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Abstract – Patients with Type 1 diabetes (diabetes mellitus) must frequently monitor their blood glucose 

levels to control their condition. This process becomes challenging due to the difficulties and discomfort 

caused by traditional blood glucose testing. To make this process more convenient and less time-

consuming, this study presents a non-invasive glucose monitoring system based on the Internet of Medical 

Things (IoMT) that offers a more user-friendly and painless alternative. The proposed system uses a light 

sensor connected to an ESP32 microcontroller to collect light intensity data from the user's fingertip. This 

data is transmitted to a remote server using FastAPI, where it is processed by a machine learning model 

using artificial neural networks (ANN). By analyzing the relationship between light absorption and glucose 

concentration, the ANN model estimates glucose levels, eliminating the need for invasive blood tests. This 

approach offers a pioneering alternative to traditional methods. Initial results demonstrate the system's real-

time glucose monitoring capability, although challenges such as sensitivity to external factors such as finger 

pressure are observed. These findings demonstrate the potential of integrating IoT technologies and 

machine learning to improve diabetes care by enabling more continuous, comfortable, and effective glucose 

monitoring. The proposed system in this study is a step forward in developing accessible and patient-

centered tools for diabetes management. 

Keywords – Internet of Medical Things (IoMT), IoT, Diabetes Management, Non-Invasive Glucose Monitoring, Artificial Neural 

Networks (ANN), Smart Healthcare Systems. 

I. INTRODUCTION 

Diabetes mellitus is a chronic condition affecting millions worldwide, requiring patients to monitor their 

blood glucose levels regularly to maintain optimal health and prevent complications [1, 2]. According to 

the World Health Organization (WHO), the number of people with diabetes increased from 200 million in 

1990 to 830 million in 2022. There is a significant risk for kidney failure, cardiovascular diseases, and 

neuropathy if the blood glucose levels are not in desired levels [1].  Traditional glucose monitoring methods, 

such as finger-prick blood tests, involve invasive procedures that can cause significant and unpleasant 

effects [4]. Patients perform these tests multiple times a day (at least three times a day), making long-term 
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adherence to glucose monitoring a challenge. According to a study published in the Journal of Diabetes 

Nursing, frequent finger-prick testing is associated with pain and discomfort, which can lead to reduced 

adherence to glucose monitoring regimens [5]. Additionally, the Diabetes Care Community highlights that 

the pain associated with blood glucose monitoring can deter patients from testing as often as recommended. 

Additionally, there is a cost to the economy for every blood strip that is used, these factors impacting 

effective diabetes management [6]. To address these issues, advancements in technology have led to the 

creation of newer devices, such as continuous glucose monitors (CGMs) [7] and IoMT-enabled non-

invasive systems [8-10]. These devices reduce the physical pain associated with traditional methods and 

alleviate the emotional burden of constant invasive testing. By providing a more comfortable and user-

friendly experience, these innovations are transforming diabetes care, promoting better adherence, and 

improving the overall quality of life for patients. As a result, there is a growing demand for innovative, non-

invasive alternatives that can improve the quality of life for individuals with diabetes.   

The rapid advancement of technology, particularly in the field of the Internet of Things (IoT), has opened 

new possibilities for developing patient-friendly healthcare solutions. IoT allows the integration of smart 

devices to collect, process, and transmit real-time data, making it a powerful tool for healthcare applications.  

This study presents a novel IoMT-enabled non-invasive glucose monitoring system designed to address 

the challenges of traditional approaches. The proposed system uses a light sensor and an ESP32 

microcontroller to collect light intensity data, which is then transmitted to a remote server. The server 

processes this data using an artificial neural network (ANN) model to predict glucose levels with high 

accuracy. This approach eliminates the need for invasive procedures, offering a user-friendly and reliable 

alternative for managing diabetes.  

The remainder of this paper is structured as follows. Section 2 reviews the related work and provides a 

background on IoT and ANN-based glucose monitoring technologies. Section 3 details the design and 

implementation of the proposed IoMT-enabled non-invasive glucose monitoring system, including its 

hardware components, data collection processes, and ANN-based prediction model. Section 4 presents the 

experimental results, evaluates the system's performance, and discusses the challenges and limitations 

encountered during the study. Finally, Section 5 concludes the paper by summarizing the key findings and 

offering recommendations for future research to further enhance the system's accuracy and applicability. 

