. 

C. CatBoost 

CatBoost is a gradient boosting algorithm proposed by Liudmila Prokhorenkova and other researchers in 

2017. While traditional boosting algorithms are widely used in various fields such as time series analysis, 

classification, and regression, they encounter several limitations, particularly when handling categorical 

features in large datasets. The primary goal of CatBoost is to prevent prediction shift while processing 

categorical features and to improve model performance. 

Two key innovative methods play a crucial role in CatBoost's success: Ordered Boosting and Ordered 

Target Encoding. These methods significantly enhance CatBoost's performance in processing categorical 

data compared to traditional boosting algorithms. 

Ordered Boosting was developed to reduce overfitting and ensure more accurate learning by the model. 

In traditional boosting methods, all examples in the dataset are processed simultaneously. In contrast, 

CatBoost processes the data sequentially and updates weights based on information obtained from previous 

examples at each step. This sequential processing approach prevents data leakage, ensuring that the model 

produces more reliable predictions. 

Another critical component in CatBoost's handling of categorical features is the Ordered Target Encoding 

method. This method optimizes the relationship between categorical features and the dependent variable, 

enabling the accurate modeling of category-specific effects. Ordered Target Encoding also reduces the risk 

of overfitting by preventing categorical features from becoming overly adapted to the model. 

CatBoost also utilizes a symmetric tree structure for modeling. In traditional boosting algorithms, tree 

structures may be asymmetric, leading to different splitting conditions at each node, causing the tree 

structure to grow unevenly. CatBoost, however, builds symmetric trees by using the same splitting 

conditions at every level, ensuring uniform depth and structure across all nodes. This symmetric structure 

significantly reduces training and prediction times, as the trees are consistently deep and balanced. This 

feature enables CatBoost to work efficiently with large datasets. 

Additionally, CatBoost offers advanced options for hyperparameter optimization. Fine-tuning parameters 

such as learning rate, tree depth, and L2 regularization can improve model performance. The GPU support 

in CatBoost further shortens training times, especially with large datasets, allowing for faster and more 

efficient model training. As a result, the features of CatBoost, including the symmetric tree structure and 

ordered boosting, can be leveraged more effectively [60]. 

D. Performance Metrics 

The CatBoost and BiLSTM models are assessed using performance metrics, specifically RMSE and 

MAPE. Let 𝑦 be a vector representing the future values of the sequence 𝑥, defined as 𝑦 = [𝑥𝑇 , … , 𝑥𝑇+𝑘]. 
Here, 𝑦𝑖 and 𝑦�̂� denote the actual and predicted values, respectively. The performance metrics are then 

calculated as follows: 

 

 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1                                                                                                          (5) 
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MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑛

𝑖=1 × 100                                                                                                      (6)                                                

 

III. RESULTS 

A. Dataset 

In this study, data analysis and modeling techniques were applied to forecast electricity consumption in 

the provinces of Aydın, Denizli, and Muğla, Turkey. The dataset used was provided by ADM Elektrik 

Dağıtım and covers the period from 00:00 on January 1, 2021, to July 15, 2024. This dataset includes the 

total electricity consumption values for the specified provinces in MWh (megawatt hours). The normalized 

version of the total consumed energy, ranging from 0 to 1, is shown in Figure 5, while the statistical 

information of the dataset is presented in Table 2 and Table 3. 

 

 
 

Fig. 4 Normalized electricity consumption dataset 

 
Table 2. Statistical Summary of the Dataset 

Min Max Mean Median Std Skew Kurtosis 

509,652 2300,494 1147,961 1123,792 290,619 0,762 0,525 

 

 

Upon examining the general characteristics of the dataset, it is observed that there is a large range between 

the minimum value of 509,652 and the maximum value of 2300,494. The mean (1147,961) and median 

(1123,792) values are close to each other, indicating that the central tendency of the data suggests a normal 

distribution. However, the positive skewness (skew = 0,762) indicates that the distribution is skewed 

towards higher values, suggesting the presence of outliers. The kurtosis value (0.525) suggests that the data 

distribution is relatively flat, meaning the peaks of the distribution are not concentrated around the mean. 

