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Abstract – In this paper, a method of state estimation and diagnostics is implemented for the non-linear 

systems. These systems are modeled using a Takagi-Sugeno multi-model with measurable decision 

variables in order to be able to use a classical technique of bank of observers.  First, we present the 

approximation of the nonlinear model by a multi-model, and then the development of a multi-observer 

allows estimating the states of the system. This type of observer is then used in bank of observers which 

generate residues its analysis makes it possible to reveal the occurrence of sensor defects. Finally, this 

diagnostic strategy is applied to a hydraulic system to illustrate the effectiveness of the proposed method.   
 

Keywords – Nonlinear System, Takagi-Sugeno Multi-Model, Multi-Observer, Diagnosis, Identification, Levenberg-Marquardt 

Algorithm, State Estimation, Linear Matrix Inequalities (LMI). 

 

I. INTRODUCTION 

The diagnosis based on observers is a technique that has been the subject of many developments. This is 

based on a model of good operation of the system, to make a state estimation from the knowledge of the 

inputs and outputs of the system and to use the error of estimation of the output as a residual. In normal 

operation, this residual must be substantially zero (to modeling errors and measurement errors) and deviate 

significantly from zero when a fault occurs on the system. The detection of the occurrence of defects is in 

general quite easy; on the other hand, its location (the determination of the input or output grandeur on 

which it has intervened) is more delicate. So, we use frequently, a technique based on the development of 

bank of observers piloted by different grandeurs. The analysis of the different residues generated by these 

observers coupled to decision logic then allows the localization of the defects. These methods were first 

developed for linear models. They have subsequently been extended to systems described by nonlinear 

models. However, in this case, the design of observer is much more delicate and the works developed has 

focused on particular classes of nonlinear systems, for example, Lipschitz systems [1], [2], [3] or systems. 

LPV [4]. The modeling of systems using Takagi-Sugeno models [5], [6] is an interesting way to represent 

the behavior of nonlinear systems [7]. This is based on the use of a set of linear models and an interpolation 

mechanism of these models. In certain cases, this type of model permits to describe, in an exact way, the 

nonlinear behavior of a system by rejecting, in the interpolation functions, all the nonlinearities of the 
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system [7]. The major interest of this formulation resides in its simplicity. This type of modeling allows to 

transpose, to nonlinear systems, some results obtained for linear systems. Mention for example the works 

relating to the study of the stability or stabilization of systems [6], [8], [9], [10] where the authors propose 

sufficient stability conditions developed using the techniques applied to linear models. 

 

II. THE MULTI-MODEL 

The multi-models [11] are an interesting alternative and a powerful tool in modelling non-linear systems. 

The multi-model approach is based on the decomposition of the dynamic behaviour of the non-linear system 

into a number L of operating domains, each domain being characterized by a linear sub-model. Figure (1) 

illustrates this principle in a two-dimensional case the set of system operating points of the coordinate 

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) , has been decomposed into three operating local domains noted𝐷1, 𝐷2𝑎𝑛𝑑𝐷3. The 

overall domain of operating is then defined by the meeting of the local domains𝐷 = 𝐷1 ∪ 𝐷2 ∪ 𝐷3. On each 

of the local domains, or sub domains, can be built a local model. The output of each sub-model contributes 

more or less to the approximation of the overall behaviour of the nonlinear system. The contribution of 

each sub-model is defined by a weighting function. These different local models can then be combined 

using an interpolation technique to obtain a global representation, or multi-model, valid on the global 

operating domain 𝐷. 

 

 

 

 

 

 

 

 

Fig. 1 Principle of the multi-model approach 

Several structures permit to interconnect the different sub-models in order to generate the global output 

of the multi-model. Two essential structures of multi-models can be distinguished, one where the sub-

models share the same state vector (Takagi-Sugeno multi-model), the other where the sub-models are 

decoupled, each sub-model then having its own state vector (decoupled multi-model). The Takagi-Sugeno 

multi-model is currently the most commonly used. 

