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Abstract – In the field of nonlinear wave dynamics, this comprehensive study explores advanced 

computational methodologies for solving complex evolution equations. Utilizing the conformable Laplace 

decomposition method, we present a sophisticated mathematical framework for examining complex wave 

transformation mechanisms. By integrating fractional calculus principles with innovative decomposition 

techniques, our research reveals profound insights into the behavior of nonlinear evolutionary systems. 

The study demonstrates how computational strategies can effectively decode wave propagation 

characteristics, offering researchers a powerful tool for understanding complex dynamic processes across 

various scientific domains.   
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I. INTRODUCTION 

 

The concept of fractional calculus, encompassing non-integer order differentiation and integration, has 

roots that can be traced back to the early foundations of traditional integer-order calculus. While much of 

the theoretical development related to fractional calculus was completed by the end of the 19th century, it 

is only within the last century that significant advancements in its engineering and scientific applications 

have emerged [1,2]. In certain cases, the computational methods have been adapted to better align with 

physical phenomena [3]. The application of fractional derivatives in modeling real-world problems has 

become increasingly widespread in recent decades. Notable examples include the use of fractional 

calculus in seismic analysis, fluid dynamic models incorporating fractional derivatives, and the 

characterization of viscoelastic material properties, among others. 

In the literature on fractional analysis, various definitions have been proposed to generalize the concept of 

differentiation to fractional orders, including the Riemann–Liouville, Grünwald–Letnikov, Caputo, and 

Generalized Functions approaches. One of the more recent contributions to this field is the introduction of 

the conformable derivative in 2014, which provides an alternative framework for understanding fractional 

differentiation, building upon the foundational theories of earlier methods. This derivative has gained 
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attention due to its distinct properties and applicability to certain types of fractional differential equations, 

offering researchers a novel perspective in the study of complex systems governed by non-integer order 

dynamics [4,5]. 

Nonlinear differential equations, particularly those of fractional order, are addressed through various 

sophisticated numerical and analytical methods. Researchers employ multiple advanced techniques for 

approximating solutions, including the tanh method, Padé approximation, Adomian decomposition 

method, and variational iteration method, conformable Laplace decomposition method (CLDM), etc. [6-

9]. CLDM is a hybrid method obtained by combining the conformable Laplace transform and the 

Adomian decomposition method. It represents a particularly effective approach for solving fractional-

order nonlinear differential equations. In this context, we will demonstrate an approximate solution to the 

Kupper-Schmidt equation utilizing the CLDM methodology [10]. 

 

II. MATERIALS AND METHOD 

To capture the refined mathematical behavior of fractional-order derivatives, we need to give the 

following definition and theorems.  

Definition 1.1.  

Let ℎ be a function with domain [0, ∞) → and range ℝ. For 𝑡 > 0 and 𝜃 ∈ (0,1) , the conformable 

𝜃- order fractional derivative of ℎ is given by:  

                                                        𝐷𝑡
𝜃(ℎ)(𝑡) = lim

𝑎→0

ℎ(𝑡+𝑎𝑡1−𝜃)−ℎ(𝑡)

𝑎
 .                                                       (1) 

Additionally, 𝐷𝑡
𝜃(ℎ)(0) = lim

𝑡→0
𝐷𝑡

𝜃(ℎ)(𝑡)  if ℎ is 𝜃 -differentiable in(0, 𝑝)  for some 𝑝 > 0 and if 

 lim (𝑡 → 0) , 𝐷𝑡
𝜃(ℎ)(𝑡) exists, as established by [5]. 

Theorem 1.1.  

Assume 𝑠, ℎ be 𝜂-differentiable functions at some point 𝑡 > 0 and 𝜂 ∈ (0,1]. Then [5] 

1. 𝐷𝑡
𝜂(ℎ𝑝 + 𝑠𝑘) = 𝑝 𝐷𝑡

𝜂(ℎ) + 𝑘𝐷𝑡
𝜂(𝑠)  for any real 𝑘, 𝑝 constants.  

2. 𝐷𝑡
𝜂(𝑑) = 0 for any constant function 𝑠(𝑡) = 𝑑 

3. 𝐷𝑡
𝜂(ℎ𝑠) = 𝐷𝑡

𝜂(ℎ)𝑠 + ℎ 𝐷𝑡
𝜂(𝑠)   

4. 𝐷𝑡
𝜂

(ℎ

𝑠
) =

𝐷𝑡
𝜂(ℎ)𝑠−ℎ 𝐷𝑡

𝜂(𝑠) 

𝑠2
  

5. 𝐷𝑡
𝜂(𝑡𝑚) = 𝑚𝑡𝑚−𝜂  for any real 𝑚 

6. 𝐷𝑡
𝜂(ℎ𝑜𝑔) = ℎ′(𝑠(𝑡))𝐷𝑡

𝜂(𝑠)(𝑡)  when ℎ is differentiable at 𝑠(𝑡)   

Definition 1.2.   