 

II. RELATED WORKS 

The evolution of the IoT into the Internet of Medical Things (IoMT) represents a significant 

advancement, as IoMT integrates IoT principles with healthcare technologies, enabling smart, connected 

medical devices to enhance patient monitoring, diagnosis, and treatment outcomes. In this context, IoMT-

based systems have shown promise in addressing the limitations of traditional glucose monitoring methods. 

By leveraging IoT, it is possible to create continuous, non-invasive glucose monitoring systems that provide 

real-time insights while reducing patient discomfort. Building on this potential, Tuan Nguyen Gia et al. 

proposed an IoT-based continuous glucose monitoring system that emphasizes energy efficiency and real-

time monitoring capabilities. Their work integrates wearable sensors and RF communication protocols, 

enabling remote healthcare while addressing power consumption challenges [8]. Similarly, Hossain et al. 

explored factors influencing the adoption of continuous glucose monitoring devices, emphasizing 

trustworthiness and perceived value as key drivers for user acceptance. Their findings highlight the 

importance of user-centric designs to promote the adoption of IoT-enabled healthcare solutions [9]. 

Fernández-Caramés et al. expanded the scope by integrating blockchain and fog computing technologies 

into CGM systems, ensuring data security, real-time responses, and user incentives for data sharing [10]. 

These advancements [8-10] collectively showcase how IoT innovations are transforming traditional glucose 

monitoring into more accessible, efficient, and patient-friendly systems.  

Notably, Alarcón-Paredes et al. (2019) developed an IoT-based non-invasive glucose monitoring system 

using a Raspberry Pi, a visible laser beam, and a camera to capture fingertip images. Their system processed 

the data using an ANN implemented on a Flask microservice with TensorFlow libraries, achieving a mean 
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absolute error of 10.37% and 90.32% of estimated glucose values falling within Zone A of the Clarke Error 

Grid [11]. This study highlighted the potential of combining IoT and ANN for non-invasive glucose 

monitoring but also indicated the need for improvements in accuracy and user convenience. 

Similarly, Valero et al. (2022) conducted a pilot study on a non-invasive glucose monitoring prototype 

using laser technology based on near-infrared spectroscopy. Their system utilized a Raspberry Pi, a portable 

camera, and a visible light laser to capture images when the laser passed through skin tissue. An ANN 

model estimated glucose concentration from the absorption and scattering of light in the skin. The prototype 

achieved an accuracy of 79% using finger images and 62% using ear images when compared to commercial 

glucometers [12]. While promising, the study acknowledged limitations such as small dataset size, the 

impact of external factors like skin color and thickness, and the need for improved prototype design for 

easier placement. 

The fundamentals of ANN in processing biomedical data are introduced, showcasing how ANNs can 

model complex relationships between input data and glucose levels. This section highlights a gap in 

noninvasive glucose monitoring systems regarding the need for increased accuracy, robustness to external 

factors, and more user-friendly devices. This work aims to address these challenges by using a light sensor 

and ESP32 microcontroller for data acquisition and developing an optimized ANN model for improved 

performance and usability. 

III. SYSTEM DESIGN AND IMPLEMENTATION 

The design and implementation of the proposed IoMT-enabled non-invasive glucose monitoring system 

were driven by the need to address the limitations of traditional glucose monitoring methods. This section 

outlines the development process, which integrates principles of light absorption and advanced technologies 

to enhance accuracy and user convenience. The system leverages the Beer–Lambert Law to relate light 

absorption to glucose concentration in the blood, using a 650 nm laser light source, an ESP32 

microcontroller, and a TSL2591 light sensor for precise data acquisition. 

Key considerations in the design include hardware integration to ensure consistent measurement 

conditions and a robust data collection process that accounts for variations in finger placement and 

environmental conditions. Furthermore, the implementation incorporates an artificial neural network 

(ANN)-based model for processing collected data and predicting glucose levels. This approach combines 

IoT and machine learning technologies to create a reliable, non-invasive alternative for diabetes 

management. The following subsections detail the hardware components, data collection methodology, and 

ANN model development. 