A. Conception a structure of multi-model 

Three distinct methods can be used to obtain a multi-model by identification, by linearization around 

different operating points (in this case, they are affine local models due to the presence of the linearization 

constant) or by convex polytopic transformation. In the first situation, from inputs and outputs data, we can 

identify the parameters of the local model corresponding to the various operating points. In the second and 

third situation, we assume to have a nonlinear mathematical model. In this document we present the second 

method. To illustrate this method, we consider a nonlinear mathematical model (1) of the physical process 

that is linearized around various judiciously chosen operating points, for which we seek to determine a 

multi-model representation allows to describe the behaviour of this system. 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))      (1) 

With  𝑓(. ) ∈ 𝐶1   is a nonlinear function, 𝑥(𝑡) ∈ ℜ
𝑛

 is   the state vector and 𝑢(𝑡) ∈ ℜ
𝑚

  is the input 

vector. Suppose we have a set of N local models 𝑓𝑖(𝑥(𝑡), 𝑢(𝑡)), 𝑖 ∈ {1, . . . , 𝑁}describing the behavior of 

the system in different areas of operation, each local model built by the linearization of the system (1) 

around an arbitrary operating points  (𝑥𝑖 , 𝑢𝑖) ∈ ℜ
𝑛 ×ℜ

𝑚
:      

𝑓𝑖(𝑥(𝑡), 𝑢(𝑡)) = 𝐴𝑖(𝑥(𝑡) − 𝑥𝑖) + 𝐵𝑖(𝑢(𝑡) − 𝑢𝑖) + 𝑓(𝑥𝑖 , 𝑢𝑖) (2) 

That can be rewritten in the form:                                                          

𝑓𝑖(𝑥(𝑡), 𝑢(𝑡)) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝑑𝑖   (3) 

The local validity of each mode 𝑓𝑖 is indicated by a validity function 𝑤𝑖(𝜉(𝑡)) for 𝑖 ∈ {1, . . . , 𝑁} 
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The global model is obtained in the following way: 

�̇�𝑚(𝑡) =
∑ 𝑤𝑖(𝜉(𝑡))𝑓𝑖(𝑥(𝑡),𝑢(𝑡))
𝑁
𝑖=1

∑ 𝑤𝑗(𝜉(𝑡))
𝑁
𝑗=1

         (4) 

We pose:                                  𝜇𝑖(𝜉(𝑡)) =
𝑤𝑖(𝜉(𝑡))

∑ 𝑤𝑗(𝜉(𝑡))
𝑁
𝑗=1

        (5) 

By combining equations (4) and (5), we obtain the general expression of a structure multi-model: 

�̇�𝑚(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))𝑓𝑖(𝑥(𝑡), 𝑢(𝑡))
𝑁
𝑖=1  (6) 

We replace the equation (3) in (6), we obtain:  

�̇�𝑚(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑑𝑖)
𝑁
𝑖=1  (7) 

The activation function 𝜇𝑖(𝜉(𝑡)), 𝑖 ∈ {1, . . . , 𝑁} determines the degree of activation of the associated iih 

local model, this function indicates the more or less important contribution of the corresponding local 

model in the global model (multimodel). It ensures a gradual transition from this model to neighboring 

local models. These functions are generally triangular, sigmoidal or Gaussian, and must satisfy the 

following properties:                                   {
∑ 𝜇𝑖(𝜉(𝑡)) = 1
𝑁
𝑖=1

0 ≤ 𝜇𝑖(𝜉(𝑡)) ≤ 1
          (8) 

B. Parametric optimization 

    The Parametric optimization consists in estimating the parameters of the activation functions and those 

of the local models, these parameters must be optimized by an iterative procedure because of the non-

linearities of the global model (multi-model) to its parameters. The Parametric identification methods are 

generally based on the minimization of a functional of the difference between 𝑥𝑚(𝑡) estimated by the multi-

model and 𝑥(𝑡) estimated by the system (1). The criterion most often used is the criterion which represents 

the quadratic difference between the two indicated outputs. 

𝐽(𝜃) =
1

2
∑ 𝜀(𝑡, 𝜃)2 =𝑀
𝑡=1

1

2
∑ (𝑥𝑚(𝑡) − 𝑥(𝑡))

2𝑀
𝑡=1  (9) 

Where M is the observation horizon and 𝜃 is the parameter vector of the local models and those of the 

activation functions. Among the iterative optimization methods of the Quasi-Newton type, the Marquardt 

method, which is considered one of the most efficient resolution methods, does not require long calculations 

or large memory space. 

C. Marquardt algorithm 

If n is iteration index of the Marquardt algorithm and 𝜃𝑛the value of the solution at iteration n, the update 

of the estimate is done as follows:  

𝜃𝑛+1 = 𝜃𝑛 − [𝐺(𝜃𝑛)𝑇𝐺(𝜃𝑛) + 𝜇𝑛𝐷
2(𝜃𝑛)]−1𝐺(𝜃𝑛)𝑇𝜀(𝑡, 𝜃)    (10) 

Where:   𝐺(𝜃𝑛): represents the jacobian matrix 

𝐷2(𝜃𝑛): is the diagonal matrix containing the elements of the diagonal of 𝐺𝑇𝐺 . To remedy the case where 

the elements of the diagonal are null, we take: 

𝐷2(𝑖, 𝑖) = 𝐺𝑇𝐺(𝑖, 𝑖) + 1 

𝜇𝑛: is a parameter of Marquardt and which is chosen in such a way that:   𝐽(𝜃𝑛+1) < 𝐽(𝜃𝑛)     (11) 

 

III. APPLICATION TO THE THREE TANK SYSTEM 

To approach a nonlinear dynamic system by a multi-model we have chosen to study the system of the 

three tanks because we know relatively well its mathematical description. 

