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Abstract –This study is dedicated to optimizing two critical responses within the tube drawing process: 

drawing force and linear thickness distribution. The process is influenced by four design factors: die 

angle, bearing length, friction coefficient, and drawing velocity. 

To mathematically define the tube drawing process, 13 functional forms were utilized, encompassing 

linear, quadratic, trigonometric, and logarithmic expressions and their rational and hybrid combinations. 

The dataset for model development was taken from the literature. The candidate models were assessed 

using multiple performance metrics, including R
2
 training, R

2
 testing, and R

2
 validation, along with 

boundedness checks and adherence to predefined constraints. 

After identifying a suitable model, modified version of stochastic search optimization methods; 

Differential Evolution and Simulated Annealing were applied to minimize drawing force while 

maximizing thickness distribution. The results revealed a minimum drawing force of 2107.75 kN and a 

maximum linear thickness distribution of 0.911 mm. 

These findings underscore the robustness and versatility of the neuro-regression modeling and stochastic 

optimization processes proposed in this study. In comparison to previous methodologies—such as 

response surface and artificial bee optimization techniques referenced in the literature—this approach has 

yielded an improvement of 3.5 % in drawing force and an enhancement of 18% in thickness distribution. 

 
Keywords – Tube drawing process, neuro-regression modeling, stochastic optimization, copper tube 

 

 

I. INTRODUCTION 

The tube drawing process is a widely utilized metal forming technique for producing tubes with precise 

dimensions, improved surface quality, and enhanced mechanical properties. Due to the complex 

interactions between process parameters, developing accurate mathematical models to predict critical 

responses such as drawing force and thickness distribution is essential for optimizing the process and 

ensuring product quality [1]. Mathematical modeling serves as a fundamental tool in understanding these 

relationships and forms the basis for optimization techniques aimed at improving process efficiency and 

outcomes. 
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Recent advancements in computational methods have facilitated the development of sophisticated 

models that incorporate linear, nonlinear, and hybrid mathematical functions. These models are 

invaluable for capturing the nonlinearities inherent in the tube drawing process, as highlighted in studies 

such as those by Pater et al. [2] and Tiesler et al. [3]. Factors such as die angle, bearing length, friction 

coefficient, and drawing velocity significantly influence process responses, necessitating the use of 

advanced modeling techniques to accurately represent their effects [4]. 

Response Surface Methodology (RSM), Artificial Neural Networks (ANNs), Taguchi, Central 

Composite Design (CCD), and Genetic Algorithms (GAs) have been extensively applied in this domain to 

optimize process parameters. For instance, Kumar and Chauhan [5] employed RSM to optimize drawing 

velocity, die angle, and friction coefficient, achieving a reduction in drawing force by 15%. Similarly, 

ANNs have been utilized to model the nonlinear behavior of process parameters with high accuracy, as 

demonstrated by Rajput and Nimbalkar [6], where the model predicted thickness distribution with an 

error margin below 2%. 

The Taguchi method, often integrated with ANOVA, has proven effective in identifying significant 

factors influencing process responses. Patel et al. [7] used the Taguchi approach to optimize die design 

and process velocity, resulting in a 12% improvement in thickness uniformity. CCD, a design of 

experiments approach, has also been widely used to explore the interactive effects of process variables. 

Yadav et al. [8] utilized CCD to develop second-order regression models for drawing force and achieved 

a significant reduction in force requirements. 

In addition, heuristic algorithms have been employed to identify global optima for complex, multi-

objective problems in the tube drawing process. Sun et al. [9] demonstrated the application of GAs for 

optimizing die geometry and bearing length, achieving a 10% increase in production efficiency while 

maintaining product quality. 

This study aims to develop mathematical models for the copper tube drawing process using a diverse set 

of functional forms, including linear, quadratic, trigonometric, and logarithmic expressions, as well as 

their rational and hybrid variants. The models are evaluated based on performance metrics such as 

R
2
training, R

2 
testing, and R

2
 validation along with boundedness checks and compliance with predefined 

constraints. Following model selection, optimization techniques are employed to minimize drawing force 

and maximize thickness distribution. By bridging neuro regression mathematical modeling and stochastic 

optimization, this study seeks to contribute to the field of process design and control in metal forming 

operations. 

 

II. MATERIALS AND METHOD 

Neuro-regression is a sophisticated mathematical modeling technique that combines artificial neural 

networks with regression analysis. The dataset is divided into training, testing, and validation subsets to 

facilitate this modeling process. In the training phase, 80% of the dataset is used to determine the model 

coefficients that yield the highest accuracy in predicting actual values. 

The remaining 20% of the dataset is reserved for testing and validation, allowing for an evaluation of 

the model's predictive performance on unseen data. Tables 1 and 2 present the dataset and proposed 

mathematical models used to analyze the relationship between input and output parameters during the 

mathematical modeling phase using the neuro-regression approach.  
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Table 1. The data set formed using the Box–Behnken experimental design method [10] 

Run Order x1 (Deg) x2 (mm) x3 (-) x4 (mm/min) 
Drawing 

Force (kN) 

Linear 

Thickness 

(mm) 

1 5 4 0.2 7.5 4752 0.72757 

2 10 4 0.2 7.5 3379 0.73827 

3 5 8 0.2 7.5 4763 0.72955 

4 10 8 0.2 7.5 3477 0.73741 

5 7.5 6 0.1 5 2358 0.73511 

6 7.5 6 0.3 5 5277 0.73744 

7 7.5 6 0.1 10 2371 0.73515 

8 7.5 6 0.3 10 5284 0.7358 

9 5 6 0.2 5 4748 0.72218 

10 10 6 0.2 5 3415 0.74366 

11 5 6 0.2 10 4760 0.72669 

12 10 6 0.2 10 3433 0.74371 

13 7.5 4 0.1 7.5 2314 0.72837 

14 7.5 8 0.1 7.5 2386 0.72181 

15 7.5 4 0.3 7.5 5183 0.72727 

16 7.5 8 0.3 7.5 5442 0.72164 

17 5 6 0.1 7.5 2743 0.72175 

18 10 6 0.1 7.5 2180 0.73938 

19 5 6 0.3 7.5 6864 0.72932 

20 10 6 0.3 7.5 4675 0.74629 

21 7.5 4 0.2 5 3744 0.7274 

22 7.5 8 0.2 5 3927 0.72202 

23 7.5 4 0.2 10 3724 0.72781 

24 7.5 8 0.2 10 3951 0.7218 

25 7.5 6 0.2 7.5 3826 0.73529 

 

The effectiveness of the model's predictions is assessed using the R² criterion, where a score 

approaching 1 indicates outstanding performance. Furthermore, boundedness check criteria are applied to 

ensure that the model's outputs are realistic and viable from an engineering standpoint. 

