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Abstract – This thesis delves into the transformative role of deep learning techniques in predictive 

maintenance, with a focused investigation on the cost functions used in the evaluation and optimization of 

predictive models. Both linear and nonlinear forms of the cost function are explored to enhance the 

performance and precision of machine learning models in predictive maintenance scenarios. The study 

demonstrates how these cost functions can be tailored to effectively predict equipment failure, whether 

through binary classification for failure detection or more complex multi-class classification tasks. The 

research underscores the importance of cost function selection in balancing accuracy and computational 

efficiency, offering practical insights for industries reliant on continuous operations. By improving early 

detection of failures, this work aims to minimize downtime and prolong the operational life of machinery, 

ultimately reducing maintenance costs and increasing overall system reliability.  
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I. INTRODUCTION 

In the industrial landscape, where operational efficiency and sustainability are critical, predictive 

maintenance technology has emerged as a transformative solution. This innovative approach harnesses the 

power of advanced data analytics, machine learning, and IoT to preempt equipment failures, ensuring 

seamless production and operational longevity. Unlike traditional reactive or preventative maintenance, 

predictive strategies revolutionize asset management by enabling real-time monitoring and preemptive 

action based on machine health insights. 

 By leveraging sensor data and AI algorithms, manufacturers can predict and prevent breakdowns, 

reducing downtime and operational disruptions. As noted by Oleg Fonarov, founder of Program-Ace, 

predictive maintenance facilitated by digital twins can increase equipment uptime by 10–20% and decrease 

maintenance costs by 5–10% (Fonarov) , while enhancing overall efficiency and sustainability . 

https://as-proceeding.com/index.php/ijanser
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Moreover, the advent of Industry 4.0 has amplified the potential of predictive maintenance. 

Sophisticated analytics derived from sensor data not only improve safety and productivity but also align 

industrial operations with sustainability goals. Predictive strategies significantly reduce waste and 

environmental impact, creating a more resilient and adaptive industrial ecosystem. As a pivotal aspect of 

modern industrial innovation, predictive maintenance exemplifies the shift toward a data-driven, proactive 

approach, fostering long-term economic and ecological benefits.The significance of predictive maintenance 

extends beyond efficiency and cost reduction. Its applications in diverse industries, from aerospace to water 

management, highlight its versatility and transformative potential. For instance, Rolls-Royce (Olavsrud) 

leveraged digital twins for jet engine monitoring, achieving a 50% increase in maintenance intervals while 

reducing carbon emissions . Similarly, AI-driven predictive maintenance strategies can slash downtime by 

up to 50% and reduce maintenance costs by 10%, demonstrating its broad applicability and profound impact 

on industrial operations  

This research delves into the principles, advancements, and applications of predictive maintenance 

technology, aiming to explore its transformative role in reshaping the future of industrial maintenance and 

operational efficiency.  

II. MATERIALS AND METHOD 

Precision and Recall : A Comprehensive Guide to Model Evaluation Metrics 

In the field of machine learning, especially in classification tasks, evaluating the performance of a 

model is crucial to ensure that it generalizes well and produces reliable predictions. Common metrics used 

for evaluating classification models include Precision and Recall. These metrics are particularly important 

in cases where imbalanced data or high consequences of misclassification exist. In this extended discussion, 

we’ll explore the definitions, importance, and applications of each metric, and also discuss why they are 

critical to assessing model performance. 

1. Precision 

Definition: 

Precision is a metric used to measure the accuracy of the positive predictions made by a model. It is 

calculated as the ratio of correctly predicted positive observations to the total predicted positives. In simple 

terms, it answers the question: Of all the instances that the model predicted as positive, how many were 

actually positive? 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ( 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃))/ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃) + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) 

Importance: 

 Precision is particularly useful when the cost of false positives is high. False positives occur when 

a model incorrectly predicts a positive outcome for a negative case. In many applications, this kind of error 

can have significant negative consequences. 

