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Abstract –  In this study, basic information about algebra and coding theory is mentioned. Afterwards, 

generator matrices that produce a linear code are written in standard form, a classification of code types 

corresponding to codes with parameters (n + 1,4n, 2) of the codes produced by these matrices and 

examples are presented. It has been generalized using the same ring as in my work in References [6]. 
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I. EXTENDED SUMMARY AND INTRODUCTION 

 

In the study, a code set that provides the Group property has been created. 𝑅 = 𝔽2 + 𝑢𝔽2   The code 

set has been defined with generator matrices consisting of a ring of elements and having certain 

properties. Previously, codes with generator matrices have been discussed in the study numbered [6]. This 

study has been generalized, and certain generalizations have been made regarding the parameters of the 

codes by writing the generator matrices in standard form and information has been presented about their 

parameters. Results have been obtained about the generator matrices used to create the elements of the 

code set and the codes that have the properties of the matrices that include zero and those that do not 

include zero in the standard form. It has been shown which type of block code the generator  

 

matrices specify according to their types. These results have been presented by reaching a general 

judgment. 

These statements have been reached 41 , 42  ve 43 after the applications of block codes have been shown. 

The limitations of these applications have been determined and their suitability has been determined. 
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II. BASIC KNOWLEDGE 

 

In this section, basic information is presented first. 

 

2.1 Definition: 𝔽 when the given conditions are met on which the defined addition and subtraction 

operations are performed, it is called a field. 

i. 𝔽   is a commutative ring. 

ii. 𝔽 every element of has a multiplicative inverse except zero. 

2.3 Definition: A finite field is a field 𝔽,  if its elements have finite elements 𝔽. 

2.4 Definition:  In coding theory, an error-correcting code that converts blocks of information of a certain 

length into blocks of code of a fixed length is called a block code. 

2.5 Definition: Since the code words in a block code form a collection group, this code is called a group 

code. 

2.6 Definition: The basic criteria that define the properties and performance of a code are called the 

parameters of the code. 

These parameters are usually (n, M, d) expressed in a ternary notation as [n, k, d] if the code is a linear 

code. The definitions of these parameters are: 

Code Length ( n ): Indicates the length of the code word (code blocks). A code word consists of n 

symbols. 

Code Words ( M ): Each code word indicates the number of code words it contains. 

Minimum Hamming distance ( d ): It expresses the minimum Hamming distance of the code. Minimum 

Hamming distance determines the error detection and correction capabilities of the code and represents 

the least bit difference between any two different code words. 

(k): is the number of elements in the base of the linear code. It is also expressed as the number of rows of 

the generator matrix 

Hamming distance determines the error detection and correction capacity of the code . Code length and 

number of code words determines the coding efficiency and capacity of the code. 

2.7 Definition: Let the elements 
n

qIF of ),...,,(,),...,,( 2121 nn yyyyxxxx  be given. 

x  and y  The function defined d as the number of distinct components 

 niyxiyxd ii ,...,2,1,),(  of the Hamming distance is called. 

  C   is a linear code of _n length },,),(min{)( CyxyxyxdCd   is called the minimum 

distance of the code C . 

2.8 Definition: C  a _],[ kn  code  is called if the minimum distance of a vector space dCd )(  is _k

dimensional subspace C of the vector space . If indicated byC  a linear _],,[ dkn  code  is called. 

2.9 Definition:  Let 
n

qIF  any vector space ),...,,( 21 nxxxx   element of weight.. 

It is defined as },,...,2,1,0{)( qii IFxnixixw  . 
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C  is a linear code },0)(min{)( CxxxwCw i   

is called the weight of the C code. 

2.10 Proposition [8] : Each for 
n

qIFyx , , thus )(),( yxwyxd   . 

 

2.11 Theorem:  Let C  is a linear code of _n length, then )()( CwCd  . 

Evidence: Cyyyyxxxx nn  ),...,,(,),...,,( 2121  including 

   },,),(min{)( CyxyxyxdCd   because it is      

Cyx  , for    )(),()( yxwyxdCd                                                          

},0)(min{ Cxxxw i  )(Cw  is found. 

)()( CwCd  . 

},0)(min{)( CxxxwCw i   because it is )()( xwCw   for Cx . 

Cx for   )0,()0()()( xdxwxwCw )(},,),(min{ CdCyxyxyxd  . It is seen 

that. 

)()( CdCw   is . 

)()( CdCw   It is possible. 

From the above theorem, m it is concluded that in order to determine the minimum distance of 

)1.(.
2

1

2









mm

m
a linear code with elements, C it will be sufficient to look at the weight of the code 

word instead of making comparisons 1m . 