The optimal model is expected to achieve two fundamental objectives: (1) attain high predictive 

accuracy, with an R² value as close to 1 as possible, and (2) produce designs that are realistic and 

practical within an engineering context. The model that meets these criteria is chosen as the objective 

function for optimization, and its value is either maximized or minimized depending on the specific 

optimization goal.  
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Table 2. Mathematical model types including linear, quadratic, trigonometric, logarithmic, rational and their hybrid forms 

[11]. 

Model Name Nomenclature Formula 

Multiple linear L  𝑌 =  𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 

Multiple linear rational LR 𝑌 = (𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4)/(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

+ 𝛽3𝑥3 + 𝛽4𝑥4) 

Second order multiple 

nonlinear 

SON 𝑌 = 𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝛼5𝑥1
2 + 𝛼6𝑥2

2 +
𝛼7𝑥3

2 + 𝛼8𝑥4
2 + 𝛼9𝑥1𝑥2 + 𝛼10𝑥1𝑥3 + 𝛼11𝑥1𝑥4 + 𝛼12𝑥2𝑥3 +

𝛼13𝑥2𝑥4 + 𝛼14𝑥3𝑥4  

Second order multiple 

nonlinear rational 

SONR 𝑌 = (𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝛼5𝑥1
2 + 𝛼6𝑥2

2 +
𝛼7𝑥3

2 + 𝛼8𝑥4
2 + 𝛼9𝑥1𝑥2 + 𝛼10𝑥1𝑥3 + 𝛼11𝑥1𝑥4 + 𝛼12𝑥2𝑥3 +

𝛼13𝑥2𝑥4 + 𝛼14𝑥3𝑥4 )/(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 +
𝛽5𝑥1

2 + 𝛽6𝑥2
2 + 𝛽7𝑥3

2 + 𝛽8𝑥4
2 + 𝛽9𝑥1𝑥2 + 𝛽10𝑥1𝑥3 +

𝛽11𝑥1𝑥4 + 𝛽12𝑥2𝑥3 + 𝛽13𝑥2𝑥4 + 𝛽14𝑥3𝑥4 )  

First order trigonometric 

multiple nonlinear 

FOTN 𝑌 = 𝛼0 + 𝛼1 𝑠𝑖𝑛 𝑥1 + 𝛼2 𝑠𝑖𝑛 𝑥2 + 𝛼3 𝑠𝑖𝑛 𝑥3 + 𝛼4 𝑠𝑖𝑛 𝑥4 +
𝛼5 𝑐𝑜𝑠 𝑥1 + 𝛼6 𝑐𝑜𝑠 𝑥2 + 𝛼7 𝑐𝑜𝑠 𝑥3 + 𝛼8 𝑐𝑜𝑠 𝑥4  

First order trigonometric 

multiple nonlinear rational 

FOTNR 𝑌 = (𝛼0 + 𝛼1 𝑠𝑖𝑛 𝑥1 + 𝛼2 𝑠𝑖𝑛 𝑥2 + 𝛼3 𝑠𝑖𝑛 𝑥3 + 𝛼4 𝑠𝑖𝑛 𝑥4 +
𝛼5 𝑐𝑜𝑠 𝑥1 + 𝛼6 𝑐𝑜𝑠 𝑥2 + 𝛼7 𝑐𝑜𝑠 𝑥3 + 𝛼8 𝑐𝑜𝑠 𝑥4 )/(𝛽0 +

𝛽1 𝑠𝑖𝑛 𝑥1 + 𝛽2 𝑠𝑖𝑛 𝑥2 + 𝛽3 𝑠𝑖𝑛 𝑥3 + 𝛽4 𝑠𝑖𝑛 𝑥4 + 𝛽5 𝑐𝑜𝑠 𝑥1 +
𝛽6 𝑐𝑜𝑠 𝑥2 + 𝛽7 𝑐𝑜𝑠 𝑥3 + 𝛽8 𝑐𝑜𝑠 𝑥4 )  

Second order trigonometric 

multiple nonlinear 

SOTN 𝑌 = 𝛼0 + 𝛼1 𝑠𝑖𝑛 𝑥1 + 𝛼2 𝑠𝑖𝑛 𝑥2 + 𝛼3 𝑠𝑖𝑛 𝑥3 + 𝛼4 𝑠𝑖𝑛 𝑥4 +
𝛼5 𝑐𝑜𝑠 𝑥1 + 𝛼6 𝑐𝑜𝑠 𝑥2 + 𝛼7 𝑐𝑜𝑠 𝑥3 + 𝛼8 𝑐𝑜𝑠 𝑥4 + 𝛼9 𝑠𝑖𝑛2 𝑥1 +

𝛼10 𝑠𝑖𝑛2 𝑥2 + 𝛼11 𝑠𝑖𝑛2 𝑥3 + 𝛼12 𝑠𝑖𝑛2 𝑥4 + 𝛼13 𝑐𝑜𝑠2 𝑥1 +
𝛼14 𝑐𝑜𝑠2 𝑥2 + 𝛼15 𝑐𝑜𝑠2 𝑥3 + 𝛼16 𝑐𝑜𝑠2 𝑥4  

Second order trigonometric 

multiple nonlinear 

SOTNR 𝑌 = (𝛼0 + 𝛼1 𝑠𝑖𝑛 𝑥1 + 𝛼2 𝑠𝑖𝑛 𝑥2 + 𝛼3 𝑠𝑖𝑛 𝑥3 + 𝛼4 𝑠𝑖𝑛 𝑥4 +
𝛼5 𝑐𝑜𝑠 𝑥1 + 𝛼6 𝑐𝑜𝑠 𝑥2 + 𝛼7 𝑐𝑜𝑠 𝑥3 + 𝛼8 𝑐𝑜𝑠 𝑥4 + 𝛼9 𝑠𝑖𝑛2 𝑥1 +