 
Table 3. Statistical Summary of the Dataset by Year 

Year Min Max Mean Median Std Skew Kurtosis 

2021 509,652 2196,416 1130,627 1113,864 283,0596 0,702 0,376 

2022 548,725 1956,069 1144,900 1131,208 263,5447 0,412 -0,294 

2023 564,272 2169,743 1133,730 1107,730 298,6005 0,839 0,559 

2024 614,510 2300,494 1211,153 1160,434 326,0386 0,950 0,628 
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In 2021, the skewness value of the data was 0.702, indicating a right skew and the presence of significant 

outliers. In 2022, the skewness decreased to 0.412, making the data more symmetrical and reducing the 

influence of outliers. Additionally, the standard deviation decreased, and the data became more 

concentrated within a narrower range. In 2023, the skewness increased to 0.839, and kurtosis rose to 0.559, 

revealing a distribution with more pronounced right skew and outliers. In 2024, the skewness further 

increased to 0.950, and kurtosis reached 0.628, indicating a more right-skewed and peaked distribution. 

Furthermore, the average (1211,153) and median (1160,434) values in 2024 were higher, representing an 

increase compared to previous years. 

In this study, various external factors that could affect electricity consumption were also considered. In 

this context, meteorological and solar energy data were included in the analyses. Meteorological data were 

obtained from the Enercast [61] data source, while solar energy production data were collected via the 

PVlib [62] Python library. These datasets were used to more accurately model the relationship between 

energy production and consumption. 

Additionally, an extra dataset was created considering factors such as the installed capacity of unlicensed 

producers and public holidays (official holidays). This dataset was designed to better model the seasonal 

and holiday effects on electricity consumption. The variables used are presented in Table 4. 
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Table 4. Variables Used in the Analysis 

Aydin cloud cover Denizli elevation Marmaris wind speed Söke dhi 

Aydin precipitation Denizli equation Mentese azimuth Söke dni 

Aydin radiation Denizli ghi Mentese dhi Söke elevation 

Aydin relative humidity Denizli precipitation Mentese dni Söke equation 

Aydin temperature Denizli radiation Mentese elevation Söke ghi 

Aydin wind direction Denizli relative humidity Mentese equation Söke sun position 

Aydin wind speed Denizli sun position Mentese ghi Söke turbidity 

Bodrum cloud cover Denizli temperature Mentese sun position Söke zenith 

Bodrum precipitation Denizli turbidity Mentese turbidity Yatagan azimuth 

Bodrum radiation Denizli wind direction Mentese zenith Yatagan cloud cover 

Bodrum relative humidity Denizli wind speed Milas azimuth Yatagan dhi 

Bodrum temperature Denizli zenith Milas cloud cover Yatagan dni 

Bodrum wind direction Fethiye cloud cover Milas dhi Yatagan elevation 

Bodrum wind speed Fethiye precipitation Milas dni Yatagan equation 

Cardak cloud cover Fethiye radiation Milas elevation Yatagan ghi 

Cardak precipitation Fethiye relative humidity Milas equation Yatagan precipitation 

Cardak radiation Fethiye temperature Milas ghi Yatagan radiation 

Cardak relative humidity Fethiye wind direction Milas precipitation 

Yatagan relative 

humidity 

Cardak temperature Fethiye wind speed Milas radiation Yatagan sun position 

Cardak wind direction Honaz azimuth 

Milas relative 

humidity Yatagan temperature 

Cardak wind speed Honaz dhi Milas sun position Yatagan turbidity 

Cine azimuth Honaz dni Milas temperature Yatagan wind direction 

Cine dhi Honaz elevation Milas turbidity Yatagan wind speed 

Cine dni Honaz equation Milas wind direction Yatagan zenith 

Cine elevation Honaz ghi Milas wind speed 

Aydin non licensed 

electricity generation 

capacity 

Cine equation Honaz sun position Milas zenith 

Denizli non licensed 

electricity generation 

capacity 

Cine ghi Honaz turbidity Mugla cloud cover 

Mugla non licensed 

electricity generation 

capacity 

Cine sun position Honaz zenith Mugla precipitation Ramadan flag 

Cine turbidity Marmaris cloud cover Mugla radiation Religious day flag 

Cine zenith Marmaris precipitation 

Mugla relative 

humidity National day flag 

Denizli azimuth Marmaris radiation Mugla temperature Public holiday flag 

Denizli cloud cover Marmaris relative humidity Mugla wind direction  

Denizli dhi Marmaris temperature Mugla wind speed  

Denizli dni Marmaris wind direction Söke azimuth  

 

B. Numerical Experiments 

For training the BiLSTM model, TensorFlow v2.17.0 and Keras v3.6.0 libraries were utilized. In our 

numerical experiments, a four-layer network based on BiLSTM was designed. The entire network consists 

of four BiLSTM layers, each with a different number of hidden units, and a single output layer. The first 

three BiLSTM layers include 256, 128, and 64 hidden units, respectively, while the fourth BiLSTM layer 

has 32 hidden units. Each BiLSTM layer is equipped with a LeakyReLU activation function, a dropout rate 

of 0.2, and batch normalization. 
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Throughout the training process, the RMSE metric was selected as the model's loss function. To minimize 

the loss function, the Adam optimization algorithm was applied with a learning rate set to 0.0001. 