 
 

 

 
. 

 

Fig. 2 Schematization of the 3-tank system 
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A. System description 

The benchmark considered consists of three cylindrical vessels of identical section S. The tanks are 

connected by two cylindrical pipes of section𝑆𝑝whose viscosity coefficient is 𝜇1 = 𝜇3. the output of the 

system is located at the tank 2, it is also characterized by a section 𝑆𝑝and a viscosity coefficient𝜇2. Two 

pumps controlled by DC motors feed tanks 1 and 2 with flow rates q1 (t) and q2 (t). The three tanks are 

equipped with pressure sensors to measure the liquid level(𝐿1(𝑡), 𝐿2(𝑡)  et 𝐿3(𝑡)). 

B. Mathematical model of the system 

      By writing the equations of the conservation of the volume of liquid, we obtain: 

∑𝑁𝐿:

{
 
 

 
 𝑆

𝑑𝐿1(𝑡)

𝑑𝑡
= 𝑞1(𝑡) − 𝑞13(𝑡)

𝑆
𝑑𝐿2(𝑡)

𝑑𝑡
= 𝑞2(𝑡) − 𝑞32(𝑡) − 𝑞20(𝑡)

𝑆
𝑑𝐿3(𝑡)

𝑑𝑡
= 𝑞13(𝑡) − 𝑞32(𝑡)

             (12) 

Where 𝑞𝑖𝑗(𝑡) is the flow rate of liquid from the tank i to the tank 𝑗(𝑖, 𝑗 = 1,2,3∀𝑖 ≠ 𝑗) 

which can be expressed using Torricelli's law by: 

𝑞𝑖𝑗 = 𝜇𝑖. 𝑆𝑝. 𝑠𝑖𝑔𝑛(𝐿𝑖(𝑡) − 𝐿𝑗(𝑡)). √2𝑔|𝐿𝑖(𝑡) − 𝐿𝑗(𝑡)|        (13) 

And 𝑞20(𝑡) represents the output flow, with: 

𝑞20 = 𝜇2. 𝑆𝑝. √2𝑔𝐿2(𝑡)                             (14) 

we consider the system as the levels verify the following inequalities𝐿1(𝑡) > 𝐿3(𝑡) > 𝐿2(𝑡), we assume 

that the system of the three tanks is perfectly described using the defined nonlinear model (15) 

∑𝑁𝐿 :

{
 
 
 

 
 
 �̇�1(𝑡) = −2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) + 𝑢1(𝑡)/𝑆

�̇�2(𝑡) = 2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡) − 2𝐶2√𝑥2(𝑡) + 𝑢2(𝑡)/𝑆

�̇�3(𝑡) = 2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) − 2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡)

𝑦1(𝑡) = 𝑥1(𝑡)
𝑦2(𝑡) = 𝑥2(𝑡)
𝑦3(𝑡) = 𝑥3(𝑡)

        (15) 

With 𝑥𝑖(𝑡) is the level of liquid in the tank i and 𝐶𝑖 = (1/2). (1/𝑆). 𝜇𝑖. 𝑆𝑃. √2𝑔. The two control signals 

𝑢1(𝑡), 𝑢2(𝑡)  are   respectively the two input flow rates 𝑞1(𝑡) and𝑞2(𝑡) . 

C. Representation of the nonlinear model by a multi-model 

   We consider a multi-model composed from three coupled local models: 

{
�̇�𝑚(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖𝑥𝑚(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐷𝑖)

3
𝑖=1

𝑦𝑚(𝑡) = 𝐶𝑥𝑚(𝑡)
   (16) 

with           �̇�𝑚(𝑡) = [�̇�𝑚1(𝑡)�̇�𝑚2(𝑡)�̇�𝑚3(𝑡)]
𝑇 

The activation functions 𝜇𝑖 were constructed as follows: 

𝑤𝑖(𝑢(𝑡)) = 𝑒𝑥𝑝(
−(𝑢1(𝑡) − 𝑢𝑖)