For example, consider a fraud detection system used by a bank. A false positive in this context 

would mean incorrectly flagging a legitimate transaction as fraudulent. While such an error does not mean 

a crime was missed, it could cause unnecessary inconvenience to the customer and waste resources on 

investigating a legitimate transaction. Therefore, in such cases, precision is critical. A model with high 

precision ensures that when it predicts a transaction to be fraudulent, it is likely to be correct. 
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Another example could be in the context of email spam detection. If the model incorrectly flags a 

legitimate email as spam, it might result in important communications being missed. Precision in this case 

helps in minimizing such errors. 

2. Recall 

Definition: 

 Recall, also known as Sensitivity or True Positive Rate, measures the ability of a model to correctly 

identify all actual positive instances. It is the ratio of correctly predicted positive observations to the total 

actual positives. In simpler terms, it answers the question: Of all the actual positives, how many did the 

model correctly identify? 

𝑅𝑒𝑐𝑎𝑙𝑙 = ( 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃))/ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁) + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) 

Importance: 

 Recall is important when the cost of false negatives is high. A false negative occurs when a model 

incorrectly predicts a negative outcome for a positive case. This error can be critical, particularly in fields 

such as healthcare, where missing a disease diagnosis can be life-threatening, or in security, where failing 

to detect an intruder can have serious consequences. 

For example, in medical diagnostics, imagine a cancer detection model. A false negative would 

mean the model fails to identify a patient who actually has cancer. This could lead to the patient not 

receiving timely treatment, which could worsen their condition. In such cases, recall becomes crucial 

because identifying as many positive cases as possible is a matter of life and death. 

Similarly, in the context of a spam filter, recall would be important if the goal is to catch as many 

spam emails as possible. Missing out on a spam email would mean that unwanted content still reaches the 

user’s inbox. 

Why Precision and Recall Matter 

The evaluation of a classification model goes beyond just measuring how accurate it is. Precision 

and recall provide insights into different types of misclassifications and allow you to assess how well the 

model handles both false positives and false negatives. 

Precision: Focus on False Positives 

Precision specifically addresses the problem of false positives. It is particularly important when the 

consequences of falsely identifying a positive case are severe, leading to wasted resources, false alarms, or 

customer dissatisfaction. By maximizing precision, you reduce the chance of making these costly errors. 

Recall: Focus on False Negatives 

Recall focuses on false negatives and is most valuable when the cost of missing a true positive is 

high. In situations like medical diagnoses or fraud detection, failing to identify positive cases can have 

severe implications. Therefore, maximizing recall ensures that as many true positives as possible are 

identified, even at the risk of allowing some false positives. 
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Cost Analysis Using Performance Metrics 

A unique aspect of this study is the incorporation of a cost equation to quantify the economic 

implications of model performance. By integrating recall and precision values into a cost function, the study 

evaluates the trade-offs between detection rates, false alarms, and the financial investment required per 

period. Specific values for costs and investments are defined, providing a clear framework for assessing the 

economic impact of the model’s predictions. 

The cost equation used in this study is extended to include the summation of all identified failures, 

accounting for their respective costs and the associated economic consequences. This holistic approach 

ensures that the analysis captures the broader financial implications of the model’s performance, offering 

valuable insights for decision-making in industrial operations. 

The cost Function 

The cost function provided is a comprehensive model that calculates the total cost incurred by a 

machine or system in relation to its failures, detection accuracy, and system maintenance. It takes into 

account various factors, such as the number of failures detected, the cost associated with fixing these 

failures, the precision of the machine learning model, and the cost of failures that go undetected. Let's break 

this cost function down in detail and explore each of its components. 

