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Özet – Bladder cancer is one of the most common cancer types of the urogenital system. Each year, 

approximately 350,000 new cases are diagnosed, resulting in 150,000 deaths. Early detection of bladder 

cancer plays a critical role in determining treatment strategies and reducing mortality rates. Therefore, the 

development of more effective diagnostic and therapeutic approaches for bladder cancer is of significant 

importance. Based on its invasion of muscle tissue, bladder cancer can develop in two distinct forms: 

Non-Muscle-Invasive Bladder Cancer (NMIBC) and Muscle-Invasive Bladder Cancer (MIBC). NMIBC 

is an early-stage cancer type where the cancer is confined to the surface of the bladder without invading 

the muscle layer. In contrast, MIBC is a more advanced and dangerous type of cancer that invades 

surrounding tissues. This study proposes an autonomous system based on the deep learning Vision 

Transformer (ViT) model for the early detection of bladder cancer. Using an open-access, multicenter 

dataset, the study compares two models to classify magnetic resonance imaging (MRI) scans of bladder 

cancer. Following preprocessing of the bladder MRI images, model training was conducted to determine 

the class of the data using the ViT approach. The study evaluates the performance of two ViT models, 

ViT-Small Patch32 and ViT-Large Patch32, in the task of bladder cancer classification. The results of 

both models were assessed using the metrics of F1-Score, Recall, Precision, and Accuracy. The study 

findings reveal that the ViT-Large Patch32 model achieved a performance of 97% across all metrics, 

providing more accurate and reliable results for bladder cancer classification. The proposed study is 

expected to serve as a robust tool to assist experts in classifying bladder cancer and optimizing treatment 

processes through its supportive mechanism during the decision-making phase.ve tedavi süreçlerinin 

optimize edilmesinde güçlü bir araç sunması beklenmektedir.  
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I. INTRODUCTİON 

Despite numerous innovations in medicine, cancer remains one of the most significant causes of mortality 

worldwide. Bladder cancer, one of the most common cancer types of the urogenital system, represents a 
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major global health concern. Studies indicate that bladder cancer is diagnosed in approximately 350,000 

new cases annually, resulting in around 150,000 deaths. It is observed three times more frequently in men 

than in women. According to global data, it ranks as the 7th most common cancer in men and the 17th in 

women. These statistics emphasize the profound impact of bladder cancer on global health and underline 

the critical importance of early diagnosis and treatment strategies for this disease [1]. 

Bladder cancer is influenced by both genetic and environmental factors. Smoking is recognized as the 

most potent and prevalent risk factor for bladder cancer. Additionally, exposure to certain carcinogenic 

substances associated with specific occupations, such as chemicals and jobs in the dye industry, plays a 

significant role in the development of this disease. Age and genetic factors also contribute substantially, 

as the risk increases with age, and specific genetic mutations predispose individuals to bladder cancer [2]. 

Various methods are employed in the diagnosis of bladder cancer, aiming to detect its presence, 

determine its stage, and assist in treatment planning. Common techniques include ultrasonography, urine 

tests, biopsy, computed tomography (CT), and magnetic resonance imaging (MRI). MRI is more widely 

used for evaluating local invasion of bladder cancer and for detailed examination of soft tissue structures 

in the pelvic region. It provides superior resolution and contrast for soft tissue imaging, enabling detailed 

visualization of the bladder’s internal structure. In the early stages of bladder cancer, cancer cells are 

typically confined to the bladder wall and often exhibit low contrast characteristics. MRI offers 

significant advantages in detecting tumor size, shape, location, and subtle changes in the bladder wall and 

surrounding tissues [3]. 

Bladder cancer develops in two forms based on its invasion of muscle tissue: Non-Muscle-Invasive 

Bladder Cancer (NMIBC) and Muscle-Invasive Bladder Cancer (MIBC) [4]. NMIBC, an earlier stage 

cancer type, is confined to the surface of the bladder without invading the muscle layer. If detected early, 

NMIBC is typically easier and more successful to treat [5]. On the other hand, MIBC is a more advanced 

and dangerous cancer type, spreading to deeper layers of the bladder and surrounding tissues. Once it 

invades the muscle layer, it can rapidly metastasize to other organs in the body [6]. 