2

2𝜎𝑖
2 ); 𝜇𝑖(𝑢(𝑡)) =

𝑤𝑖(𝑢1(𝑡))

∑ 𝑤𝑖(𝑢1(𝑡))
3
𝑖=1

 

The index i corresponds to the ith local model. each local domain i have an operating point 

𝑝𝑖(𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑢1𝑖, 𝑢2𝑖) such that 𝑖 = 1,2,3 

The different operating point coordinates are obtained by the resolution of the system (15) 

{

−2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) + 𝑢1(𝑡)/𝑆 = 0

2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡) − 2𝐶2√𝑥2(𝑡) + 𝑢2(𝑡)/𝑆 = 0

2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) − 2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡) = 0

      (17) 

The numerical values of the operating points are: 
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Table 1. The three operating points 

i 𝑥1𝑖 𝑥2𝑖 𝑥3𝑖 𝑢1𝑖 𝑢2𝑖 
1 7.476 3.182 5.413 0.2480 0.0600 

2 3.635 2.629 3.152 0.1200 0.1600 

3 18.008 5.917 12.195 0.4160 0.0040 

 

We will identify the parameters of the activation functions 𝜎𝑖from the minimization of the criterion 𝐽(𝜃) 

defined as follows:   𝐽(𝜃) =
1

2
∑ [(𝑥𝑖𝑠(𝑡) − 𝑥𝑖𝑚(𝑡))

2]3
𝑡=1    (18)                                     

We minimize the criterion (18) by the algorithm of Marquardt, after the optimization, we have found:  

 

 

𝜎1 = 0.1274 . 10
-4; 𝜎2 = 0.1251. 10

-4𝜎3 = 0.0277. 10
-4

 

 

 

 

 

 

Fig. 3 The evolution of the three activation functions 

To evaluate the simulation results, we simulate two models in parallel: the multi-model (16), and the 

nonlinear model (15). The figure (4) shows the superposition of the output vector components of the 

nonlinear model and their approximation by the multi-model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The state variables of the nonlinear model "X1m, X2m X3m,", and those of the multi-model "X1s, X2s X3s". 

D. Conclusion 1 : we can conclude that the multi-model approach is a useful technique in approximating 

nonlinear models by local models. And offers the possibility of extending control and diagnostic 

techniques from linear systems to non-linear systems. 

 

IV. STATE ESTIMATION OF NON-LINEAR SYSTEMS REPRESENTED BY MULTI-MODELS 

A. Method of designing a multi-observer 

    Consider a nonlinear dynamic system represented by a multi-model, composed of M local models, 

described by the following equations: 

{
�̇�(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐷𝑖)

𝑀
𝑖=1

𝑦(𝑡) = 𝐶𝑥(𝑡)
        (19) 

where 𝑥(𝑡) ∈ ℜ
𝑛

is the state vector, 𝑢(𝑡) ∈ ℜ
𝑚

 is the input vector and 𝑦(𝑡) ∈ ℜ𝑝represents the output 

vector. The matrices 𝐴𝑖 , 𝐵𝑖, 𝐷𝑖 , 𝐶are of appropriate size. 𝜇𝑖(𝜉(𝑡)) are the activation functions of local 

models and 𝜉(𝑡) represents the vector of decision variables that can depend on the state, outputs or inputs.        
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To design a multi-observer, it is assumed that local models are locally observable, that is all pairs (𝐴𝑖 , 𝐶) 
are observable. To design the multi-observer, we associate with each local model a local observer, the multi-

observer (global observer) is a sum of local observers weighted by activation functions identical to those 

associated with local models of the multi-model [12]. The equations governing the multi-observer are as 

follows:       

{
�̇̂�(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖�̂�(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐷𝑖 + 𝐺𝑖(𝑦(𝑡) − �̂�(𝑡)))

𝑀
𝑖=1

�̂�(𝑡) = 𝐶�̂�(𝑡)
   (20) 

Where�̂�(𝑡) represents the state vector estimated by the multi-observer,�̂�(𝑡) is the estimated output 

vector and 𝐺𝑖 ∈ ℜ
𝑛×𝑝

are the gains of the local observers. The state estimation error is defined by the 

following equation:                          𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡)                    (21) 

The dynamics of the state estimation error is explained: 

�̇�(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖 − 𝐺𝑖𝐶)𝑒(𝑡)
𝑀
𝑖=1            (22) 

If the state estimation error (22) converges asymptotically to zero, the estimation of the state and output 

vectors (20) converges asymptotically to the state and output vectors of the multi-model (19) respectively.  