2.12 Definition: Let C  be a code of _n length on the ring 22 IFuIFR  . 

The Lee weight of the codeword  Ccccc n   ),...,,( 110  where 





1

0

)()(
n

i

iLL cwcw  is defined in the form  

0)0( Lw , 1)1( Lw , 1)1( uwL , 2)( uwL . 

)(),( dcwdcd LL   every for nRdc ,  The function defined Ld  is called as  Lee distance . The 

minimum Lee distance of a 
nRC  code is defined as CccwCd LL  )({min))( \ }}0{ . 

The weight function defined here is given for the ring 𝑅 = 𝔽2 + 𝑢𝔽2,( 𝑢2 = 0). The weight function is 

defined differently in different rings. 

 

2.13 Definition: Let C  be a linear _],[ kn code. The matrix of type C obtained nk   by using the one 

element in the base of k  is called the generating matrix of the code and is denoted by G . 

2.14 Example:  On 2IF , })1,0,1(,)1,1,0({S  
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a base of code })0,1,1(,)1,0,1(,)1,1,0(,)0,0,0({C . Since 

32
101

110











G the matrix  is the 

generating matrix of C . This _]2,2,3[ parameter of C  code  on 2IF  . 

2.15 Example:  Let 
n

qIFqqqC  })1,...,1,1(,...,)1,...,1,1(,)0,...,0,0({  be an _q ary code of _n

length. Since code C  has a bas , it is })1,...,1,1({S a code _],1,[ nn parameter with a generating 

matrix nG  1]1...11[ . 

III. GROUP CODE FORMATION  

 

 

3.1 Definition: A binary block ( a,b )-code has the coding function E :(𝐹2)𝑎 → (𝐹2)𝑏  

A binary block ( a,b )-code, decoding in function ; D :(𝐹2)𝑏 → (𝐹2)𝑎 

The images of E are called code words. 

3.2 Example : In the ring R = 𝔽2 + u𝔽𝟐 , for u2 =  0 . 

Table 1.1 which provides the closure property according to the addition operation shown in the table. 

+ 0 1 u 1+u 

0 0 1 u 1 +u 

1 1 0 1+u u 

u u 1+u 0 1 

1+u 1+u u 1 0 

                      

Table 2.2 that the closure property is provided according to the multiplication operation 

× 0 1 u 1+u 

0 0 0 0 0 

1 0 1 u u 

u 0 u 0 u 

1+u 0 1+u u 1 

 

Elements of tables in R = 𝔽2 + u𝔽2 is codewords of a code of the ring R ={0,1, u, 1 + u}. 

 

3.3 Definition [3]: A q- ary (n, m, 2t+1) _ code. 

𝑚{(𝑛
0

) + (𝑛
1

)(𝑞 − 1)+. . . +(𝑛
𝑡
)(𝑞 − 1)𝑡} ≤  𝑞𝑛   

inequality is provided. 

The above definition R is given for the boundary ring. 
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 R = 𝔽2 + 𝑢𝔽2 ,   u2 = 0. It is a 4-element ring and not a field. However, it can be said that a 4-element 

field is isomorphic to a ring. Therefore, R = 𝔽𝟐 + u𝔽2  can correspond our 4-element ring to a 4-element 

field. 

3.4 Definition : One q - ary  )12,,( tmn _for code 

nt qq
t

n
q

nn
m 



































)1(....)1(.

10
.  This code is called perfect code. 

3.5 Example: A q -ary _),2,( nn code is an perfect code. 

3.6 Theorem : OnR = 𝔽2 + u𝔽𝟐   , u2 = 0       for a1, a2, a3, … , an ϵR   defined as , specifies a code with 

an n-row generator matrix 4𝑛-element Group code. 

41 Blocky generator matrix→  G1 = [1 a1] 
 

42 Blocky generator matrix →  G2 =[
1 0 a1

0 1 a2
] 

 

43Blocky generator matrix →  G3 = [
1 0 0
0 1 0
0 0 1

   

a1

a2

a3

] 

. 

. 

4𝑛Blocky generator matrix→  𝐺𝑛 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

  

𝑎1

⋮
𝑎𝑛

]. 

 

It is stated this way. 

 

3.7 Theorem : R = 𝔽2 + u𝔽2 , u2 = 0 için           a1, a2, a3, … , an ϵR   and 

x1, x2, x3, … , xn ϵR  whereas [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

  

a1

⋮
an

] . Generator matrices of type 4nare a block code and a group 

code with elements. 

Cn= [𝑥1   𝑥2 𝑥3  ⋯  𝑥𝑛].[
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

  

𝑎1

⋮
𝑎𝑛

]  

=[𝑥1 𝑥2 𝑥3   …  𝑥𝑛 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 𝑥𝑛] 

It is written in the format. 