The Beer–Lambert Law relates the absorption of light to the properties of the material through which the 

light is traveling. It states that the absorbance of a material is directly proportional to its concentration the 𝑐, 

the path length , and the molar absorptivity 𝜀: 

𝐴 = 𝜀 × 𝑐 × 𝑙 (1) 

In the context of this system, the laser light passing through the fingertip is absorbed by glucose 

molecules in the blood. By measuring the intensity of transmitted light 𝐼, and knowing the incident light 

intensity 𝐼0,  the absorbance can be calculated: 

𝐴 = log
10

(
𝐼0

𝐼
) 

(2) 

By applying the Beer–Lambert Law, changes in glucose concentration can be inferred from variations 

in light absorption. 
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A. Hardware Components 

Figure 1 illustrates the system architecture of the proposed IoMT-enabled non-invasive glucose 

monitoring system. The proposed IoMT-enabled non-invasive glucose monitoring system employs three 

primary hardware components to ensure accurate and reliable data acquisition. The 650 nm 5 mW laser 

light source acts as the primary light source, emitting a focused red laser beam that effectively penetrates 

skin tissue. This wavelength is selected for its sensitivity to glucose concentration, enabling precise 

measurements of light absorption. The ESP32 microcontroller, a low-cost and low-power system-on-chip 

with integrated Wi-Fi and Bluetooth capabilities, serves as the central processing unit. It handles data 

acquisition from the light sensor and facilitates communication with the remote server. The TSL2591 light 

sensor, known for its high dynamic range and exceptional sensitivity, measures both infrared (IR) and 

visible light to detect transmitted light intensity variations caused by blood glucose levels. These 

components are integrated in a configuration optimized for consistent measurements, where the laser light 

source is mounted in a setup resembling a fingerprint scanner, and the TSL2591 sensor is positioned beneath 

the fingertip to capture transmitted light. The ESP32 microcontroller processes the collected data and 

transmits it to a remote server via FastAPI for further analysis. This integrated hardware system forms the 

foundation of the glucose monitoring solution, ensuring accurate and user-friendly operation.  

 

 
Figure 1: System architecture for IoMT-enabled non-invasive glucose monitoring 

B. Data Collection 

The data collection period took 1 week. Multiple measurement sessions were performed at various times 

throughout the day to capture fluctuations in glucose levels. To account for variability and minimize 

systematic errors, the patient's finger was pressed on the reader at different angles and pressures. 

Additionally, measurements were taken under varying ambient light conditions to assess the system's 

robustness against environmental interferences. In total, 100 tests were conducted, each involving a 10-

minute measurement period aligned with blood strip tests for reference glucose level determination. 
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(a) (b) 

Figure 2: Proposed hardware setup - (a) General view of the system and (b) Finger placement for data collection 

Figure 2 gives an overview of the proposed hardware setup for the IoMT-enabled non-invasive glucose 

monitoring system, including the general configuration (Figure 2(a)) and the finger placement process for 

data collection (Figure 2(b)). The system is designed to capture light absorption data effectively, which 

correlates with glucose concentration in the blood. In Figure 2(a), the general view of the hardware shows 

the placement of the key components: the 650 nm laser light source and the TSL2591 light sensor. The 

laser source emits a focused red beam at a wavelength of 650 nm, which passes through the user's fingertip. 

The light sensor, positioned directly beneath the finger, measures the transmitted light intensity, capturing 

variations in both visible and infrared light. This configuration ensures precise and consistent data 

acquisition, which is critical for accurate glucose level prediction. Figure 2(b) illustrates the finger 

placement process during data acquisition. The user places their fingertip directly over the laser light path, 

ensuring the light beam passes through the tissue. The sensor detects the transmitted light intensity, which 

varies based on the blood's optical properties influenced by glucose concentration. Proper finger placement 

is essential to minimize external factors, such as inconsistent pressure or alignment, which could affect the 

sensor readings.  

