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Abstract – The increasing reliance on renewable energy emphasizes the critical need for optimizing 

photovoltaic (PV) systems to achieve maximum energy output. Traditional Maximum Power Point 

Tracking (MPPT) methods, such as Perturb and Observe (P&O), are commonly used due to their 

simplicity. However, they encounter challenges like oscillations around the Maximum Power Point 

(MPP) and slower adaptation under dynamic environmental conditions. This study addresses these 

limitations by evaluating AI-based MPPT techniques, particularly Neural Networks (NN), in comparison 

to the P&O method, highlighting their superior adaptability and efficiency. Using MATLAB simulations, 

the study analyzes the performance of these methods in an independent PV system featuring a solar array, 

buck-boost converter, and variable resistive load. Results reveal that AI-based MPPT approaches, 

especially Neural Networks, deliver smoother power outputs, faster convergence to the MPP, and reduced 

stress on PV components. By leveraging real-time and historical data, these techniques demonstrate 

enhanced predictive capabilities, making them highly suitable for regions with fluctuating environmental 

conditions. 

Keywords – Photovoltaic (PV) Systems, Perturb And Observe (P&O) Method, Neural Networks (NN), Maximum Power Point 

Tracking (MPPT), Buck-Boost Converter. 

 

I. INTRODUCTION 

The increasing reliance on renewable energy sources has underscored the importance of solar energy as a 

sustainable power generation option. Photovoltaic (PV) systems, known for their environmental benefits 

and accessibility, face challenges in achieving maximum energy output due to their dependence on 

environmental factors such as sunlight intensity and temperature fluctuations. Addressing these 

challenges requires effective Maximum Power Point Tracking (MPPT) methods that optimize the energy 

extraction process. Among conventional techniques, the Perturb and Observe (P&O) method has gained 

widespread popularity for its simplicity and straightforward implementation. By iteratively adjusting the 

PV system's voltage and monitoring changes in power output, the P&O method enables the system to 

converge toward the Maximum Power Point (MPP) [1]. 
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However, traditional MPPT methods like P&O exhibit limitations, including oscillations around the MPP 

and slower convergence rates, particularly under rapidly changing environmental conditions. These 

limitations have spurred interest in Artificial Intelligence (AI)-based MPPT techniques, which leverage 

advanced algorithms to improve tracking efficiency and adaptability. Techniques such as Neural 

Networks (NN), Fuzzy Logic Controllers (FLC), and optimization methods like Particle Swarm 

Optimization (PSO) and Grey Wolf Optimization (GWO) have demonstrated superior performance by 

dynamically learning from real-time and historical data. These AI-driven approaches provide faster 

convergence, reduced steady-state oscillations, and enhanced robustness in dynamic environments [2][3]. 

However, their higher computational requirements and complex implementation processes pose 

significant challenges, particularly in resource-constrained settings [4]. 

Recent innovations have focused on addressing these challenges through hybrid approaches that combine 

the strengths of traditional and AI-based methods. For example, Long Short-Term Memory (LSTM) 

networks have emerged as a promising solution for capturing temporal dependencies in environmental 

data, enabling precise and adaptive MPPT under fluctuating conditions. Studies demonstrate that LSTM-

based systems outperform conventional methods like P&O in both tracking accuracy and response times, 

particularly in scenarios involving variable irradiance and temperature [5][6]. Furthermore, hybrid 

systems that integrate AI techniques with traditional methods are gaining traction as a practical solution, 

balancing performance improvements with manageable complexity [7].Given the typically low efficiency 

of PV modules—often below 17%—and their sensitivity to environmental conditions, MPPT systems 

play a critical role in optimizing power extraction. These systems not only address environmental factors 

such as temperature and irradiance but also consider electrical parameters like current and voltage to 

maximize PV performance [8][9].  

This paper aims to investigate and compare the performance of AI-based MPPT techniques with the P&O 

method for standalone PV systems. The study employs MATLAB simulations to evaluate both 

methodologies in terms of tracking accuracy, convergence speed, and overall impact on PV system 

operation. The simulated framework includes a PV array, a buck-boost converter, and a variable resistive 

load, with MPPT algorithms optimizing the converter’s duty cycle for maximum energy extraction. 

 

II. MATERIALS AND METHOD 

This section outlines the modeling approaches and methodologies employed to compare the effectiveness 

of AI-based MPPT and P&O methods. The objective is to evaluate the efficiency, response time, and 

adaptability of each technique under varying environmental conditions. 