The cost function is given by the equation: 

𝐶𝑜𝑠𝑡 =  𝐹𝑑 ∗ 𝐶𝑑 ∗ 𝑃𝑟 + 𝐹𝑑 ∗ 𝐶𝑑 ∗ (1 + 𝐾) ∗ (1 − 𝑅𝑐)  +  𝐼 

𝐹𝑑  is the number of failures detected by the machine per period  

𝐶𝑑 is the cost of fixing the component or machine of detectable failure 

𝑃𝑟 is the cost of precision of the model  

k is the percentage of difference between the cost of fixing a detectable failure and undetectable 

failure 

𝑅𝑐 is the recall of the machine learning model 

k is the percentage value of how much is the undetectable failure cost is higher than the detectable 

failure cost 

The Relationship Between Detectable and Undetectable Failures 

The first key distinction in the cost function is between detectable and undetectable failures. 

Detectable failures are those that the system is able to identify with its sensors and algorithms. These 

failures are relatively easier to fix since the system has provided an early warning, allowing for preventive 

measures to be taken. The cost associated with fixing these failures is represented by 𝐶𝑑, and this is 

multiplied by 𝐹𝑑, the number of failures detected, and 𝑃𝑟, the precision of the model. The lower the 

precision, the higher the potential for misclassification, which could lead to additional costs. However, the 

essential characteristic of detectable failures is that they can be mitigated before they escalate into more 
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severe issues, which is why the cost associated with them, 𝐶𝑑, is generally lower than the cost of fixing 

undetectable failures. 

Undetectable failures pose a significant challenge in various industries, particularly in high-risk 

environments such as aerospace and manufacturing. These failures are not immediately detectable by 

conventional monitoring systems, making them particularly dangerous because they can cause major 

disruptions to operations, production, or even catastrophic events. Unlike detectable failures, which are 

identified and rectified before they escalate, undetectable failures often go unnoticed until they result in 

unplanned downtimes, operational halts, and costly repairs. 

For example, in the aerospace industry, undetectable failures can occur in critical components like 

turbine engines or hydraulic systems, which are designed to function under extreme conditions. These 

failures are often not visible or audible to sensors during regular maintenance checks, and they may only 

become apparent after causing significant damage. For instance, a slight crack in a turbine blade, which 

remains undetected during routine inspections, could lead to engine failure during flight, potentially causing 

catastrophic consequences. The repair cost of such undetectable failures often surpasses the cost of easily 

detectable failures, such as a malfunctioning sensor or an unbalanced rotor. 

To quantify this difference in cost, let’s assume that fixing a detectable failure in an aerospace 

engine, such as a malfunctioning sensor, costs 𝐶𝑑. However, if an undetectable failure occurs, such as a 

microscopic crack in a critical component that goes unnoticed, the repair cost may be 𝐶𝑑×(1+k), where k 

represents the percentage by which the undetectable failure repair cost exceeds the cost of fixing a 

detectable failure. The value of k could vary depending on the severity of the failure and the complexity of 

the repair, but it typically ranges between 30% to 100%, or even more in extreme cases where extensive 

overhaul is required. 

Example: 

 Consider a scenario in an aerospace setting where a turbine blade develops a minor crack that is not 

detected during routine maintenance. While a detectable issue, such as a broken sensor, might cost around 

$50,000 to fix, the undetected crack in the turbine could result in a complete engine overhaul costing 

$150,000, which includes unplanned downtimes, extensive diagnostics, and the replacement of the 

damaged parts. In this case, k = 2, meaning the cost of fixing the undetectable failure is 200% higher than 

the detectable failure. 

Undetectable failures not only increase repair costs but also extend downtime, leading to missed 

production schedules, especially in high-stakes industries like aerospace. These failures require more time 

and resources to identify, typically involving more sophisticated diagnostic tools and procedures. 

Moreover, undetected issues can cause a cascading effect on other systems, leading to further failures and 

increased operational risks. 

In industries such as aerospace, early detection of failures is vital for minimizing these costs. 

Technologies like predictive maintenance, utilizing sensors, machine learning algorithms, and real-time 

monitoring systems, are increasingly employed to detect signs of undetectable failures before they escalate 

into catastrophic events. However, the challenge remains to effectively reduce the occurrence of 

undetectable failures, particularly in complex systems where numerous variables are at play. 
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Precision and Recall in the Model 

The model also incorporates two important metrics used to evaluate the performance of failure detection 

systems: precision and recall. 