𝛼10 𝑠𝑖𝑛2 𝑥2 + 𝛼11 𝑠𝑖𝑛2 𝑥3 + 𝛼12 𝑠𝑖𝑛2 𝑥4 + 𝛼13 𝑐𝑜𝑠2 𝑥1 +
𝛼14 𝑐𝑜𝑠2 𝑥2 + 𝛼15 𝑐𝑜𝑠2 𝑥3 + 𝛼16 𝑐𝑜𝑠2 𝑥4)/(𝛽0 + 𝛽1 𝑠𝑖𝑛 𝑥1 +
𝛽2 𝑠𝑖𝑛 𝑥2 + 𝛽3 𝑠𝑖𝑛 𝑥3 + 𝛽4 𝑠𝑖𝑛 𝑥4 + 𝛽5 𝑐𝑜𝑠 𝑥1 + 𝛽6 𝑐𝑜𝑠 𝑥2 +

𝛽7 𝑐𝑜𝑠 𝑥3 + 𝛽8 𝑐𝑜𝑠 𝑥4 + 𝛽9 𝑠𝑖𝑛2 𝑥1 + 𝛽10 𝑠𝑖𝑛2 𝑥2 +
𝛽11 𝑠𝑖𝑛2 𝑥3 + 𝛽 𝑠𝑖𝑛2 𝑥4 + 𝛽13 𝑐𝑜𝑠2 𝑥1 + 𝛽14 𝑐𝑜𝑠2 𝑥2 +

𝛽15 𝑐𝑜𝑠2 𝑥3 + 𝛽16 𝑐𝑜𝑠2 𝑥4)  

First order logarithmic 

multiple nonlinear 

FOLN 𝑌 =  𝛼0 + 𝛼1𝑙𝑛𝑥1 + 𝛼2𝑙𝑛𝑥2 + 𝛼3𝑙𝑛𝑥3 + 𝛼4𝑙𝑛𝑥4 

First order logarithmic 

multiple nonlinear rational 

FOLNR 𝑌 = (𝛼0 + 𝛼1𝑙𝑛𝑥1 + 𝛼2𝑙𝑛𝑥2 + 𝛼3𝑙𝑛𝑥3 + 𝛼4𝑙𝑛𝑥4)/(𝛽0 +
𝛽1𝑙𝑛𝑥1 + 𝛽2𝑙𝑛𝑥2 + 𝛽3𝑙𝑛𝑥3 + 𝛽4𝑙𝑛𝑥4)  

Second order logarithmic 

multiple nonlinear 

SOLN 𝑌 = 𝛼0 + 𝛼1𝑙𝑛𝑥1 + 𝛼2𝑙𝑛𝑥2 + 𝛼3𝑙𝑛𝑥3 + 𝛼4𝑙𝑛𝑥4 +
𝛼5 𝑙𝑛2 𝑥1 + 𝛼6 𝑙𝑛2 𝑥2 + 𝛼7 𝑙𝑛2 𝑥3 + 𝛼8 𝑙𝑛2 𝑥4 + 𝛼9𝑙𝑛𝑥1𝑥2 +

𝛼10𝑙𝑛𝑥1𝑥3 + 𝛼11𝑙𝑛𝑥1𝑥4 + 𝛼12𝑙𝑛𝑥2𝑥3 + 𝛼13𝑙𝑛𝑥2𝑥4 +
𝛼14𝑙𝑛𝑥3𝑥4  

Second order logarithmic 

multiple nonlinear rational 

SOLNR 𝑌 = (𝛼0 + 𝛼1𝑙𝑛𝑥1 + 𝛼2𝑙𝑛𝑥2 + 𝛼3𝑙𝑛𝑥3 + 𝛼4𝑙𝑛𝑥4 +
𝛼5 𝑙𝑛2 𝑥1 + 𝛼6 𝑙𝑛2 𝑥2 + 𝛼7 𝑙𝑛2 𝑥3 + 𝛼8 𝑙𝑛2 𝑥4 + 𝛼9𝑙𝑛𝑥1𝑥2 +

𝛼10𝑙𝑛𝑥1𝑥3 + 𝛼11𝑙𝑛𝑥1𝑥4 + 𝛼12𝑙𝑛𝑥2𝑥3 + 𝛼13𝑙𝑛𝑥2𝑥4 +
𝛼14𝑙𝑛𝑥3𝑥4)/(𝛽0 + 𝛽1𝑙𝑛𝑥1 + 𝛽2𝑙𝑛𝑥2 + 𝛽3𝑙𝑛𝑥3 + 𝛽4𝑙𝑛𝑥4 +
𝛽5 𝑙𝑛2 𝑥1 + 𝛽6 𝑙𝑛2 𝑥2 + 𝛽7 𝑙𝑛2 𝑥3 + 𝛽8 𝑙𝑛2 𝑥4 + 𝛽9𝑙𝑛𝑥1𝑥2 +

𝛽10𝑙𝑛𝑥1𝑥3 + 𝛽11𝑙𝑛𝑥1𝑥4 + 𝛽12𝑙𝑛𝑥2𝑥3 + 𝛽13𝑙𝑛𝑥2𝑥4 +
𝛽14𝑙𝑛𝑥3𝑥4)  