1)  A. Photovoltaic (PV) System Model:  

Photovoltaic (PV) technology plays a vital role in renewable energy, converting sunlight is converted into 

electrical energy through the photovoltaic effect. A photovoltaic (PV) module, commonly referred to as a 

solar panel, consists of interconnected solar cells, usually made from silicon. These cells are arranged in 

parallel and series configurations to produce the desired voltage and current outputs. 

PV cells convert solar energy into electricity via a p-n junction. The single-diode model simplifies the 

system by representing the cell as an ideal current source with associated resistive losses. 
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Figure (1) Equivalent Circuit of a Photovoltaic Cell [9] 

The calculations for the PV cell, depicted in Figure (1), can be expressed as follows: 

 

 

 

𝐼𝑝ℎ = 𝐺(𝐼𝑠𝑐+∝  Δ𝑇)                               (1) 

Where: 

• Iph the Photocurrent. 

• G  Represents the solar irradiance or sunlight intensity 

• Isc the short circuit current 

• ∝ Temperature Coefficient of Current 

• ΔT Temperature Difference 

 

𝐼𝑟𝑠 =
𝐼𝑠𝑐

𝑒
[

𝑞𝑉𝑜𝑐
𝑁𝑠𝐾𝐴𝑇𝑜

−1]
                (2) 

                                 

• Irs Reverse Saturation Current  

• Voc Open-Circuit Voltage 

• Ns Number of Series-Connected Cells 

• q elementary charge (1.6 × 10−19𝐶) 

• k Boltzmann Constant (1.381 × 10−23𝐽/𝐾) 

• A Ideality Factor 

• To Absolute Temperature 

 

               

 

𝐼𝑠 =
𝑒
(
|𝑠|∆𝑇

𝑁𝑠𝐾𝑇𝐴
)
×𝐺[𝐼𝑠𝑐+∝∆𝑇]

(𝐺×
𝐼𝑠𝑐
𝐼𝑟𝑠

+1)

𝑇𝑜
𝑇 −𝑒

(
|𝛽|∆𝑇
𝑁𝑠𝐾𝑇𝐴

)
                   (3) 
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• Is Represents the saturation current or reverse saturation current 

• β Represents the temperature coefficient of voltage or open-circuit voltage. 

 

When substituting from Equation (1) into Equation (3), the resulting expression is derived as follows 

                     

                             𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒
(

𝑞𝑉

𝑁𝑠𝐾𝐴𝑇
)
− 1]   (4) 

 

Figure (2) illustrates Overall connections of the modeled equations described. In real-world applications, 

individual cells are connected in series and parallel combinations to form photovoltaic (PV) modules. 

Figure (2) Overall connections of the modeled equations 

B. Buck Boost Converter:  

A buck-boost current regulator is a type of power converter that adjusts the input voltage to a desired 

output voltage as illustrated in Figure (3), either increasing or decreasing it. This regulator is particularly 

useful when the input voltage fluctuates, but a stable output is required for the proper operation of 

electronic devices.  

The main function of the buck-boost regulator is to convert DC voltage from one level to another. It 

stabilizes the output voltage even when the input voltage varies, improving energy efficiency by 

minimizing loss during the conversion process. It also protects devices from damage caused by voltage 

fluctuations. 



International Journal of Advanced Natural Sciences and Engineering Researches 

558 
 

Figure  

Figure (3) illustrates the circuit diagram of the buck-boost converter. 

Buck-boost regulators operate in two methods: the boost method and the buck method. In buck mode, 

when the input voltage is greater than the required output, the regulator reduces the voltage by directing 

current through inductors and switches. In boost way, when the input voltage is less than needed, the 

regulator increases the output voltage by storing energy in the inductor. The process involves releasing 

the switch when it is open and closing it when it is shut.  

• When D<0.5D < 0.5, It operates in buck way when the input voltage is higher than the output level. 

• When D>0.5D > 0.5, it functions in boost mode, raising the output voltage above the input level.  

• For D=0.5D = 0.5, the output voltage matches the input voltage. 

These alternating states form the foundation of steady-state analysis, with the output voltage equation 

derived by equating variations in the input voltage and duty cycle.  