● Precision (𝑃𝑟) measures how accurate the model is when it identifies a failure. A high precision 

means that when the system predicts a failure, it is likely to be correct. This is important because, 

with high precision, we incur fewer costs in fixing failures that were wrongly identified as 

problematic. Precision is a direct cost factor in the equation since it impacts the total cost of dealing 

with detectable failures. 

● Recall (𝑅𝑐), on the other hand, measures how well the system identifies actual failures. A high recall 

means that most of the actual failures are detected by the system. If recall is low, it indicates that 

many failures are going undetected, leading to higher costs for undetectable failures. The recall 

value is used in the cost function to adjust the cost of fixing undetectable failures. Specifically, the 

cost of undetectable failures is increased when recall is lower, as the system misses more failures, 

thereby incurring higher costs. 

The logic behind precision and recall in this equation is rooted in the performance of the detection 

system. A high precision means that the system is more accurate when it predicts failures, reducing 

unnecessary fixes and associated costs. On the other hand, a high recall means that fewer failures go 

undetected, minimizing the risk of catastrophic failure that would result in substantial unplanned costs. 

The Role of Initial Investment 

In addition to the ongoing costs of failure detection and repair, the cost function also includes an 

initial investment (I), which represents the cost of implementing the predictive model and maintaining the 

system. This investment can be broken down into several components, including the cost of purchasing the 

machine learning model, operator man-hours for running and maintaining the system, and any other 

associated operational costs. This initial investment is incurred periodically, such as on a monthly basis, 

and is a fixed cost that must be considered when calculating the total cost of maintaining the system. Even 

if the machine does not experience failures during a particular period, the operational and maintenance 

costs still need to be accounted for. 

The Impact of Undetectable Failures 

A significant portion of the cost in this model comes from undetectable failures. When the system 

fails to detect an actual problem, the consequences can be severe. These failures often result in unanticipated 

downtime, which directly impacts the production process and leads to lost revenue. For example, if a 

machine experiences a failure that the system does not detect, it may continue to operate in a compromised 

state, causing further damage or reducing the efficiency of the system. This increases the likelihood of 

requiring expensive repairs, potentially including the replacement of components that could have been 

serviced earlier if the failure had been detected. 

In this context, undetectable failures are often the most costly because they are unpredictable. The 

ability to prevent these failures through early detection is the main benefit of predictive maintenance 

systems, which is why improving recall is essential. A failure that is detected early on can be addressed in 

a timely manner, reducing the potential for catastrophic damage. On the other hand, if a failure is not 
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detected, it may escalate into a system breakdown, leading to a much higher cost due to the need for 

emergency repairs, downtime, and lost production opportunities. 

Understanding the Economics of Detectable vs. Undetectable Failures 

The fundamental distinction between detectable and undetectable failures forms the backbone of 

the cost model. This separation allows for a clearer understanding of the costs associated with different 

types of failures and provides a basis for decision-making around system improvements, investments, and 

operational strategies. As mentioned, detectable failures are those that can be identified and mitigated by 

the predictive maintenance system, while undetectable failures are the ones that the system misses, leading 

to unexpected and costly consequences. 

Detectable failures typically have lower costs associated with them because they are identified early 

on. Early detection allows for preventive maintenance, which involves addressing the failure before it 

results in significant damage. This early intervention ensures that repairs can be planned, minimizing 

system downtime and preventing the failure from escalating. Furthermore, detectable failures often lead to 

relatively low repair costs since the components or machines affected are typically still operable to some 

extent, and only a small intervention (such as a component replacement or calibration) is needed. 

However, the undetectable failures introduce substantial risk and higher costs. These failures are 

more challenging to detect because the system is either unaware of the impending problem or has missed 

signals that would indicate failure. The impact of undetectable failures can range from minor to 

catastrophic. In many industrial settings, the failure of a single critical component can result in significant 

production delays, costly system overhauls, or even irreversible damage to the machinery or system. These 

consequences contribute to the much higher cost associated with undetectable failures, represented by the 

variable 𝐶𝑑 ∗ (1 + 𝐾) in the equation. 