Additionally, early stopping and learning rate reduction mechanisms were incorporated. Various values for 

training parameters were tested, and those yielding the best prediction performance were selected. To 

identify the optimal parameters for the models, the number of epochs in the set {50, 100, 150, 200, 250, 

300, 350, 400, 450, 500} and the learning rate values in {10⁻², 5 × 10⁻³, 10⁻³, 5 × 10⁻⁴, 10⁻⁴, 10⁻⁵} were 

explored on the validation set. 

For training the CatBoost model, the CatBoostRegressor was employed. During numerical experiments, 

various hyperparameter combinations were examined, beginning with the identification of categorical 

features for the model. The final model was optimized with 10,000 iterations, a learning rate of 0.01, and a 

depth of 8 layers. RMSE was chosen as the loss function, and the RMSE metric was used on the validation 

set to assess the model’s performance. To improve the model’s overall performance during training, the 

early stopping rounds parameter was set to 50, thus halting training when validation loss did not improve. 

In the experiments, the prediction of electricity consumption 24 hours in advance for the cities of Aydın, 

Denizli, and Muğla was conducted using the BiLSTM and CatBoost models, and their performances were 

evaluated using the aforementioned performance metrics. During model training, the "sliding window" 

approach, commonly used in time series forecasting, was applied. In this approach, after each daily 

prediction, the predicted value was added to the training data as time step t+24 for the next day's prediction. 

Thus, each day's prediction incorporated the previous day’s forecast data, enhancing prediction accuracy 

by using information obtained from prior days. 

This approach was carried out during the periods of March 1–15 and July 1–15, creating a realistic 

simulation environment for the predictions in both periods. Through this method, the model’s performance 

was tested not only for independent days but also under conditions where consecutive days were 

interrelated. 

Table 5 summarizes the performance of the CatBoost and BiLSTM models in predicting electricity 

consumption for the periods of March 1–15 and July 1–15. The performance is evaluated using MAPE and 

RMSE metrics. In the March period, CatBoost achieves a lower MAPE (2,72%) and RMSE (35,85) 

compared to BiLSTM (3,71% MAPE, 46,87 RMSE), indicating higher accuracy. However, in the July 

period, BiLSTM slightly outperforms CatBoost in terms of MAPE (2,76% for BiLSTM, 2,81% for 

CatBoost), though CatBoost still shows a higher RMSE (57,50) than BiLSTM (53,05). 

 
Table  5. Performance Comparison of CatBoost and BiLSTM Models Across Different Periods 

 Mape RMSE 

Period Catboost BiLSTM Catboost BiLSTM 

1-15 March 2,72% 3,71% 35,85 46,87 

1-15 July 2,81% 2,76% 57,50 53,05 

 

 

IV. DISCUSSION 

A. CatBoost's Excellence in Generalization 

 

CatBoost generally achieves lower MAPE values across both periods, suggesting robustness in its 

predictive generalization. For example, in the March period, CatBoost consistently maintains lower 

MAPE values on most days (e.g., March 1 with a MAPE of 1.79% for CatBoost vs. 2.01% for BiLSTM). 

This pattern is also observable in Figures 5 and 6, where CatBoost’s predictions show a lower average 

error, particularly evident in daily variations in consumption, reflecting its stability and effectiveness 

under various conditions. 

 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

174 
 

 
Fig. 5 March RMSE Comparison between CatBoost and BiLSTM Models 

 

 

 
Fig. 6 March RMSE Comparison between CatBoost and BiLSTM Models 

B. BiLSTM’s Superior Performance under Specific Conditions 

 

The BiLSTM model shows superior performance under certain conditions, particularly in handling 

fluctuations in high-demand scenarios. For instance, as indicated in the July period’s MAPE and RMSE 

values (e.g., July 12 with an RMSE of 29.74 for BiLSTM vs. 60.72 for CatBoost), the model achieves 

lower error rates on specific days. This trend is further illustrated in Figure 3 and Figure 4, where 

BiLSTM’s predictions closely track actual values, highlighting its ability to capture intricate seasonal 

consumption patterns more effectively. 
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Fig 7. July RMSE Comparison between CatBoost and BiLSTM Models 

 

 

 
Fig. 8 July MAPE Comparison between CatBoost and BiLSTM Models 

 