The buck-boost converter is extensively used across diverse applications, including portable electronics, 

renewable energy systems, automotive subsystems, and telecommunications. Its ability to regulate output 

voltage despite input fluctuations ensures stable power delivery, making it essential for efficient and 

reliable power systems 

The connection between the input voltage (Vin), output voltage (Vout), and other components is 

described by the following formulas.[10] 

𝑉𝑜 = −𝑉𝑠 (
𝐷

1−𝐷
)                                             (5) 

Where inductor current iL in the buck-boost converter is given by 

                     𝑖𝐿  =  
𝑉𝑠𝐷

𝑅(1−𝐷)2
                       (6) 

The minimum inductance required to maintain continuous conduction mode (CCM) is given by  
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𝐿𝑚𝑖𝑛 =
(1−𝐷)2𝑅

2𝑓
        (7)  

where f is switching frequency  

The output capacitor  can be determined using the following equation: 

    

   𝐶  =  
𝑉𝑜×𝐷

∆𝑉𝑜𝑅𝑓
          (8) 

 

2) C. MPPT Techniques 

A. Perturb and Observe (P&O): 

The Perturb and Observe (P&O) algorithm serves as a foundational MPPT technique. It works by 

incrementally adjusting the Photovoltaic voltage and monitoring changes in output power. If the power 

output rises, the algorithm continues to adjust in a single direction. Conversely, if power reduces, it 

reverses the direction of perturbation. 

In this method, the PV system periodically alters the voltage until the peak power is reached. When a 

voltage change results in increased power, the system persists in that direction; otherwise, it switches. 

This dynamic process allows the tracker to continuously search for the optimal operating point.[11] A 

flowchart illustrating the P&O algorithm is depicted in Figure (4). 

Traditional P&O methods, as modeled in MATLAB-Simulink, modify the duty cycle incrementally for 

performance assessment.  

The P&O algorithm is implemented as a baseline method. The algorithm perturbs the voltage and 

observes the change in power output. If the power increases, the perturbation continues in the same 

direction; if it decreases, the direction is reversed. 
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Figure [4] flowchart illustrating the P&O algorithm 

 

B. AI-Based MPPT Techniques: 

Neural Networks (NNs), modeled after biological neural systems, are advanced computational tools 

capable of learning complex input-output relationships. They serve as powerful predictors, particularly 

effective in applications like MPPT for PV systems. In this study, a NN was implemented using 

MATLAB. The network, featuring hidden layers with specific configurations of neurons, was trained to 

predict the required duty cycle adjustments when the PV system encounters rapid variations in solar 

irradiance. 

The data used for training the neural network was sourced from Karabuk a town in Turkey located at a 

latitude of 41.15°N and a longitude of 32.61°E. This dataset, sourced from NASA’s Prediction of 

Worldwide Energy Resources (POWER) database,[12] provided accurate historical and real-time 

environmental parameters specific to the region. By leveraging this diverse data, including solar 

irradiance, temperature, and PV output power, the neural network effectively captured the varying 

environmental conditions.  

To improve the system's predictive accuracy, the NN was trained using this region-specific data, enabling 

it to estimate the optimal operating point of the PV system under dynamic weather scenarios. The model’s 

performance was evaluated through regression analysis, comparing the NN’s predicted outputs with the 

target values. The results, as shown in Figure (5), demonstrated a perfect correlation, with both the 
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training and target datasets achieving a coefficient of determination (R= 1). This highlights the NN’s 

ability to accurately learn and predict duty cycle adjustments, ensuring optimal power extraction from the 

PV system despite changing environmental conditions. 

 

Figure (5) Performance plot of regression analysis for the training, testing, and validation datasets 

Figure (5) demonstrates the regression analysis for the training, testing, and validation datasets. This plot 

highlights the accuracy of the NN in predicting the duty cycle adjustments, ensuring that the PV system 

operates at maximum efficiency, even during periods of fluctuating solar irradiance.  

The Neural Network (NN) training performance depicted in Figure (6) directly supports the effectiveness 

of the ANN-based MPPT framework described. As the Mean Squared Error (MSE) decreases over 

epochs. The training error steadily decreases, demonstrating the NN's ability to learn and refine its 

adjustments for the Proportional-Integral-Derivative (PID) controller. The validation error reaches its 

lowest point at epoch 71, indicating the model's optimal performance and ability to generalize effectively. 

Although the test error is slightly higher, it still shows reasonable performance, highlighting the model's 

adaptability to unseen data. 

This well-trained NN minimizes oscillations in the PWM signals applied to the power converter, 

improving the system's performance. By ensuring low error and robust performance, the NN enables the 

MPPT framework to adapt effectively to changing weather conditions and obtain maximum power from 

the PV system, even in dynamic environments. 

. 
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Figure (6) Performance Plot 

III. RESULTS AND DISCUSSIONS 

This study evaluates the performance of two MPPT methods for photovoltaic systems, the Perturb and 

Observe (PO) method and a Neural Network (NN)-based approach. The NN model was trained using 

historical power prediction data from NASA, specific to Karabuk, Turkey, and implemented in MATLAB 

Simulink for system simulation. 