Consider a function w∶ [𝑑, ∞) → ℝ with 𝑎 ∈ ℝ and 0 < 𝜂 ≤ 1. Then 𝜂-order conformable For the 

function 𝑤, Laplace transform is defined as [11] 

  ℒ𝜂
𝑑[𝑤(𝑡)](𝑠) = ∫ 𝑒

−𝑠
(𝑡−𝑑)𝜂

𝜂
∞

𝑑
 𝑤(𝑡)𝑑𝜂(𝑡, 𝑑) = ∫ 𝑒

−𝑠
(𝑡−𝑑)𝜂

𝜂 𝑤(𝑡)(𝑡 − 𝑑)𝜂−1𝑑𝑡
∞

𝑑
                     (2) 

Method Algorithm  

Having established the theoretical context for fractional-order nonlinear differential equations, we 

now turn our attention to the detailed algorithmic framework of the CLDM.  
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Consider the following fractional  PDE  

  𝐷𝑡
𝑟 𝜐 + 𝑆(𝜐) + 𝑁(𝜐) = 𝑝(𝑥, 𝑡)      0 < 𝑟 ≤ 1, 𝑥 > 0, 𝑡 > 0               (3) 

with the initial values 

𝜐(𝑥, 0) = 𝑚(𝑥)                               (4) 

where   𝐷𝑡
𝑟 linear conformable sense derivative operators, 𝑆 represents the remaining linear terms, 𝑁 

represents the nonlinear terms and 𝑚 represents the initial vaue. 

If the CLT is applied to Eqn.(5), followed by the application of the inverse CLT with initial values 

                       𝜐 = ℒ𝑟
−1[

1

𝑠
(𝜐(𝑥, 0) + ℒ𝑟[𝑝])] − ℒ𝜂

−1[
1

𝑠
(𝑆(𝜐))] − ℒ𝑟

−1[
1

𝑠
(𝑁(𝜐))]             (5) 

is obtained. 

According to the Adomian Decomposition Method (ADM); the solution 𝜐, nonlinear terms 

𝑁(𝑥, 𝑡) and Adomian polynomials 𝐵𝑘 are respectively represented as [12-14] : 

       𝜐(𝑥, 𝑡) = ∑ 𝜐𝑛
∞
𝑛=0                                                    (6) 

𝑁(𝜐(𝑥, 𝑡)) = ∑ 𝐵𝑛
∞
𝑛=0                             (7)    

               𝐵𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [𝑁(𝜐0 + ∑ 𝜆𝑖𝜐𝑖
𝑛
𝑖=1 ]𝜆=0   ,   𝑛 = 0,1,2, …           (8) 

Substituting these series representations into the Eqn. (5), an iterative algorithm is obtained as : 

                𝜐0 = ℒ𝑟
−1[

1

𝑠
(𝜐(𝑥, 0) + ℒ𝑟[𝑝])]                     (9) 

                𝜐𝑛+1 = −ℒ𝑟
−1[

1

𝑠
(𝐻(𝜐𝑛))] − ℒ𝜂

−1[
1

𝑠
(𝑃(𝜐𝑛))              (10) 

By calculating the desired number of 𝜐𝑛 terms, approximate analytical solutions for 𝜐(𝑥, 𝑡) can be 

found from Eqn. (9)  and Eqn. (10).  

The key points here are the use of the conformable Laplace transform to convert the differential 

equation to an algebraic form, the simplification using the differential property, the representation of the 

solution as an infinite series using Adomian Polynomials, and the development of the iterative algorithm 

to calculate the solution components. 

 

III. RESULTS AND DISCUSSION 

In this section, we demonstrate the efficiancy of the CLDM by implementing a comprehensive 

numerical investigation. We will systematically apply the proposed methodology to a representative 

mathematical model, providing visual representations and comparative analyses through meticulously 

constructed graphical illustrations. 

Example 2.1.  

Consider the given non-linear conformable fractional Fokker Planck PDE below [15] 

     
𝜕𝑟𝜐

𝜕𝑡𝜂 + 45𝜐2 𝜕𝜐

𝜕𝑥
− 15𝜎

𝜕𝜐

𝜕𝑥

𝜕2𝜐

𝜕𝑥2 − 15𝜎𝜐
𝜕3𝜐

𝜕𝑥3 +
𝜕5𝜐

𝜕𝑥5 = 0        ,     0 < 𝑟 ≤ 1                        (11) 

initial value 

                                                        𝜐(𝑥, 0) = 
1

4
𝑐2𝜆2𝑠𝑒𝑐ℎ2(

𝜆𝑐𝑥

2
)+

1

12
𝑐2𝜆2                                   (12) 

with the exact solution of  

                                                  𝜐(𝑥, 𝑡) = 
1

4
𝑐2𝜆2𝑠𝑒𝑐ℎ2(

𝜆

2
(

𝜀𝑡𝑟

𝑟
+ 𝑐𝑥)) +

1

12
𝑐2𝜆2                       (13) 
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If the CLT is applied to Eqn.(14), followed by the application of the inverse CLT with the initial values  

                                   𝜐 = ℒ𝑟
−1 [

1

𝑠
(

1

4
𝑐2𝜆2𝑠𝑒𝑐ℎ2 (

𝜆𝑐𝑥

2
) +

1

12
𝑐2𝜆2)] − ℒ𝜂

−1 [
1

𝑠
(

𝜕5𝜐

𝜕𝑥5)] 

                                         −ℒ𝑟
−1[

1

𝑠
(45𝜐2 𝜕𝜐

𝜕𝑥
− 15𝜎

𝜕𝜐

𝜕𝑥

𝜕2𝜐

𝜕𝑥2 − 15𝜎𝜐
𝜕3𝜐

𝜕𝑥3)]                                                     (14) 

is obtained. 