C. Potential Benefits of Hybrid Approaches 

The distinct performance strengths of each model under specific conditions suggest potential benefits of 

a hybrid approach. As shown in Figure 9 and Figure 10, both CatBoost and BiLSTM predictions 

frequently align with observed values in March and July, indicating consistency across different demand 

periods. This alignment underscores the advantage of combining BiLSTM’s ability to capture seasonal 

patterns with CatBoost’s robust generalization capacity, potentially reducing both daily and seasonal 

error rates more effectively. A hybrid model could leverage the complementary strengths of these 

approaches to achieve more balanced predictions for diverse energy consumption trends. 
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Fig. 9 Comparison of Actual and Model Predictions for March 

 

 
Fig. 10 Comparison of Actual and Model Predictions for July 

 

D. Limitations and Future Work 

The solar data used in the models were obtained from the PVlib library, and the weather data was sourced 

from the Enercast website. To further improve the accuracy of the models, alternative weather data 

providers could be utilized. More accurate weather forecasts would likely enhance the predictions. 

Additionally, the study covers a large geographical area, including Aydın, Denizli, and Muğla. There are 

occasional power outages and maintenance activities carried out by either TEİAŞ or the distribution 

company, ADM Elekrik, which could lead to significant disruptions in the power grid. These outages can 

be classified as either unplanned (due to faults) or planned (due to maintenance work). Normalizing such 

outages in the dataset may help achieve more reliable results. 

Future work could also explore advanced feature engineering techniques, such as lag shifts, rolling 

windows, and others, to further improve the models. The impact of these techniques on prediction accuracy 

should be evaluated to understand their effectiveness in enhancing model performance. 

While the CatBoost and BiLSTM models are effective for prediction, understanding the rationale behind 

the models' predictions could provide more insight into system behavior. Future work could explore 
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methods to improve model interpretability, such as SHAP (Shapley additive explanations) or LIME (Local 

Interpretable Model-agnostic Explanations), to better understand how specific features influence the 

predictions. Additionally, exploring ensemble learning methods, such as stacking or boosting, or creating 

hybrid models that combine the strengths of both CatBoost and BiLSTM could enhance prediction accuracy 

and robustness, offering a more comprehensive approach to tackling the problem. 
 

V. CONCLUSION 

The aim of this research was to predict hourly electricity consumption for the following day (t) based on 

data available up to the previous day (t-1), using a three-year dataset. Both CatBoost and BiLSTM models 

proved effective in forecasting electricity consumption, with each offering distinct advantages depending 

on the circumstances. CatBoost consistently provided more accurate predictions across both periods, 

demonstrating robustness in its ability to generalize. For example, during the March period, it outperformed 

BiLSTM in terms of precision, reflecting its stability and effectiveness in capturing daily consumption 

variations. However, BiLSTM showed superior performance in handling fluctuations during high-demand 

scenarios, and in certain instances, its predictions closely matched actual values, highlighting its capacity 

to capture intricate seasonal consumption patterns with greater accuracy. 

This work contributes to the growing body of knowledge in energy forecasting by comparing two 

advanced machine learning models—CatBoost and BiLSTM—in short-term electricity consumption 

prediction. A key innovation lies in applying these models to large-scale, real-world data, offering valuable 

insights into how each model adapts to various consumption patterns and can be fine-tuned for better 

forecasting. Moreover, by assessing the models under different seasonal conditions, it sheds light on how 

weather-related and demand-based fluctuations impact forecasting accuracy. Additionally, the results from 

this research could be particularly useful for trading in Turkey’s Intra-Day Market, as the models predict 

electricity consumption based on data up to the previous day (t-1). This aligns well with the Intra-Day 

Market, where forecasts are made closer to actual consumption periods, offering an opportunity to make 

more accurate decisions in energy distribution.  

Despite the valuable contributions of this study, there are certain limitations that should be addressed in 

future research. One key limitation is the lack of accurate data prior to 2021, as well as the potential impact 

of large industrial consumers entering or leaving the distribution system, whose consumption patterns may 

deviate from general trends, affecting the prediction accuracy. To overcome these challenges, future work 

could incorporate a wider variety of data sources, including historical data from before 2021 and 

information from major industrial consumers. Additionally, exploring other machine learning techniques, 

such as ensemble learning methods or hybrid models combining CatBoost and BiLSTM, could further 

improve forecasting accuracy. Enhancing the interpretability of the models through methods like SHAP or 

LIME would also provide valuable insights into how specific features influence predictions, ultimately 

aiding in more informed decision-making in energy distribution. 
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