The data collection process consists of three steps. First, during lux measurement, the laser was directed 

through the fingertip, and the TSL2591 sensor recorded the intensity of the transmitted visible and infrared 

(IR) light. At the same time, blood glucose levels were measured using a standard glucometer (blood strip 

test) to obtain accurate reference values. Finally, the ESP32 microcontroller logged the sensor readings 

along with timestamps and transmitted the collected data to a remote server via FastAPI. Figure 3 illustrates 

the data flow in the IoT-enabled non-invasive glucose monitoring system, showcasing the interaction 

between the system’s components and the progression of data from input to prediction. The process begins 

with finger placement on the device, where a 650 nm laser light source emits a focused beam through the 

fingertip. This light beam interacts with the tissue and blood, and the transmitted light is captured by the 

TSL2591 light sensor, which processes the light and records its intensity. The processed light data is then 

transmitted to the ESP32 microcontroller, which acts as the central unit for data collection and 

communication. The ESP32 formats and forwards the light intensity data wirelessly to the FastAPI server. 

On the server side, this data is analyzed and processed using a trained artificial neural network (ANN) 

model to predict the blood glucose levels. 
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Figure 3: Data flow diagram of the IoMT-enabled non-invasive glucose monitoring system 

Table 1 provides an example of the data collected from the proposed glucose monitoring system during 

measurement sessions. This table includes three key variables: visible light intensity, infrared (IR) light 

intensity, and the corresponding blood glucose levels (measured in mg/dL). This table showcases the raw 

data collected from the sensor, illustrating how visible and infrared light intensities are correlated with 

reference glucose levels to enable machine learning-based glucose prediction. 

Table 1: Sample Data Collected from Sensor Measurements 

Visible Light Intensity IR Light Intensity Blood Glucose (mg/dL) 

6179.0950 31708.8739 120 

6186.5002 31701.4696 150 

… … … 

 

C. ANN-Based Prediction Model 

Figure 4 demonstrates the artificial neural network (ANN) architecture used in the proposed IoMT-

enabled non-invasive glucose monitoring system for predicting blood glucose levels. The model of our 

glucose predictor ANN is made up of three primary layers: the input layer, a single hidden layer, and the 

output layer. The Input Layer comprises two nodes, representing the two prediction features: visible light 

intensity and infrared (IR) light intensity. These features are derived from the transmitted light 

measurements obtained by the TSL2591 light sensor after the 650 nm laser beam reflects from the patient’s 

finger. The Hidden Layer contains ten neurons with activation functions that model the non-linear 

relationships between the input features and the glucose levels. This layer is designed to extract patterns 

and correlations in the light absorption data, enabling the ANN to process complex relationships effectively. 

The Output Layer contains a single neuron that generates the predicted blood glucose level as its output. 

The ANN is trained using supervised learning techniques, where the actual glucose levels obtained from 

blood strip tests are used as ground truth during the training process. The ANN architecture depicted in 

Figure 4 demonstrates a streamlined approach to glucose prediction, balancing complexity and 

computational efficiency. By utilizing light intensity data and advanced neural network techniques, the 

system provides an accurate and non-invasive alternative to conventional glucose monitoring methods. 
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Figure 4: Artificial neural network (ANN) architecture for glucose level prediction 

An artificial neural network (ANN) model was developed using PyTorch libraries to predict blood 

glucose levels based on the collected light intensity data. The model, encapsulated within a custom class 

named Glucose Predictor, comprises an input layer that accepts two features: visible light intensity and 

infrared (IR) light intensity. These inputs are processed by a hidden layer consisting of ten neurons equipped 

with activation functions to capture nonlinear relationships within the data. Finally, the output layer 

generates the predicted glucose level. This architecture enables the ANN to effectively learn and model the 

complex relationship between light absorption measurements and blood glucose concentrations, thereby 

providing accurate and reliable glucose level estimations. 

The model training process is designed with several key steps to ensure optimal performance and 

accurate predictions. Initially, data preprocessing is performed, where the input features (visible and 

infrared light intensities) and target values (blood glucose levels) are normalized to improve the 

convergence rate during training. The dataset is divided into training and validation sets to evaluate the 

model's performance and to prevent overfitting. During training, the model is optimized over several epochs 

using the mean squared error (MSE) as the loss function, and weights are updated with the Adam optimizer. 

Finally, the model's performance is assessed on the validation set using metrics such as MSE to quantify 

prediction accuracy and correlation coefficients to measure the relationship between predicted and actual 

glucose levels. 