Hybrid model H 𝑌 = 𝑎0 + 𝛼1𝑆𝑖𝑛𝑥1 + 𝑎2𝑆𝑖𝑛𝑥1
2 + 𝛼3𝑆𝑖𝑛𝑥2 + 𝑎4𝑆𝑖𝑛𝑥2

2 +
𝛼5𝑆𝑖𝑛𝑥3 + 𝑎6𝑆𝑖𝑛𝑥3

2 + 𝑎7𝑆𝑖𝑛𝑥4 + 𝑎8𝑆𝑖𝑛𝑥4
2 +

𝑎9𝑆𝑖𝑛[𝑥1]𝐶𝑜𝑠[𝑥2] + 𝑎10𝑆𝑖𝑛[𝑥1]𝐶𝑜𝑠[𝑥3] +
𝑎11𝑆𝑖𝑛[𝑥1]𝐶𝑜𝑠[𝑥4] + 𝑎12𝑆𝑖𝑛[𝑥2]𝐶𝑜𝑠[𝑥3] +

𝑎13𝑆𝑖𝑛[𝑥2]𝐶𝑜𝑠[𝑥4] + 𝑎14𝑆𝑖𝑛[𝑥3]𝐶𝑜𝑠[𝑥4] + 𝑎15𝑥1 + 𝑎16𝑥1
2 +

𝑎17𝑥2 + 𝑎18𝑥2
2 + 𝑎19𝑥3 + 𝑎20𝑥3

2 + 𝑎21𝑥4 + 𝑎22𝑥4
2  
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In the optimization process, the output parameters—drawing force and thickness—will be minimized 

and maximized, respectively. To achieve this, modified versions of the differential evolution and 

simulated annealing algorithms, available within the Mathematica software, will be employed. 

The Differential Evolution (DE) algorithm in Mathematica is an evolutionary optimization method 

designed for solving complex, nonlinear, and multidimensional optimization problems. It operates by 

generating an initial population of candidate solutions and iteratively refining them through mutation, 

crossover, and selection processes to minimize or maximize the target objective function. Mutation 

creates new solutions by combining existing ones using a weighted difference. Crossover blends the 

mutated solution with a current population member to introduce variability. Selection compares the new 

candidate with its counterpart in the population and retains the better solution. These processes drive the 

algorithm toward optimal solutions [12]. 

Simulated Annealing (SA) in Mathematica is a probabilistic optimization algorithm inspired by the 

annealing process in metallurgy. The algorithm explores the solution space by probabilistically accepting 

worse solutions to escape local optima, gradually reducing the probability as the process progresses. The 

algorithm has several adjustable options, enhancing its applicability. "BoltzmannExponent" controls 

temperature decay, and "InitialPoints" defines starting locations. "LevelIterations" sets the number of 

iterations per temperature level, while "PerturbationScale" adjusts step sizes for exploration. 

"RandomSeed" ensures reproducibility, and "SearchPoints" determines the number of points evaluated, 

balancing thoroughness and computational cost. These options enable tailored optimization for diverse 

applications [13]. 

The objective function, constraints, design variables, and related details for the single-objective 

optimization problem addressed in this study are as follows. 

 
Single-Objective Problem 

Find 
{Die Angle (𝑥1)ϵ [5, 10] ∧ Bearing Length (x2)ϵ [4, 8] ∧ Friction Coefficient (𝑥3)ϵ [0.1, 0.3]  ∧

      Drawing Velocity (𝑥4)ϵ [5, 10]   

Minimize 

Drawing Force (x1, x2, x3, x4) 

Maximize 

Linear Thickness (x1, x2, x3, x4) 

Constraints 

 

Scenario 1 

5  ≤  {x1}  ≤  10, 4  ≤  {x2}  ≤  8, 0.1  ≤  {x3}  ≤ 0.3, 5  ≤  {x4}  ≤ 10 

 

Scenario 2 

 

5  ≤  {x1}  ≤  10, 4  ≤  {x2}  ≤  8, 0.1  ≤  {x3}  ≤ 0.3, 5  ≤  {x4}  ≤ 10, {x1, x2, x4}  ∈ Integers 

 

Scenario 3 
{x1}  ∈ {5, 7.5, 10}, {x2} ∈ {4, 6, 8}, {x3} ∈ {0.1, 0.2, 0.3}, {x4}  ∈ {5, 7.5, 10} 

 

Design variables 

x1, x2, x3, x4 

Mathematical modeling and optimization steps regarding tube drawing process are given in Figure 1. 

During the solution phase of the problem discussed in the study, the steps in the flow chart were followed 

to determine the best designs for different scenarios. 
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Figure 1. Flowchart of mathematical modelling and optimization process 

III. RESULTS AND DISCUSSION 

Mathematical modeling and optimization were performed using neuro-regression and stochastic search 

methods, respectively. The prediction performance evaluation of the proposed models is given in Table 3 

(drawing force) and Table 4 (linear thickness) to determine which one best describes the relationship 

between the design and output parameters. 

The performance of the neuro-regression models for predicting drawing force varies significantly across 

metrics. The R² values for training indicate high accuracy for most models, such as LR (0.999821) and 

SON (0.999939), demonstrating effective training phases. However, models like SONR and SOTNR 

exhibit extremely poor testing and validation performance, with negative R² values (e.g., -26.1326 and -

29.6735, respectively), suggesting overfitting or inconsistent predictions. Notably, these models also 

produce extreme max and min values, such as 3.29289×10
9
 and −3.28×10

15
, indicating numerical 

instability. 

Conversely, FOLNR and LR achieve robust results with R² values near 1 for both testing (0.99) and 

validation (0.99), along with stable max and min values. This indicates their suitability for predictive 

modeling in this context. FOLNR was selected as the objective function for the optimization phase 

because its minimum value indicates a significant potential for reducing drawing force, ultimately 

enhancing our design efficiency. 
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Table 3. Results of the Neuro-regression models for the drawing force 

Model* R2Training R2Testing R2Validation Max  Min 

L 0.997 0.720 0.979 6344.640 1452.040 

LR 0.999 0.988 0.985 7133.920 2261.850 

SON 0.999 0.604 0.965 7140.880 1990.210 

SONR 0.657 -26.132 -11.314 3.292*10^9 -3.280*10^15 

FOTN 0.998 0.784 0.962 6949.350 822.995 

FOTNR 0.217 -29.428 -11.724 2.501*10^7 -253126 

SOTN 0.998 0.784 0.962 6551.390 728.951 

SOTNR 0.288 -29.673 -11.731 2.209*10^10 -1.180*10^15 

FOLN 0.996 0.669 0.948 6292.820 1278.930 

FOLNR 0.999 0.998 0.989 7040.160 2107.750 

SOLN 0.998 0.784 0.962 6495.560 1427.470 

SOLNR 0.765 -5.863 -3.505 4.451*10^6 -839122 

H 0.999 0.163 0.952 7909.840 397.363 
*The full form of the models are given in Table 7 

 

For linear thickness predictions, the models again exhibit a wide performance range (Table 4). While 

models like FOTN, SOTN, and SOLN maintain high R² values across training, testing, and validation 

phases (e.g., R² for testing in FOTN = 0.783396), others like H and FOLNR struggle with extreme 

negative testing R² values (-29.8284 and -7.67847, respectively). This reflects their inability to generalize 

effectively. 