Moreover, the system's failure to detect these problems also leads to additional, often unseen, costs. 

For example, undetected failures can lead to unplanned downtime, where the machine or system is out of 

operation due to the failure's unexpected nature. This downtime often results in significant productivity 

losses, which is not only a direct loss in revenue but also can have a cascading effect on the supply chain, 

delaying deliveries, and affecting customer satisfaction. For businesses relying on continuous production, 

this can translate into penalties, reputational damage, and even the loss of customers. 

The Trade-Off Between Precision and Recall 

One of the most challenging aspects of predictive maintenance systems is the trade-off between 

precision and recall. Improving recall often leads to a decrease in precision, and vice versa. This trade-off 

arises because, to increase recall, the system may become more sensitive to potential failures, leading to 

more failures being flagged, including some that don't require intervention. This improves recall but may 

reduce precision. On the other hand, improving precision often involves making the system more 

conservative in its failure detection, which may result in fewer failures being detected but with higher 

accuracy. 

In practice, organizations need to balance these two metrics based on the specific needs of their 

operations. For example, in high-risk industries like aviation or oil and gas, where undetectable failures can 

lead to catastrophic consequences, the priority may be to improve recall, even at the cost of reducing 
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precision. In such cases, the financial impact of missing a failure (and potentially leading to system failure 

or disaster) is far greater than the cost of flagging a few non-critical failures. 

Conversely, in environments where downtime and maintenance costs are a critical concern but the 

consequences of undetectable failures are less severe, businesses may prioritize precision. By focusing on 

reducing false positives, these organizations can save on unnecessary repairs, prevent over-maintenance, 

and optimize their resources. However, even with a focus on precision, some level of recall must still be 

maintained to prevent catastrophic system failures. 

Thus, the cost function is dynamic, as it responds to the balance between precision and recall, which 

in turn affects the number of failures detected and the costs associated with those failures. The ultimate 

goal is to achieve an optimal point where the system detects a sufficient number of failures without flagging 

too many false alarms, reducing the overall operational cost while minimizing the risk of catastrophic 

failures. 

Initial Investment and Long-Term Savings 

Another critical aspect of this cost model is the inclusion of the initial investment (I), which accounts 

for the costs associated with setting up the predictive maintenance system. These costs typically include 

purchasing the necessary sensors, software, and hardware, as well as the manpower required to implement, 

operate, and maintain the system. 

While the initial investment may seem like a significant expense, it is important to recognize that 

this investment is aimed at preventing much higher costs in the long run. Predictive maintenance systems 

are designed to reduce the overall cost of failure detection and repair by improving the precision and recall 

of the system. In turn, this minimizes the occurrence of undetectable failures and unnecessary repairs. The 

initial investment, therefore, pays for itself over time through savings from reduced downtime, fewer 

catastrophic failures, and optimized resource utilization. 

However, the effectiveness of the system in delivering these savings depends heavily on how well 

the system is maintained and calibrated. Regular updates and proper maintenance of the predictive model 

are crucial to ensuring that the system remains accurate and reliable. The operator man hours cost included 

in the equation represents the ongoing efforts needed to maintain the system's functionality, update its 

models, and ensure that it continues to deliver value over time. 

Cost failure analysis when there are multiple failure classes 

We can expand our cost model further since we have multiple types of failures into the following 

expansion 

𝐶𝑜𝑠𝑡 =  𝐹𝑑 ∗ 𝐶𝑑 ∗ 𝑃𝑟 + 𝐹𝑑 ∗ 𝐶𝑑 ∗ (1 + 𝑘) ∗ (1 − 𝑅𝑐)  +  𝐼 

 