This disease often goes undiagnosed in its early stages due to the absence of distinct symptoms or the 

mildness of symptoms. Particularly with low-risk and small lesions, an inexperienced clinician might 

overlook the presence of cancer during clinical evaluations [7]. As a result, cancer is often not detected 

until it has reached advanced stages. Early diagnosis allows for treatment before the cancer penetrates 

deeper layers of the bladder, significantly improving treatment outcomes. Early-stage bladder cancer can 

be effectively treated with surgical intervention, intravesical therapies, and other conservative approaches. 

Additionally, early diagnosis reduces the risk of recurrence after treatment. However, due to the vague or 

mild clinical manifestations of bladder cancer in its early stages, detection is often challenging [8]. 

To overcome these limitations in early-stage diagnosis, this study proposes an autonomous system using 

bladder MRI images trained with deep learning-based methods. The system aims to diagnose bladder 

cancer in its NMIBC stage. 

Deep learning models have the ability to automatically extract features from MRI images, determining 

tumor size, location, and other important parameters [9]. This capability supports clinical decision-

making processes, contributing to the rapid and accurate diagnosis of bladder cancer. Small lesions, 

tumors, or microscopic changes in MRI images can be more accurately identified through the high-

resolution analyses of deep learning models [10]. In medical image analysis, convolutional neural 

networks (CNNs) are commonly used, along with the Vision Transformer (ViT) model, which has 

recently gained prominence. ViT demonstrates superior accuracy in disease detection compared to 

traditional methods due to its ability to comprehensively analyze details in medical images [11]. 

There is existing literature on computer-aided diagnosis systems for bladder cancer. For example, a 

study conducted by Fuster et al. proposed a CNN-based deep learning method to detect invasive 

cancerous regions in NMIBC patients, utilizing the VGG16 architecture for feature extraction. The study 

achieved an F1 score of 71.9% [12]. Another study by Khosravi et al. introduced a CNN-based method 

called CNN_Smoothie to classify different cancer types using histopathology images from public 

databases. The dataset included images of lung, breast, and bladder cancer, and the study reported 

accuracies of 91% for breast cancer, an average of 99% for bladder cancer, and 92% for lung cancer 
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subtypes [13]. Yin et al. conducted a study using hematoxylin and eosin (H&E)-stained bladder tumor 

tissue images to classify non-invasive (stage Ta) and invasive (stage T1) bladder cancer. Six machine 

learning algorithms, including Adaptive Boosting (Adaboost), Random Forest (RF), Support Vector 

Machine (SVM), Logistic Regression (LR), Probabilistic Neural Network (PNN), and Multilayer 

Perceptron (MLP), were used, achieving accuracies ranging from 91% to 96% [14]. Jansen et al. proposed 

a neural network-based approach to detect and grade NMIBC in H&E-stained images. Compared to the 

opinions of three pathologists, the proposed approach achieved accuracies of 71% for high-grade cancers 

and 76% for low-grade cancers [15]. 

This study introduces an autonomous system based on the deep learning ViT model for bladder cancer 

detection. The study utilizes MRI data for two types of bladder cancer, NMIBC and MIBC. The system 

was developed using deep learning techniques to provide fast and accurate results in clinical applications. 

Furthermore, it aims to minimize subjective errors, reduce physicians' workloads, and improve diagnostic 

accuracy. The remainder of this paper is organized as follows: Section 2 presents the dataset and methods 

used in the proposed system. Section 3 discusses the experimental results with comparative analysis in 

tables. Finally, Section 4 provides the general conclusions of the study. 

II. MATERIAL VE METHODS 

In this section of the study, detailed information about the materials used and the methods applied is 

presented.  

A. Material 

In this study, the publicly available dataset named "Bladder Cancer Classification," published on the 

Kaggle platform, was utilized to perform bladder cancer classification [16,17]. The dataset contains T2-

weighted MRI images from a total of 279 patients. Upon examining the distribution of the 279 patients, it 

was found that the images originated from four different centers: 160 patients from Center $C_1$, 48 

patients from Center $C_2$, 32 patients from Center $C_3$, and 35 patients from Center $C_4$. The 

data for each center was acquired using different MRI devices. The dataset was labeled into two classes: 

NMIBC and MIBC. Figure 1 presents sample images from the classes included in the dataset. 