In Figure (8), the input power from the PV array is shown to vary with changing irradiance and 

temperature environment, as illustrated in the irradiance and temperature data in Figure (12). The PO-

based MPPT controller’s power output demonstrates oscillations around the MPP, which are 

characteristic of its iterative search process. These oscillations result in power loss due to continuous 

perturbations and adjustments. 
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Figure (8) Power Input and Power Output of P&O MPTT 

As shown in Figure (9), the PO algorithm introduces continuous perturbations in the input voltage, 

leading to oscillations, especially during environmental changes such as fluctuating irradiance and 

temperature. This trial-and-error nature can result in suboptimal transient performance. Although the 

output voltage stabilizes after finding the MPP, minor variations persist because the algorithm cannot 

completely eliminate oscillations. This reduces efficiency and increases stress on both the PV modules 

and the power converter. 

 

Figure (9) Power Input and Power Output of P&O MPTT 

In Figure (10), the input voltage and current from the PV array are shown to vary dynamically as the PO 

algorithm perturbs the operating point to locate the MPP. While the output voltage stabilizes to some 

extent, it continues to reflect the dynamic adjustments made by the controller, which indicates suboptimal 

steady-state performance. 
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Figure (10) Input Voltage and Input current of P&O MPTT 

The duty cycle of the PO algorithm, as shown in Figure (11), undergoes rapid fluctuations due to its 

continuous perturbation process. This high switching activity increases stress on the power converter and 

results in reduced overall efficiency. 

 

Figure (11) Power Input and Duty cycle of P&O MPTT 

Figure 12 represents the variations in temperature and irradiance over a specified time period for a 

photovoltaic system. The top graph displays the temperature profile, which remains relatively stable, 

while the bottom graph shows the irradiance levels, characterized by step-wise decreases. These 

parameters are essential for evaluating the performance of Maximum Power Point Tracking (MPPT) 

algorithms, as they significantly impact the energy output and efficiency of the PV system. The data is 

derived from conditions specific to Karabük, providing a realistic context for assessing the effectiveness 

of different MPPT methods. 



International Journal of Advanced Natural Sciences and Engineering Researches 

565 
 

Figure 
Figure (12) Temprature and Irradiance 

Conversely, when using irradiance and temperature data specific to Karabuk, the NN-based MPPT 

achieves more stable and consistent power input from the PV array. As shown in Figure (13), the power 

output is smoother and more closely aligned with the true MPP compared to the PO method, 

demonstrating the NN’s enhanced tracking efficiency through its predictive capabilities. 

 

Figure (13) Power Input and Power Output of NN MPTT 

In Figure (14), the input and output voltages and currents for the NN-based MPPT exhibit smooth and 

gradual transitions. This behavior highlights the NN’s ability to anticipate and adapt to environmental 

changes without relying on iterative adjustments. The smoother profiles help reduce stress on the PV 

modules and the power converter, improving the system's durability and overall performance. 
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Figure 
Figure (14) Input Voltage and output Voltage of NN MPTT 

As shown in Figure (15), the NN-based MPPT ensures minimal oscillations and smoother transitions in 

input voltage. Its predictive capability allows the system to quickly and accurately achieve the optimal 

operating point, maintaining stability even under dynamic environmental conditions. Similarly, the input 

current exhibits gradual and stable changes, reflecting the NN controller’s capacity to adapt seamlessly to 

environmental variations. This smooth behavior minimizes stress on the PV array and enhances system 

efficiency. 

 

Figure (15) Input Voltage and Input current of NN MPTT 

Finally, as illustrated in Figure (16), the duty cycle of the NN-based MPPT shows a significantly 

smoother trajectory compared to the PO algorithm. This reduced fluctuation results in lower switching 

losses and improves overall system stability. 
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Figure (16) Power Input and Duty cycle of NN MPTT 

 

IV. CONCLUSION 

This research demonstrates that the Neural Network (NN)-based MPPT method significantly outperforms 

the traditional Perturb and Observe (PO) algorithm in terms of efficiency, stability, and adaptability, 

particularly under dynamic environmental conditions. While the PO algorithm is simple and effective in 

steady-state scenarios, its inherent oscillations, suboptimal transient behavior, and reduced efficiency in 

fluctuating conditions limit its overall performance. 

In contrast, the NN-based MPPT leverages predictive capabilities to deliver faster, smoother, and more 

stable tracking of the Maximum Power Point (MPP), even under varying irradiance and temperature. By 

minimizing oscillations, reducing stress on PV modules and power converters, and enhancing overall 

efficiency, the NN-based approach proves to be a robust and reliable solution for photovoltaic systems 

operating in dynamic environments. 
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