𝐶𝑜𝑠𝑡𝑇𝑂𝑇𝐴𝐿  = ∑𝑛
𝑖  𝐶𝑜𝑠𝑡𝑖  =  𝐼 + ∑𝑛

𝑖  𝐹𝑑𝑖 ∗ 𝐶𝑑𝑖 ∗ 𝑃𝑟𝑖 + 𝐹𝑑𝑖 ∗ 𝐶𝑑 ∗ (1 + 𝑘𝑖) ∗ (1 − 𝑅𝑐𝑖) 
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𝐶𝑜𝑠𝑡𝑇𝑂𝑇𝐴𝐿 is assumed to be the total cost of the sumatıon of all the costs of the predıctıve 

maintenance program given the period . This form is used when there are multiple failure types in a multi-

classification problem in order to take into account the different precions and recalls of each failure type 

since we may have multiple failure types. 

𝐶𝑜𝑠𝑡𝑇𝑂𝑇𝐴𝐿  = ∑𝑛
𝑖  𝐶𝑜𝑠𝑡𝑖  

𝐶𝑜𝑠𝑡𝑇𝑂𝑇𝐴𝐿  = 𝐶𝑜𝑠𝑡𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 +  𝐶𝑜𝑠𝑡𝑇𝑜𝑜𝑙 𝑊𝑒𝑎𝑟 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 + 𝐶𝑜𝑠𝑡𝑂𝑣𝑒𝑟𝑠𝑡𝑟𝑎𝑖𝑛 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 + 𝐶𝑜𝑠𝑡𝐻𝑒𝑎𝑡 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

+ 𝐶𝑜𝑠𝑡𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

Final Thoughts on Total Cost Calculation: 

By plugging in the precision, recall, and failure detection information for each failure type, we can 

compute the cost of predictive maintenance for each failure type and then sum them to get the total cost. 

The precision and recall values significantly influence the cost, particularly the costs associated with 

undetected failures, which can be high in failure types with lower recall. 

The extended cost model provides a comprehensive framework for evaluating and optimizing a 

predictive maintenance program. It incorporates both the cost of detecting failures and the cost of failing to 

detect them, ensuring a balanced and informed approach to maintenance strategies. 

The initial investment, I, is assumed to be unified due to its singular nature as an upfront cost. This 

includes the cost of a software subscription or maintenance service, which remains consistent regardless of 

the types of failures considered. However, investments may vary depending on different SaaS payment 

structures, which are often piecewise and not fixed. 

Nonlinearization of the cost function to mimic real-world behavior  

In real-world scenarios, failures often lead to a drastic increase in costs, especially when these 

failures are compounded over a given period. The more frequently an event occurs, the higher the likelihood 

that it could lead to a catastrophic failure, which not only affects the operation but can also have a significant 

financial impact. This is particularly important in industries where safety, regulations, and the nature of the 

equipment amplify the consequences of a failure. For instance, a failure in an airliner or a rocket is much 

more expensive compared to a failure in a textile machine. The cost discrepancy stems from several factors, 

including the complexity of the machinery, the safety standards required in those industries, and the far-

reaching effects of a failure, such as loss of life or environmental damage. 

Recognizing this complexity, I have devised a method to account for the non-linear escalation of 

failure costs over time. This method incorporates two parameters—alpha and beta—that are designed to 

reflect the real-world behavior of cost accumulation due to failures. 

𝐶𝑜𝑠𝑡 =  𝝰[𝐹𝑑 ∗ 𝐶𝑑 ∗ 𝑃𝑟]𝛃 + 𝝰[𝐹𝑑 ∗ 𝐶𝑑 ∗ (1 + 𝑘) ∗ (1 − 𝑅𝑐) ]𝛃 +  𝐼 

Alpha is an industry-specific parameter. In certain industries, a failure may carry a higher financial 

burden due to industry-specific factors such as stringent safety regulations, legal requirements, and public 

safety concerns. For example, the aerospace industry deals with incredibly high costs in the event of a 

failure because of safety protocols, insurance liabilities, and the potential for catastrophic outcomes. In 

contrast, industries like textiles might not face the same level of scrutiny or high-risk outcomes, so the 
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failure costs are generally lower. By incorporating alpha, I can model how different industries will be 

affected differently by failures, allowing for a more accurate reflection of their specific cost structures. 