Notably, some models, such as SOTNR, produce extreme output ranges (e.g., max = 1.64689×10
6
, min 

= −82558.5), further emphasizing numerical or parameter instability. Stable models like FOTNR and 

SOLNR achieve consistent high R² values across metrics, with moderate max and min values, confirming 

their reliability. 

SOTN has the same prediction performance as FOTN, SOLN models and performs better regarding 

maximum linear thickness. However, to examine whether the SOTN, FOTN, and SOLN models will 

produce similar results in terms of minimum linear thickness under different optimization scenarios, all 

three were selected as separate objective functions. 

 

 

 
Table 4. Results of the Neuro-regression models for the linear thickness 

Model* R2Training R2Testing R2Validation Max  Min 

L 0.999 0.572 0.424 0.741 0.721 

LR 0.999 0.126 -482.807 61589.700 -8.11*10^10 

SON 0.999 0.316 0.826 0.752 0.712 

SONR 0.999 0.261 0.821 0.7515 0.711 

FOTN 0.999 0.783 0.926 0.748 0.712 

FOTNR 0.999 0.744 0.867 0.749 0.691 

SOTN 0.999 0.783 0.926 0.911 0.682 

SOTNR 0.999 0.0109 0.521 1.646*10^6 -82558.5 

FOLN 0.999 0.475 0.318 0.740 0.721 

FOLNR 0.999 -7.678 0.475 100.465 -1.48*10^12 

SOLN 0.999 0.783 0.926 0.744 0.718 

SOLNR 0.999 0.787 0.915 0.745 0.719 

H 0.999 -29.824 0.222 0.874 0.350 
*The full form of the models are given in Table 8 

The FOLNR model's optimization results reveal consistent performance across all scenarios (Table 5). 

Regardless of the constraints or optimization algorithm employed (Differential Evolution (DE) or 
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Simulated Annealing (SA)), the minimum drawing force achieved remains constant at 2107.15 kN. This 

outcome indicates an improvement of approximately 3.5% in drawing force compared to the results in the 

dataset. Furthermore, the recommended design from this model is same in the all optimization scenarios. 

This consistency highlights the FOLNR model's robustness in optimizing drawing force under varying 

conditions. 
 

 

Table 5. Results of optimization problems for drawing force 

Scenario 

Number 
Constrains 

Objective 

Function 

Optimization 

Algorithm 

Minimum 

Drawing 

Force 

Suggested 

Design 

1 

5 ≤ x1 ≤ 10, 
4 ≤ x2 ≤ 8, 

0.1 ≤ x3 ≤ 0.3, 
5 ≤ x4 ≤ 10 

 

FOLNR  

DE 2107.15 
x1: 10, x2: 4,
x3: 0.1, x4: 10, 

SA 2107.15 
x1: 10, x2: 4,
x3: 0.1, x4: 10, 

2 

5 ≤ x1 ≤ 10, 
4 ≤ x2 ≤ 8, 

0.1 ≤ x3 ≤ 0.3, 
5 ≤ x4 ≤ 10, 

{x1, x2, x4} ∈ Integers 
 

DE 2107.15 
x1: 10, x2: 4,
x3: 0.1, x4: 10, 

SA 2107.15 
x1: 10, x2: 4,
x3: 0.1, x4: 10, 

3 

x1 = 5 || x1 = 7.5 || x1 = 10, 

x2 = 4 || x2 = 6 || x2 = 8, 

x3 = 0.1 || x3 = 0.2 || x3 = 0.3, 

x4 = 5 || x4 = 7.5 || x4 = 10 

DE 2107.15 
x1: 10, x2: 4,
x3: 0.1, x4: 10, 

SA 2107.15 
x1: 10, x2: 4,
x3: 0.1, x4: 10, 

 

Table 6 illustrates how the linear thickness varies based on design parameters, considering different 

optimization scenarios, mathematical models, and optimization methods. The optimization outcomes for 

three selected models (SOTN, FOTN, and SOLN) for linear thickness vary significantly depending on the 

scenario and algorithm used. For Scenario 1, SOTN achieves the highest maximum linear thickness of 

0.911 mm with both DE and SA algorithms, outperforming FOTN and SOLN, which achieve maximum 

values of 0.748 and 0.745, respectively. 

In Scenario 2, SOTN again performs well, with maximum thickness values of 0.899 (DE) and 0.875 

(SA). In contrast, FOTN and SOLN maintain values similar to those in Scenario 1. By Scenario 3, all 

models converge to the same maximum linear thickness of 0.744, regardless of the optimization 

algorithm applied. This indicates a potential convergence or limitation in further optimizing thickness 

beyond this point. 
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Table 6. Results of optimization problems considering three selected models for linear thickness 

Scenario 

Number 
Constrains 

Objective 

Function 

Optimization 

Algorithm 

Maximum 

Linear 

Thickness 

Suggested Design 

1 

5 ≤ x1 ≤ 10, 
4 ≤ x2 ≤ 8, 

0.1 ≤ x3 ≤ 0.3, 
5 ≤ x4 ≤ 10 

 

SOTN 

 

DE 0.911 
x1: 6.283, x2: 4.934,
x3: 0.241, x4: 6.276 

SA 0.911 
x1: 6.283, x2: 4.934,
x3: 0.241, x4: 6.276 

FOTN 

DE 0.748 
x1: 9.179, x2: 5.608,
x3: 0.242, x4: 8.195 

SA 0.748 
x1: 9.179, x2: 5.608,
x3: 0.242, x4: 8.195 

SOLN 

DE 0.745 
x1: 10, x2: 5.420,
x3: 0.228, x4: 7.426 

SA 0.745 
x1: 10, x2: 5.420,
x3: 0.228, x4: 7.426 

2 

5 ≤ x1 ≤ 10, 
4 ≤ x2 ≤ 8, 

0.1 ≤ x3 ≤ 0.3, 
5 ≤ x4 ≤ 10, 

{x1, x2, x4} ∈ Integers 

SOTN 

 