 

3.8. Theorem 2.5: Parameters of code words formed in ring R = 𝔽2 + 𝑢𝔽2 ve u2 = 0 ∶ 
 

Parameter of C1 code words with 41 Blocks generated by  G1; 

in the form 

a1 = 0, C1 − (2,4,1)

a1 ≠ 0, C1 − (2,4,2)
 

 

Parameter of C2   code words with 42 Blocks generated by  G2; 

in the form 

∃ a1, a2 = 0, C2 − (3,16,1)

∀ a1, a2 ≠ 0, C2 − (3,16,2)
 

 



International Journal of Advanced Natural Sciences and Engineering Researches 

 
 

713 
 

Parameter of C3   code words with 43 Blocks generated by  G3; 

in the form 
∃a1, a2, a3 = 0, C3 − (4,64,1)

∀ a1, a2, a3 ≠ 0, C3 − (4,64,2)
 

 

⋮ 
Parameter of Cn code words with 4n Blocks generated by  Gn; 

in the form 
∃a1, a2, a3, … , an = 0, Cn − (n + 1, 4n, 1)

∀ a1, a2, a3, … , an ≠ 0, Cn − (n + 1, 4n, 2)
 

 

IV. APPLICATIONS OF FIXED MINIMUM DISTANCE CODES  

 

4.1 Application: 

 G1.1 = [1 0], [x]. [1 0]=[x 0] 
 

𝐶1.1 = {(0, 0), (1, 0), (u, 0), (1 + 𝑢, 0)} 

C1.1  is possible a code with ( 2,4,1 )- parameters. 

4.2 Application: 

 G1.4 = [1 1 + u], [𝑥]. [1 1 + u] 
=[x x + xu] 

C1.4 = {(0,0), (1,1 + u), (u, u), (1 + u, 1)} 

C1.4  is possible a code with ( 2,4,2 )- parameters. 

4.3 Application: 

 G2.1 = [
1 0 0
0 1 0

], [x y]. [
1 0 a
0 1 b

]  =[x y 0] 

 

C2.1={(0, 0, 0), (0, 1, 0), (O, u, 0), (0, 1 + u, 0), (1,0,0), (1,1,0), (1, u, 0)(1,1 +
u, 0), (u, 0, 0), (u, 1, 0), (u, u, 0), (u, 1 + u, 0), (1 + u, 0, 0), (1 + u, 1, 0), (1 + u, u, 0), (1 + u, 1 + u, 0)} 

C2.1  is possible a code with ( 3,16,1 )- parameters. 

 

4.4 Application: 

 G2.7 = [
1 0 1
0 1 u

], [x y] . [
1 0 1
0 1 u

]  =[x y x + uy] 

C2.7 = {(0, 0, 0), (0, 1, u), (0, u, 0), (0, 1 + u, u), (1, 0, 1)(1, u, 1), (1,1 + u, 1 + u), (1, 1, 1
+ u), (u, 0, u), (u, 1, 0), (u, u, u), (u, 1 + u, 0), (1 + u, 0,1 + u), (1 + u, 1, 1), (1 + u, u, 1
+ u), (1 + u, 1 + u, 1)} 

C2.7  is possible a code with ( 3,16,2 )- parameters. 

4.5 Application: 
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 G3.3 = [
1 0 0   
0 1 0  
0 0 1  

 
0
0
1

],C3.3 = [x    y z]. [
1 0 0   
0 1 0  
0 0 1  

 
0
0
1

] =  [x y z z] 

 

𝐶3.3 = {(0,0,0,0)(0,0,1,1), (0,0, u, u), (0,0,1 + u, 1 + u), (0,1,0,0), (0,1,1,1), (0,1, u, u)(0,1,1 + u, 1
+ u), (0, u, 0,0)(0, u, 1,1), (o, u, u, u), (0, u, 1 + u, 1 + u), (0,1 + u, 0,0), (0,1
+ u, 1,1), (0,1 + u, u, u), (0,1 + u, 1 + u, 1 + u), (1,0,0,0), (1,0,1,1), (1,0, u, u), (1,0,1
+ u, 1 + u), (1,1,0,0), (1,1,1,1), (1,1, u, u), (1,1,1 + u, 1
+ u), (1, u, 0,0), (1, u, 1,1), (1, u, u, u), (1, u, 1 + u, 1 + u), (1,1 + u, 0,0)(1,1
+ u, 1,1), (1,1 + u, u, u), (1,1 + u, 1 + u, 1 + u), (u, 0,0,0), (u, 0,1,1), (u, 0, u, u), (u, 0,1
+ u, 1 + u), (u, 1,0,0), (u, 1,1,1), (u, 1, u, u), (u, 0,1 + u, 1
+ u), (u, u, 0,0), (u, u, 1,1), (u, u, u, u), (u, u, 1 + u, 1 + u), (u, 1 + u, 0,0), (u, 1
+ u, 1,1), (u, 1 + u, u, u), (u, 1 + u, 1 + u, 1 + u), (1 + u, 0,0,0), (1 + u, 0,1,1), (1
+ u, 0, u, u), (1 + u, 0,1 + u, 1 + u), (1 + u, 1,0,0), (1 + u, 1,1,1), (1 + u, 1, u, u), (1
+ u, 1,1 + u, 1 + u), (1 + u, u, 0,0), (1 + u, u, 1,1), (1 + u, u, u, u), (1 + u, u, 1 + u, 1
+ u), (1 + u, 1 + u, 0,0), (1 + u, 1 + u, 1,1), (1 + u, 1 + u, u, u), (1 + u, 1 + u, 1 + u, 1
+ u)} 