 

 

Figure 1. Sample Images of MIBC and NMIBC Classes 

B. Methods 

In this study, the classification of bladder cancer was performed using deep learning-based methods, with 

a focus on comparison and evaluation. Vision Transformer (ViT) models, which have recently gained 

popularity, were employed, specifically the ViT-Small Patch32 and ViT-Large Patch32 models. In the 

initial step, the data underwent preprocessing, followed by model training to determine the class of the 

data using the ViT method. The results of the two models were evaluated using F1-Score, Recall, 

Precision, and Accuracy metrics. Figure 2 presents the system diagram of the conducted study. 

As observed in Figure 2, the images in the dataset were preprocessed in the first step. At this stage, 

lighting adjustments were made to eliminate potential contrast differences among the images. The data 

were resized to 384×384 dimensions and normalized to suit the input requirements of the selected models. 

These preprocessing steps established the foundation for faster and more accurate learning by the models. 
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The dataset was then split into 80% training and 20% validation data to proceed with the model training 

phase. 

In the model training step, the Vision Transformer (ViT) architecture was employed to examine the 

performance of the ViT-Small Patch32 and ViT-Large Patch32 models. Both ViT models classify input 

images by dividing them into fixed patches of 32×32 dimensions and converting these patches into 

feature vectors. The primary differences between the ViT-Small Patch32 and ViT-Large Patch32 models 

arise from their parameter count and complexity. While the ViT-Large Patch32 model is more complex 

and capable of learning deeper features more effectively, the ViT-Small Patch32 model has fewer 

parameters, enabling faster training. 

The AdamW optimization algorithm was used during model training to balance learning speed and 

prevent overfitting. For both models, the batch size was set to 16, and the number of epochs was set to 50. 

The learning rates were determined as 1.3e-3 for the ViT-Small Patch32 model and 1.2e-3 for the ViT-

Large Patch32 model. While batch size and epoch count were determined through manual combinations, 

the learning rate was optimized using the learn_find function from the FastAI library. The ViT-Large 

Patch32 model exhibited higher generalization capabilities and lower computational requirements, 

whereas the ViT-Small Patch32 model offered a faster training process. 
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Figure 2. Pipeline of the Proposed System 

The performance of both models was compared during training and validation, evaluating classification 

success based on training duration, accuracy, recall, precision, and F1-Score metrics. Training duration 

represents the total time spent by a model during the training process and varies depending on parameters 

such as model architecture, hardware used, dataset size, epoch count, and batch size. In this study, epoch 

count, batch size, and hardware parameters were kept constant for both models to examine differences in 

training duration arising from architectural variations. The mathematical expressions for accuracy, recall, 

precision, and F1-Score metrics are provided in Equations 1–4, respectively [18]. 

Accuracy: Accuracy represents the proportion of correct predictions made by the model out of all 

predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

 

Precision: Precision measures the accuracy of the model's positive predictions, indicating the proportion 

of true positive predictions out of all positive predictions made by the model. It is particularly important 

when minimizing false positives is critical.   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

 

Recall: Recall measures how accurately the model identifies all actual positive cases. It is calculated as 

the proportion of true positive predictions out of all actual positive cases. Recall is a critical metric when 

minimizing false negatives is important. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

 

F1-Score: The F1-Score is used to measure the balance between precision and recall. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

III. EXPERIMENTAL FINDINGS AND DISCUSSION 

In this study, the performance of ViT models (ViT-Large Patch32 and ViT-Small Patch32) was evaluated 

for bladder cancer classification. Various metrics (accuracy, precision, recall, and F1-Score) were 

calculated for both models to compare their classification accuracy and overall performance. The 

complexity matrices and learning curves illustrating the training losses for both models were analyzed 
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alongside the performance metrics to identify the strengths and weaknesses of each model. Table 1 

summarizes the performance metrics for the ViT-Large and ViT-Small models. 
 

Table 1. Performance Evaluation Metrics Obtained from Classification Results 

Metrics ViT-Small 

Patch32 

ViT-Large 

Patch32 

Precision (%) 95 97 

Recall (%) 95 97 

F1-Score (%) 95 97 

Accuracy (%) 95 97 

Training Time(second) 569.80 4082.36 

 

  The ViT-Large Patch32 model outperformed the ViT-Small Patch32 model across all performance 

metrics. With a 97% performance in each metric, the ViT-Large Patch32 model demonstrated more 

accurate and reliable results for bladder cancer classification. This superior performance is attributed to 

the model’s higher parametric capacity and ability to learn more complex features. The ViT-Small 