DE 0.899 
x1: 6, x2: 5,
x3: 0.2419, x4: 6 

SA 0.875 
x1: 6, x2: 6,
x3: 0.2419, x4: 6 

FOTN 

DE 0.748 
x1: 9, x2: 6,
x3: 0.242, x4: 8 

SA 0.747 
x1: 9, x2: 6,
x3: 0.261, x4: 9 

SOLN 

DE 0.744 
x1: 10, x2: 5,
x3: 0.228, x4: 7 

SA 0.744 
x1: 10, x2: 5,
x3: 0.255, x4: 8 

3 

x1 = 5 || x1 = 7.5 || x1 = 10, 

x2 = 4 || x2 = 6 || x2 = 8, 

x3 = 0.1 || x3 = 0.2 || x3 = 0.3, 

x4 = 5 || x4 = 7.5 || x4 = 10 

SOTN 

 

DE 0.744 
x1: 10, x2: 6,
x3: 0.2, x4: 7.5 

SA 0.744 
x1: 10, x2: 6,
x3: 0.2, x4: 7.5 

FOTN 

DE 0.744 
x1: 10, x2: 6,
x3: 0.2, x4: 7.5 

SA 0.744 
x1: 10, x2: 6,
x3: 0.2, x4: 7.5 

SOLN 

DE 0.744 
x1: 10, x2: 6,
x3: 0.2, x4: 7.5 

SA 0.744 
x1: 10, x2: 6,
x3: 0.2, x4: 7.5 

 

IV. CONCLUSION 

This study successfully demonstrated the application of neuro-regression modeling and modified 

stochastic optimization techniques to optimize two critical parameters in the tube drawing process: 

drawing force and thickness distribution. By systematically analyzing the influences of die angle, bearing 

length, friction coefficient, and drawing velocity, the research provided a comprehensive framework for 

improving process performance. 

The models that best describe the input-output relationships for the tube drawing process were 

determined using 13 different mathematical functional forms. Performance metric R
2
 and a boundedness 

check ensured reliability and consistency. The FOLNR and SOTN models minimized drawing force to 

2107.75 kN and achieved a maximum thickness distribution of 0.911 mm. 

Moreover, adopting Differential Evolution and Simulated Annealing algorithms proved instrumental in 

surpassing prior methodologies. Compared to existing techniques, such as response surface modeling and 

artificial bee optimization, they yielded a 3.5% improvement in drawing force and an 18% enhancement 

in thickness distribution. 

These outcomes highlight the robustness and adaptability of the proposed neuro-regression and 

optimization framework, offering a valuable contribution to the tube drawing process. The methodology 

establishes a foundation for future design and optimization applications in metal forming and other 

manufacturing processes. 
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APPENDIX 

 

Table 7. Full form mathematical models for drawing force (Related to Table 3) 

L 2623.68 - 295.603 x1 + 54.5304 x2 + 15918.4 x3 - 2.55692 x4 

LR 
(-24469.9 + 23868.1 x1 - 5593.87 x2 + 1.61274*10^6 x3 + 445.591 x4)/(31.7107 + 13.3861 x1 - 

2.27088 x2 - 22.8413 x3 + 0.307225 x4) 

SON 

-1343.06 - 551.637 x1 + 50.965 x1^2 + 750.359 x2 - 13.1625 x1 x2 - 26.8984 x2^2 + 25515.6 x3 - 

2185.12 x1 x3 + 223.281 x2 x3 + 11075. x3^2 + 459.875 x4 + 9.635 x1 x4 - 44.2687 x2 x4 - 6. x3 

x4 - 18.28 x4^2 

SONR 

(5.28854 + 89.4075 x1 + 1141.18 x1^2 + 68.6839 x2 + 832.775 x1 x2 + 649.404 x2^2 + 0.0360891 

x3 + 11.298 x1 x3 + 7.35784 x2 x3 + 0.283969 x3^2 - 53.3765 x4 + 118.769 x1 x4 - 33.8006 x2 x4 - 

28.4194 x3 x4 - 1029.25 x4^2)/(83.5656 + 830.828 x1 + 19.1435 x1^2 + 5.09064 x2 - 255.251 x1 x2 

+ 179.994 x2^2 + 73.7283 x3 - 485.302 x1 x3 - 212.805 x2 x3 - 12.0177 x3^2 - 1083.41 x4 + 

75.2429 x1 x4 + 15.6012 x2 x4 + 481.127 x3 x4 + 18.5534 x4^2) 

FOTN 
-4995.88 + 1131.44 Cos[x1] + 81.3643 Cos[x2] + 5555.52 Cos[x3] - 46.211 Cos[x4] - 536.112 

Sin[x1] + 133.206 Sin[x2] + 17526. Sin[x3] - 20.2339 Sin[x4] 

FOTNR 

(-3.97133*10^6 - 8.407*10^6 Cos[x1] - 3.7267*10^6 Cos[x2] - 

3.7134*10^6 Cos[x3] - 9.00706*10^6 Cos[x4] - 

4.53562*10^6 Sin[x1] + 61172.8 Sin[x2] - 1.43369*10^6 Sin[x3] + 

2.44973*10^6 Sin[x4])/(-2.16583*10^7 + 1.75104*10^7 Cos[x1] + 
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2.29055*10^7 Cos[x2] - 2.15529*10^7 Cos[x3] + 

1.28199*10^7 Cos[x4] - 524641. Sin[x1] - 3.20662*10^7 Sin[x2] - 

4.35674*10^6 Sin[x3] + 2.84404*10^6 Sin[x4]) 