Beta, on the other hand, is a machine-specific parameter that accounts for the likelihood of failure 

based on the complexity of the machinery in question. More complex machines—such as aircraft or 

industrial robots—tend to have a higher likelihood of failure simply due to the intricacies of their design, 

the number of components involved, and the operational environments they function in. As complexity 

increases, the failure rate tends to grow non-linearly, meaning that as machines age or accumulate more 

failures, the cost of failure compounds, often leading to a steeper increase in maintenance and repair costs. 

By introducing beta, I can model this compounding effect, which is crucial for predicting and managing 

long-term maintenance expenses, particularly for high-complexity machines. 

To determine the values for alpha and beta, a predictive maintenance operator can approach the task 

in two ways. One option is to choose arbitrary values for these parameters based on industry standards, 

available knowledge, or estimates of potential failure costs. This method can provide a quick approximation 

of failure costs, though it may not be as precise. The second, more accurate method involves fitting these 

parameters using historical cost data through a nonlinear regression function. By analyzing past data, the 

operator can identify trends in failure costs over time and adjust the values of alpha and beta to better match 

the specific cost dynamics of their equipment and industry. This approach ensures that the cost function is 

as accurate as possible, making the predictive maintenance model more reliable and effective in forecasting 

future costs and maintenance needs. 

In summary, by introducing alpha and beta, I am able to model and adjust for the unique 

characteristics of both the industry and the machinery, providing a more nuanced and realistic 

understanding of the long-term financial impact of equipment failures. This approach helps organizations 

to make more informed decisions about maintenance strategies, budgeting, and risk management. 

Results 

The C-MAPSS dataset (Saxena et al. 2008), serves as a benchmark for developing predictive 

maintenance models, particularly in the domain of aircraft engine health monitoring. This dataset simulates 

realistic engine degradation by capturing 26 sensor readings, operational conditions, and cycle times, 

thereby reflecting the complexities of real-world aviation maintenance challenges. It consists of four subsets 

(FD001–FD004), each representing distinct fault scenarios and varying operational conditions. The dataset 

enables the development of machine learning models that account for sensor noise, operational variability, 

and nonlinear degradation patterns, making it invaluable for predictive maintenance research. A 

Bidirectional GRU (Gated Recurrent Unit) model was employed, with preprocessing steps including data 

normalization, noise reduction, and feature extraction via computed rolling statistics. The Remaining 

Useful Life (RUL) threshold was set at 35 cycles, with failures classified as binary events (1 for failure, 0 

for normal operation). This methodological approach enhances the model’s ability to discern complex 

temporal dependencies within the degradation patterns. 

The model demonstrated 86.25% accuracy, suggesting a high-level capacity for distinguishing 

between functional and failing engine states. However, accuracy alone is an inadequate measure in 

predictive maintenance, particularly given the asymmetrical costs associated with misclassification. The 

model achieved a precision of 82.46%, indicating a low rate of false positives and thereby minimizing 

unnecessary maintenance actions. Conversely, its recall stood at 61.13%, meaning that a substantial 
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proportion of actual failures were not detected. This discrepancy implies that the model is conservative in 

failure predictions, favoring precision over recall and consequently overlooking critical failure instances. 

Such a trade-off is problematic in industrial settings, where undetected failures can lead to catastrophic 

system breakdowns, prolonged downtimes, and financial losses. 

A fundamental consideration in predictive maintenance is the cost asymmetry governed by α (false 

positives) and β (false negatives). While α influences incremental increases in maintenance expenditures, 

the effect of β is highly nonlinear, leading to exponential cost escalation as missed failures result in severe 

system disruptions. Unlike α, where minor adjustments lead to marginal cost variations, β has a 

multiplicative effect on total operational costs due to the cascading consequences of unplanned outages. In 

complex industrial systems, unexpected failures necessitate prolonged repair times, disrupt supply chains, 

and significantly erode revenue streams. Thus, a model prioritizing high precision at the cost of recall might 

not be economically optimal, as the risk of underestimating failure events outweighs the burden of excessive 

maintenance. 