Patch32 model, on the other hand, achieved a 95% performance in the metrics, showcasing its 

effectiveness with lower computational requirements. While it performs slightly lower compared to the 

ViT-Large Patch32 model, it remains a viable option, particularly in scenarios with limited hardware 

resources. In terms of training time, the ViT-Large Patch32 model required approximately seven times 

longer than the ViT-Small Patch32 model (4082.36 seconds vs. 569.80 seconds). The longer training time 

for the ViT-Large model is due to its higher parametric capacity and ability to learn more complex 

features, which demand greater computational resources. Figure 2 presents the confusion matrices and 

learning curves to facilitate a detailed examination of the performance metrics alongside the models 

training dynamics.  

 

 

Figure 3. Confusion Matrices and Loss Graphs of Trained Models 

 

  The confusion matrix for the ViT-Large Patch32 model demonstrates its high performance in 

classification. Specifically, in the MIBC class, 130 out of 132 samples were correctly classified, with only 

2 samples misclassified as false positives. These findings indicate that the model has a very low error rate 

for the MIBC class and reliable true positive predictions. When analyzing the learning curve of the ViT-

Large Patch32 model, it is evident that both validation and training losses decrease rapidly. The training 

loss shows a steady downward trend and approaches a minimal value. Meanwhile, the validation loss 

generally decreases in parallel with the training loss, with some fluctuations occurring at specific 

intervals. These fluctuations suggest that the model does not overfit the validation data. As the training 
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progresses, the stabilization of validation loss further improves the model's overall performance, 

indicating consistent performance on both validation and training data. 

  For the ViT-Small Patch32 model, the learning curve also shows a steady decrease. However, compared 

to the ViT-Large Patch32 model, it exhibits more fluctuations, indicating that the ViT-Small model has a 

lower learning capacity and less consistent generalization performance on validation data. These 

fluctuations may result from the model's limited parameter count, which restricts its ability to fully 

analyze complex data distributions. Nevertheless, the validation and training losses remain closely 

aligned, and no overfitting is observed during the training process. The lower false positive and false 

negative rates in the ViT-Large Patch32 model, along with fewer fluctuations in the loss curves, suggest 

that this model is a more reliable classification tool for the problem at hand. In contrast, the ViT-Small 

model can be considered a viable alternative in scenarios with resource and hardware constraints. These 

results clearly indicate that larger and more complex models like the ViT-Large Patch32 offer higher 

accuracy and consistency, albeit at the cost of longer training times and increased computational 

requirements. 

  This study evaluated the performance of ViT models, specifically ViT-Small Patch32 and ViT-Large 

Patch32, for bladder cancer classification. The results show that the ViT-Large model achieved higher 

accuracy, recall, precision, and F1-Score values compared to the ViT-Small model. The superior 

performance of the ViT-Large model can be attributed to its larger parametric capacity and ability to learn 

more complex features. The findings indicate that the ViT-Large model is more reliable for critical 

classification tasks. However, the training time for the ViT-Large model was approximately seven times 

longer than that of the ViT-Small model. This limitation in computational cost makes the ViT-Small 

model a more practical option in scenarios with restricted resources, highlighting the need for model 

selection based on specific problem requirements. The proposed study is expected to serve as a supportive 

system for experts in classifying bladder cancer and optimizing treatment processes during the decision-

making phase. 

IV. RESULTS 

The study presented an effective deep learning-based solution for bladder cancer classification using 

Vision Transformer (ViT) models, specifically ViT-Small Patch32 and ViT-Large Patch32. Using an 

open-access, multicenter dataset of MRI images, the performance of both models was compared. The 

evaluations showed that the ViT-Large model achieved higher accuracy, precision, recall, and F1 scores, 

demonstrating superior performance. However, the ViT-Small model emerged as a viable alternative in 

resource-constrained environments due to its shorter training time and lower computational costs. 

This study demonstrates that deep learning-based models can be effectively used in challenging tasks 

such as medical image analysis. The results indicate that it is possible to develop a robust decision-

making mechanism to assist in bladder cancer classification. Considering the study's limitations, 

analyzing the models using only a single dataset may restrict the understanding of their generalization 

capabilities. Therefore, testing the models on various datasets and different medical scenarios would 

provide a better understanding of their generalization potential. The findings highlight the potential for 

artificial intelligence-based systems to see broader use in clinical applications. 
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