 

IV. EXPERIMENTAL RESULTS AND SYSTEM EVALUATION 

The model's performance was initially intended to be assessed using three primary metrics: Mean 

Squared Error (MSE), Correlation Coefficient (R), and Bland-Altman Analysis. MSE measures the average 

squared difference between the predicted and actual glucose levels, providing insight into the model's 

prediction accuracy. The Correlation Coefficient (R) indicates the strength and direction of the linear 

relationship between the predicted and actual glucose values, reflecting the model's ability to capture trends 

in the data. Bland-Altman Analysis was planned to assess the agreement between the ANN predictions and 

the reference glucose measurements by analyzing the differences versus the averages of the two methods. 

During the system validation phase, significant challenges emerged that hindered the effective 

evaluation of the ANN model's performance. The model output demonstrates high sensitivity to finger 

placement variations, leading to substantial inconsistencies in absorbance measurements. These variations 

made it difficult to obtain reliable and consistent data, thereby impeding the model's ability to learn and 

generalize the relationship between light absorption and glucose concentration accurately. Environmental 

factors, such as fluctuating ambient light conditions, further complicated the calculation of absorbance, 

introducing additional noise into the measurements. The ANN model did not achieve the desired predictive 

performance, as evidenced by elevated MSE values and low correlation coefficients between predicted and 

actual glucose levels. The variability in sensor outputs due to finger placement and other light conditions 

made it clear that the system's current configuration was inadequate for reliable glucose prediction. 

Hidden Layer

Input Layer Output Layer
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Several challenges and limitations were identified throughout the study, which impacted the system's 

performance and reliability. The system showed high sensitivity to finger placement, where variations in 

angles and pressures introduced significant inconsistencies in absorbance measurements, leading to 

unreliable glucose predictions. The dataset used for model training, sourced from a single Type 1 diabetic 

patient over one week, lacked diversity, limiting the ANN model's ability to generalize across different 

finger placements and environmental conditions. Additionally, the TSL2591 sensor demonstrated high 

sensitivity to slight changes in finger pressure and positioning, resulting in measurement noise that 

compromised data accuracy. Environmental interferences, such as fluctuations in ambient light conditions, 

further complicated absorbance calculations and introduced additional errors. Finally, the ANN model 

struggled to effectively learn from the noisy and inconsistent data, leading to poor predictive performance 

and low correlation with actual glucose levels. These challenges highlight the need for improved sensor 

stability, more controlled measurement conditions, and a more diverse and extensive dataset to enhance 

the system's accuracy and reliability in non-invasive glucose monitoring. 

 

V. CONCLUSION AND FUTURE WORK 

The proposed IoMT-enabled non-invasive glucose monitoring system applies the Beer–Lambert Law 

to estimate glucose concentration by measuring light absorption through the fingertip. The study involved 

collecting data from a Type 1 diabetic patient over one week, resulting in 100 tests under varying conditions. 

While initial results were inconclusive due to sensor sensitivity, limited dataset diversity, and measurement 

inconsistencies, the integration of a Kalman filter demonstrated potential for enhancing prediction accuracy 

by minimizing errors and providing more reliable glucose level estimations with a one-minute waiting time. 

To improve the proposed system, several future enhancements are recommended. Expanding the dataset 

is critical, which includes increasing the participant pool to collect data from a more diverse group of 

patients and extending the data collection period to capture a wider range of glucose level fluctuations for 

improved model generalization. Hardware improvements could affect the efficiency of the system, such as 

redesigning the finger placement mechanism to ensure consistent positioning and pressure through 

ergonomic fixtures, as well as incorporating shielding or enclosures to minimize ambient light interference 

and maintain consistent measurements. Sensor optimization should be explored by identifying alternative 

sensors or wavelength combinations that are less sensitive to external factors and more specific to glucose 

absorption. On the modeling side, advanced artificial neural network (ANN) architectures, such as 

convolutional neural networks or ensemble methods, can be implemented to better capture complex patterns 

in the data. Additional features, such as temperature or heart rate, could be incorporated to improve 

prediction accuracy, and Kalman filter parameters can be optimized for better noise reduction. Finally, 

extensive clinical trials are necessary to validate the system's efficacy and robustness across diverse 

conditions and populations. Addressing these aspects will enhance the reliability and practicality of non-

invasive glucose monitoring solutions, contributing significantly to improved diabetes management. 
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