SOTN 

92.076 + 644.413 Cos[x1] - 665.792 Cos[x1]^2 + 103.046 Cos[x2] + 

92.8243 Cos[x2]^2 + 109.206 Cos[x3] + 112.143 Cos[x3]^2 + 

0.427725 Cos[x4] + 193.292 Cos[x4]^2 - 501.108 Sin[x1] + 

234.38 Sin[x1]^2 + 114.619 Sin[x2] + 145.62 Sin[x2]^2 + 

17568.6 Sin[x3] - 2788.12 Sin[x3]^2 - 23.586 Sin[x4] + 

107.089 Sin[x4]^2 

SOTNR 

(-77401.3 + 26060.1 Cos[x1] - 33828.5 Cos[x1]^2 - 95278. Cos[x2] - 

111619. Cos[x2]^2 - 77571. Cos[x3] - 77700.5 Cos[x3]^2 + 

68191.7 Cos[x4] - 56542.3 Cos[x4]^2 + 32479.9 Sin[x1] - 

43571.8 Sin[x1]^2 + 111536. Sin[x2] + 34218.7 Sin[x2]^2 - 

5973.12 Sin[x3] + 300.142 Sin[x3]^2 + 34561.9 Sin[x4] - 

20858. Sin[x4]^2)/(-15567.4 - 7194.87 Cos[x1] + 

270.526 Cos[x1]^2 - 21126. Cos[x2] - 8692.7 Cos[x2]^2 + 

11873. Cos[x3] + 35410.3 Cos[x3]^2 + 3979.24 Cos[x4] - 

6480.17 Cos[x4]^2 + 15400.5 Sin[x1] - 15836.9 Sin[x1]^2 - 

18930.6 Sin[x2] - 6873.69 Sin[x2]^2 + 36628.1 Sin[x3] - 

50976.7 Sin[x3]^2 - 2731.33 Sin[x4] - 9086.23 Sin[x4]^2) 

FOLN 
12291.1 - 2177.96 Log[x1] + 355.048 Log[x2] + 2895.79 Log[x3] + 

110.791 Log[x4] 

FOLNR 

(28028.8 + 69.1982 Log[x1] + 629.745 Log[x2] + 5315.24 Log[x3] + 

57.1559 Log[x4])/(-3.48448 + 2.39472 Log[x1] - 0.178325 Log[x2] - 

2.68364 Log[x3] + 0.0356056 Log[x4]) 

SOLN 

19784.7 - 1836.43 Log[x1] + 621.671 Log[x1]^2 - 1750.96 Log[x2] - 

297.06 Log[x2]^2 - 906.573 Log[x1 x2] + 2431.86 Log[x3] + 

1336.38 Log[x3]^2 - 966.008 Log[x1 x3] + 4938.29 Log[x2 x3] - 

1645.84 Log[x4] + 572.085 Log[x4]^2 - 876.552 Log[x1 x4] - 

856.008 Log[x2 x4] + 1203.13 Log[x3 x4] 

SOLNR 

(-62613.3 + 169181. Log[x1] + 910565. Log[x1]^2 - 388058. Log[x2] - 

1.19078*10^6 Log[x2]^2 - 218878. Log[x1 x2] - 56883.4 Log[x3] + 

288244. Log[x3]^2 + 112296. Log[x1 x3] - 444942. Log[x2 x3] - 

11709.7 Log[x4] + 229447. Log[x4]^2 + 157470. Log[x1 x4] - 

399769. Log[x2 x4] - 68594.2 Log[x3 x4])/(-6536.51 - 

1803.26 Log[x1] + 1032.86 Log[x1]^2 + 3749.98 Log[x2] - 

4674.99 Log[x2]^2 + 1945.72 Log[x1 x2] + 402.4 Log[x3] + 

1220.27 Log[x3]^2 - 1401.86 Log[x1 x3] + 4151.38 Log[x2 x3] - 

141.234 Log[x4] - 417.734 Log[x4]^2 - 1945.49 Log[x1 x4] + 

3607.75 Log[x2 x4] + 260.166 Log[x3 x4]) 

H 

277.631 - 110.818 x1 - 19.083 x1^2 + 111.219 x2 + 23.2752 x2^2 + 

8861.08 x3 - 2134.5 x3^2 + 36.2057 x4 + 4.21497 x4^2 - 

13524.7 Sin[x1] - 27.3716 Cos[x2] Sin[x1] + 

13742.8 Cos[x3] Sin[x1] + 167.816 Cos[x4] Sin[x1] - 

531.801 Sin[x1]^2 + 2999.71 Sin[x2] - 3911.14 Cos[x3] Sin[x2] - 
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368.964 Cos[x4] Sin[x2] + 459.576 Sin[x2]^2 + 9244.6 Sin[x3] - 

143.196 Cos[x4] Sin[x3] + 456.96 Sin[x3]^2 - 170.588 Sin[x4] + 

287.886 Sin[x4]^2 

 

Table 8. Full form mathematical models for linear thickness (Related to Table 4) 

L 0.71522 + 0.00262113 x1 - 0.00110096 x2 + 0.00399257 x3 + 0.000302629 x4 

LR 
(6424.69 - 350.729 x1 - 220.269 x2 - 18773.7 x3 + 534.08 x4)/(8870.85 - 491.475 x1 - 296.943 x2 - 

25679.6 x3 + 727.546 x4) 

SON 

0.681594 - 0.00451145 x1 + 0.000432234 x1^2 + 0.0170472 x2 - 

0.000142 x1 x2 - 0.00168202 x2^2 - 0.0309312 x3 + 0.0197017 x1 x3 - 

0.00082375 x2 x3 - 0.145554 x3^2 + 0.00403197 x4 - 

0.00027776 x1 x4 + 0.000454615 x2 x4 - 0.007591 x3 x4 - 

0.000219814 x4^2 

SONR 

1.0446 + 0.313529 x1 + 0.842216 x1^2 + 2.43377 x2 + 0.725672 x1 x2 + 

0.656257 x2^2 + 1.03211 x3 + 1.09017 x1 x3 + 0.957645 x2 x3 + 

0.98289 x3^2 - 0.385654 x4 + 0.768286 x1 x4 + 1.16984 x2 x4 + 

0.631771 x3 x4 + 0.989831 x4^2)/(0.975753 + 1.51137 x1 + 

0.936391 x1^2 - 0.0102155 x2 + 1.00685 x1 x2 + 1.50946 x2^2 + 

0.977804 x3 + 0.93253 x1 x3 + 1.03718 x2 x3 + 1.01257 x3^2 + 

2.07171 x4 + 1.14563 x1 x4 + 1.13556 x2 x4 + 1.27885 x3 x4 + 

1.30521 x4^2) 