Chart 1: Cost varying with the change in alpha 

 

chart 2: cost varying with change in beta 
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 While the model achieves strong accuracy and precision, its limited recall constrains its 

applicability in high-stakes predictive maintenance scenarios. Future refinements should focus on adjusting 

classification thresholds, leveraging cost-sensitive learning approaches, and enhancing feature engineering 

techniques to mitigate the economic risks associated with undetected failures. A more balanced trade-off 

between α and β would ensure that predictive maintenance models are not only statistically robust but also 

aligned with the financial realities of industrial asset management. 

III. DISCUSSION 

The results from the extended cost model provide valuable insights into optimizing predictive 

maintenance programs by weighing both the costs of detecting failures and the costs associated with 

undetected failures. By minimizing these costs, companies can improve operational efficiency, reduce 

downtime, and enhance resource allocation. However, the effectiveness of this model heavily depends on 

the accuracy of the input data, including historical failure rates and operational costs, as well as the specific 

predictive maintenance strategy employed by each company. 

Potential Expansion: Operational Research (OR) with Failure Costs 

One key expansion of the model is the incorporation of Operational Research (OR) techniques to 

further minimize failure-related costs. By considering various failure scenarios and their associated costs, 

it’s possible to refine the decision-making process for when and how maintenance activities should occur. 

This involves exploring optimal maintenance scheduling and leveraging cost-benefit analysis to strike the 

best balance between preventive and corrective maintenance actions, thus improving overall cost efficiency. 

Non Linearization of Terms for More Accurate Results 

The current model assumes linear relationships between the costs and maintenance strategies. 

However, nonlinear regression offers the potential to capture more complex interactions and provide better-

fitting models for certain industrial scenarios. Many factors, such as the age of machinery, wear-and-tear 

dynamics, and machine learning algorithm parameters, may exhibit nonlinear behavior that significantly 

impacts maintenance costs. Nonlinear models could more accurately predict costs across different stages 

of equipment life cycles, thus allowing for better-tailored predictive maintenance plans. 

Mass Survey for Market-Wide Standardization 

To enhance the applicability and scalability of this model, a mass survey across multiple industries 

could help gather feedback and refine the model. By collecting data from a wide range of companies 

operating with diverse machines and maintenance strategies, it would be possible to standardize the alpha 

and beta parameters of the nonlinear cost equation. These parameters would account for various failure 

rates, detection times, and cost factors, ensuring that the predictive maintenance model remains relevant 

and accurate across a broad spectrum of industries. 

Impact on Predicting Costs for Any Factory Using Predictive Maintenance 

With standardized parameters, the model could be used universally, allowing any factory to predict 

the costs of implementing predictive maintenance using machine learning. This would help in forecasting 

the required investment, operational expenses, and potential savings from reduced downtime and failures. 
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It would also enable factories to perform what-if analyses, allowing them to evaluate different predictive 

maintenance strategies and select the one that maximizes cost efficiency based on their specific operational 

context. 

IV. CONCLUSION 

By integrating real-world data through surveys and continuous feedback, the predictive 

maintenance framework can evolve into a robust, industry-wide tool for cost prediction and optimization. 

This research presents a cost function and framework to assess the financial implications of adopting a 

predictive maintenance strategy, leveraging machine learning parameters such as recall and precision. 

Additionally, the use of nonlinear equations enables a more realistic representation of cost dynamics, 

capturing complex relationships that traditional linear models may overlook. 

Furthermore, this approach holds significant potential for multi-failure scenarios, where multiple 

failures occur within the same system. By optimizing costs across various failure types, the framework can 

enhance efficiency and decision-making in maintenance strategies. Finally, industry-wide standardization 

of key parameters, such as alpha and β, through comprehensive surveys could further refine predictive 

maintenance models, fostering greater adoption and consistency across industries. 
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