C3.3  is possible a code with ( 4,64,1 )- parameters. 

4.6  Application: 

 G3.6 = [
1 0 0   
0 1 0  
0 0 1  

 
u
u
u

], 

 

C3.6 = [x    y z]. [
1 0 0   
0 1 0  
0 0 1  

 
u
u
u

] =  [x y z ux + uy + uz] 

  

𝐶3.6 = {(0,0,0,0)(0,0,1, u), (0,0, u, 0), (0,0,1 + u, u), (0,1,0, u), (0,1,1,0), (0,1, u, u), (0,1,1
+ u, 0), (0, u, 0,0), (0, u, 1, u), (0, u, u, 0), (0, u, 1 + u, u), (0, +u, 0, u), (0,1 + u, 1,0), (0,1
+ u, u, u), (0,1 + u, 1 + u, 0), (1,0,0,1), (1,0,1,0), (1,0, u, u), (1,0,1
+ u, 0), (1,1,0,0), (1,1,1, u), (1,1, u, 0), (1,1,1 + u, u), (1, u, 0, u), (1, u, 1,0), (1, u, u, u), (1, u, 1
+ u, 0), (1,1 + u, 0,0), (1,1 + u, u, 0), (1,1 + u, 1, u), (1,1 + u, 1
+ u, u), (u, 0,0,0), (u, 0,1, u), (u, 0, u, 0), (u, 0,1 + u, u), (u, 1,0, u), (u, 1,1,0), (u, 1, u, u), (u, 1,1
+ u, 0), (u, u, 0,0), (u, u, 1, u), (u, u, u, 0), (u, u, 1 + u, u), (u, 1 + u, 0, u), (u, 1 + u, 1,0), (u, 1
+ u, u, u), (u, 1 + u, 1 + u, 0), (1 + u, 0,0, u), (1 + u, 0,1, u), (1 + u, 0, u, u), (1 + u, 0,1 + u, 0), (1
+ u, 1,0,0), (1 + u, 1,1, u), (1 + u, 1, u, 0), (1 + u, 1,1 + u, u), (1 + u, u, 0, u), (1 + u, u, 1,0), (1
+ u, u, u), (1 + u, u, 1 + u, 0), (1 + u, 1 + u, 0,0), (1 + u, 1 + u, 1, u), (1 + u, 1 + u, u, 0), (1 + u, 1
+ u, 1 + u, u)} 

C3.6  is possible a code with ( 4,64,2 )- parameters. 

 4.7 Example: 

Parameter of C1 code words with 41 Blocks generated by  G1; 
a1 = 0 ,    C1   − (2,4,1)
a1 ≠ 0 ,   C1  − (2,4,2)

 

 

4 ∙ {(2
0
)} ≤  42  inequality 4 ≤ 42occurs and the limit is provided. 
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4.8 Example: 

Parameter of C2 code words with 42 Blocks generated by  G2; 
∃ a1, a2 = 0 , C2   −  (3,16,1)
∀ a1, a2 ≠ 0 , C2   − (3,16,2)

 

16 ∙ {(3
0
)} ≤  43  from inequality  42  ≤ 43happens and the limit is provided . 

4.8 Example: 

Parameter of C3 code words with 43 Blocks generated by  G3; 
∃a1, a2, a3 = 0 ,     C3   − (4, 64, 1)
∀ a1, a2, a3 ≠ 0 ,    C3   −  (4, 64, 2)

 

64{(4
0
)} ≤  44  from inequality  43 ≤ 44happens and the limit is achieved. 

4.9 Conclusion: If we make a general judgment about the group code parameters in our study with these 

examples; 

Parameter of Cn code words with 4n Blocks generated by  Gn; 
∃a1, a2, a3, . . . , an = 0 ,     Cn    − (n + 1, 4n, 1)

∀ a1, a2, a3, . . . , an ≠ 0 ,    Cn    − (n + 1,  4n, 2)
 

4𝑛 ∙ {(4n+1

0
)} ≤  4n+1  from inequality  4n  ≤ 4n+1happens and the limit is achieved. 
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