FOTN 
0.567201 - 0.0105753 Cos[x1] + 0.00416971 Cos[x2] + 0.15867 Cos[x3] - 0.000453084 Cos[x4] + 

0.00264954 Sin[x1] - 0.00334137 Sin[x2] + 0.0391829 Sin[x3] + 0.00127612 Sin[x4] 

FOTNR 

(4.51971 - 2.16554 Cos[x1] + 1.67597 Cos[x2] + 4.66224 Cos[x3] - 2.07675 Cos[x4] - 1.03701 

Sin[x1] - 0.672079 Sin[x2] + 1.67333 Sin[x3] + 0.922599 Sin[x4])/(6.4142 - 2.72476 Cos[x1] + 

2.22719 Cos[x2] + 6.14877 Cos[x3] - 2.82448 Cos[x4] - 1.45908 Sin[x1] - 0.859773 Sin[x2] + 

2.12949 Sin[x3] + 1.25614 Sin[x4]) 

SOTN 

0.101216 + 0.0260418 Cos[x1] + 0.190432 Cos[x1]^2 + 

0.0169426 Cos[x2] + 0.111765 Cos[x2]^2 + 0.104922 Cos[x3] + 

0.108792 Cos[x3]^2 + 0.0319255 Cos[x4] + 0.183903 Cos[x4]^2 + 

0.000017799 Sin[x1] + 0.122753 Sin[x1]^2 - 0.0142914 Sin[x2] + 

0.142868 Sin[x2]^2 + 0.0396034 Sin[x3] + 0.0801706 Sin[x3]^2 - 

0.00105099 Sin[x4] + 0.124058 Sin[x4]^2 

SOTNR 

(1.47012 - 2.56392 Cos[x1] + 2.77263 Cos[x1]^2 - 1.06712 Cos[x2] + 

0.751662 Cos[x2]^2 + 3.06648 Cos[x3] + 4.43929 Cos[x3]^2 + 

0.326786 Cos[x4] + 1.64855 Cos[x4]^2 - 6.28028 Sin[x1] - 

0.302514 Sin[x1]^2 - 0.132674 Sin[x2] + 1.71846 Sin[x2]^2 + 

2.97457 Sin[x3] - 1.96917 Sin[x3]^2 + 5.0326 Sin[x4] + 

0.821566 Sin[x4]^2)/(4.21771 - 3.78297 Cos[x1] + 

4.08472 Cos[x1]^2 - 1.43062 Cos[x2] + 1.82546 Cos[x2]^2 + 

3.06354 Cos[x3] + 2.06802 Cos[x3]^2 - 0.0704316 Cos[x4] + 

2.68228 Cos[x4]^2 - 8.66376 Sin[x1] + 1.13299 Sin[x1]^2 - 

0.256789 Sin[x2] + 3.39226 Sin[x2]^2 - 0.0118233 Sin[x3] + 

3.1497 Sin[x3]^2 + 6.92547 Sin[x4] + 2.53543 Sin[x4]^2) 
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FOLN 0.701008 + 0.0177726 Log[x1] - 0.0049933 Log[x2] + 0.000845078 Log[x3] + 0.00261696 Log[x4] 

FOLNR 
(16.283 - 19.9253 Log[x1] - 9.78662 Log[x2] + 11.6147 Log[x3] + 39.3988 Log[x4])/(22.8004 - 

27.8155 Log[x1] - 13.2257 Log[x2] + 15.7716 Log[x3] + 53.9476 Log[x4]) 

SOLN 

0.558673 + 0.0170657 Log[x1] + 0.0276777 Log[x1]^2 + 

0.0393459 Log[x2] - 0.0626481 Log[x2]^2 + 0.013662 Log[x1 x2] - 

0.0294786 Log[x3] - 0.00226278 Log[x3]^2 - 0.130754 Log[x1 x3] + 

0.14297 Log[x2 x3] + 0.0245326 Log[x4] - 0.0153018 Log[x4]^2 + 

0.0104655 Log[x1 x4] + 0.015783 Log[x2 x4] + 0.0105777 Log[x3 x4] 

SOLNR 

(-0.438269 - 0.322369 Log[x1] + 1.17153 Log[x1]^2 + 2.29937 Log[x2] - 

0.671994 Log[x2]^2 + 0.977002 Log[x1 x2] + 0.55317 Log[x3] + 

1.60738 Log[x3]^2 - 0.769199 Log[x1 x3] + 1.85254 Log[x2 x3] + 

1.20105 Log[x4] + 1.53078 Log[x4]^2 - 0.121316 Log[x1 x4] + 

2.50042 Log[x2 x4] + 0.754223 Log[x3 x4])/(2.20965 + 

1.74689 Log[x1] - 0.353022 Log[x1]^2 + 0.0503287 Log[x2] + 

1.86856 Log[x2]^2 + 0.797218 Log[x1 x2] + 0.684186 Log[x3] + 

2.14482 Log[x3]^2 + 1.43108 Log[x1 x3] - 0.265485 Log[x2 x3] + 

1.47284 Log[x4] + 2.2118 Log[x4]^2 + 2.21973 Log[x1 x4] + 

0.523173 Log[x2 x4] + 1.15703 Log[x3 x4]) 

H 

0.101686 + 0.00867342 x1 + 0.000708469 x1^2 + 0.0165168 x2 + 

0.00223175 x2^2 - 0.00807968 x3 + 0.222682 x3^2 + 0.00834084 x4 + 

0.000476501 x4^2 - 0.251894 Sin[x1] + 0.00596318 Cos[x2] Sin[x1] + 

0.239237 Cos[x3] Sin[x1] - 0.0137572 Cos[x4] Sin[x1] + 

0.123966 Sin[x1]^2 - 0.0190306 Sin[x2] - 0.0786376 Cos[x3] Sin[x2] - 

0.0371437 Cos[x4] Sin[x2] + 0.0387822 Sin[x2]^2 - 0.012294 Sin[x3] - 

0.290306 Cos[x4] Sin[x3] + 0.145279 Sin[x3]^2 - 0.0120116 Sin[x4] + 

0.174433 Sin[x4]^2 

 