Substituting the series representations Eqn.(6)-Eqn.(8) into Eqn.(14), the following iterative algorithm is 

obtained. 

                                                𝜐0 =
1

4
𝑐2𝜆2𝑠𝑒𝑐ℎ2 (

𝜆𝑐𝑥

2
) +

1

12
𝑐2𝜆2                         (15) 

                                            𝜐𝑛+1 = −
675

8
𝑐7𝜆7𝑡𝑎𝑛ℎ6 (

𝜆𝑐𝑥

2
) + ⋯ −

45

16𝑟𝑛 𝑐7𝜆7𝑡(𝑛+1)𝑟                              (16) 

 
                                                               

Hence the 4-step approximate CLDM solution of 𝜐(𝑥, 𝑡) is obtained as 

                           𝜐(𝑥, 𝑡)𝐶𝐿𝐷𝑀4
=

1

4
𝑐2𝜆2𝑠𝑒𝑐ℎ2 (

𝜆𝑐𝑥

2
) +

1

12
𝑐2𝜆2 

                                                    −
675

8𝑟
𝑐7𝜆7𝑡𝑟𝑡𝑎𝑛ℎ6 (

𝜆𝑐𝑥

2
) + ⋯ −

45

16𝑟
𝑐7𝜆7𝑡𝑟                                                (17) 

                                                    +
315

512𝑟2
𝑐12𝜆2𝑡𝑎𝑛ℎ12𝑡2𝑟 (

𝜆𝑐𝑥

2
) − ⋯ −

1113

4096𝑟2
𝑐12𝜆12𝑡2𝑟 

                                                    +
60810750

6144𝑟3
𝑐17𝜆17𝑡3𝑟𝑡𝑎𝑛ℎ17 (

𝜆𝑐𝑥

2
) − ⋯ −

66825

32768𝑟3
𝑐17𝜆17𝑡3𝑟 
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Figure 1. Error between 4-step CLDM solution and exact solution of 𝜐(𝑥, 𝑡) when 𝑟 = 0.2  with  0 ≤ 𝑡 ≤ 10 and 0 ≤ 𝑥 ≤ 10 

 

  

Figure 2. Error between 4-step CLDM solution and exact solution of 𝜐(𝑥, 𝑡) when 𝑟 = 0.7  with  0 ≤ 𝑡 ≤ 10 and 0 ≤ 𝑥 ≤ 10 
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Figure 3. Error between 4-step CLDM solution and exact solution of 𝜐(𝑥, 𝑡) when 𝑟 = 1.0 with 0 ≤ 𝑡 ≤ 10 and 0 ≤ 𝑥 ≤ 10 

 

In Figure1, Figure2 and Figure3, the 3𝐷 surface plots show the error difference between the exact 

solution and the 𝐶𝐿𝐷𝑀 approximation  𝜐(𝑥, 𝑡) − 𝜐(𝑥, 𝑡)𝐶𝐿𝐷𝑀 are given for different 𝑟 values.  

• For 𝑟 = 0.2 ∶ Shows minimal error concentration near the boundaries 

• For 𝑟 = 0.7 ∶ Demonstrates improved accuracy across the domain 

• For 𝑟 = 1.0 ∶ Exhibits the best accuracy, confirming the method's consistency with classical 

calculus 

Here it is aimed to show how the change in derivative order affects the solution. The error magnitudes 

remain consistently small (order of 10−14 ) across all cases, demonstrating remarkable accuracy of the 

CLDM approach for both fractional and integer-order derivatives. The smooth error surfaces indicate 

stable numerical behavior of the method throughout the solution domain 

IV. CONCLUSION 

In this study, we investigated the Kaup-Kupershmidt equation, which plays a crucial role in modeling 

nonlinear wave phenomena in fluid dynamics and plasma physics. The CLDM method was successfully 

applied to solve this equation, demonstrating remarkable accuracy with just a few terms in the series 

solution. Our numerical results show that the method is highly efficient, with error margins in the order of 

10−14. The comparison between exact and approximate solutions for different values of α validates the 

reliability of our approach, particularly showing that the method maintains its effectiveness as α 

approaches both fractional and integer orders. The three-dimensional visualizations and error analysis 

confirm that CLDM provides a powerful tool for analyzing such complex equations. This work 

contributes significantly to the field of fractional differential equations and offers a promising framework 

for solving similar nonlinear problems in mathematical physics and engineering applications. 
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