B. Application to the three tank system 

    Consider the nonlinear three-tank system represented by the multi-model described by equation (16), 

Initial values of state variables and estimated variables are: 

𝑥(0) = [1.8  1.2    1.6]𝑇𝑒𝑡�̂�(0) = [111]𝑇 

Using the multi-observer (20), the gains 𝐺𝑖are chosen so as to ensure the observer's stability (pole placement 

technique). 

𝐺1 = [
0.0087   -0.0000   0.0039
-0.0000   0.0058   0.0036
0.0039    0.0036    0.0051

] , 𝐺2 = [
0.0045    0.0000    0.0081
-0.0000   0.0017   0.0075
0.0081    0.0075   -0.0029

] , 𝐺3 = [
0.0103    0.0000    0.0023

0.0000    0.0081    0.0022

0.0023    0.0022    0.0081

] 

Figures (5), (6) respectively represent the outputs y (t) and their estimates by the multi-observer and the 

evolution of the estimation errors of the outputs. 

 
 

 

 

 

 

 

 

                  Fig. 5 Evolution of outputs and their estimates                                 Fig. 6 Evolution of estimation errors of outputs 

We note that the quality of the estimate is satisfactory. This type of observer can be used in the field of 

diagnosis to detect sensor faults as we will present in the following paragraph. 

 

V. DETECTION AND LOCATION OF SENSOR FAULTS APPLICATION TO THE THREE-

TANK SYSTEM 

     It is possible to exploit the proposed state observer from a perspective of diagnosis and location of 

sensor faults of a nonlinear system described by the multi-model. For the detection of sensor faults, it is 

possible to use an observer bank according to the DOS architecture (Dedicated Observer Scheme) 

presented in Fig. (7). The ith observer is controlled by the ith output and all the inputs; the output of this 

ith observer is insensitive to the faults of the unused outputs so each residue from an observer is sensitive 

to a single sensor fault which permit to detect and locate the faults even when they occur simultaneously. 
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Fig. 7 Sensor fault detection by DOS structure 

The three-tank system contains three outputs (y1, y2 and y3), the number of multi-observers that can be 

developed is 3. 

  The of the jih multi-observer is explicit: 

{
�̇̂�𝑗 = ∑ 𝜇𝑖(𝑢(𝑡))(𝐴𝑖�̂�

𝑗(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐷𝑖 + 𝐺𝑖(𝑦
𝑗(𝑡) − �̂�𝑗(𝑡))3

𝑖=1

�̂�𝑗 = ∑ 𝐶�̂�(𝑡)3
𝑖=1

 (23) 

Where  �̂�𝑗(𝑡) (respectively �̂�𝑗(𝑡)) represents the estimated state vector (respectively the estimated output 

vector) by the multi-observer  jih. The of observers permits to generate different residues: 

𝑟𝑖𝑗(𝑡) = 𝑦𝑖(𝑡) − 𝑦𝑖
𝑗
(𝑡), 𝑝𝑜𝑢𝑟𝑖 ∈ {1,2,3}𝑒𝑡𝑗 ∈ {1,2,3} (24) 

A. Development of the signature table 

  The table of the signatures is elaborate starting from the following considerations: 

1. Multi-observer 1 reconstructs the output of the multi-model using only the output y1 and all the inputs 

of the system. If this output has a fault, then there is a poor estimate of the states and the residues 𝑟𝑖1 

can be affected. It should be emphasized, however, that it is difficult to predict the evolution of the 

state estimate in the presence of a fault on the output y1. 

2. If the output y1 does not present a fault then the state estimation is correctly carried out. Therefore, in 

the presence of a fault on the output y2 the residue𝑟21 is removed from zero (sensitivity to the fault 

𝛿2) while the residue 𝑟11 remains insensitive to this same fault. It is then possible to draw a positive 

conclusion on the presence of a fault 𝛿2 if the residues 𝑟𝑖1 simultaneously present the signature:𝑟11 =
0and 𝑟21 = 1 

A similar approach is adopted to develop the signatures of observers 2 and 3. We draw all the possible 

cases of sensor faults. We define a binary function of the residues 

𝑧𝑖𝑗(𝑡) = {
0𝑠𝑖𝑟𝑖𝑗(𝑡) = 0

1𝑠𝑖𝑟𝑖𝑗(𝑡) ≠ 0
     (25) 

 

Table 2. Theoretical signature of sensor faults 

 𝑧11(𝑡) 𝑧21(𝑡) 𝑧31(𝑡) 𝑧12(𝑡) 𝑧22(𝑡) 𝑧32(𝑡) 𝑧13(𝑡) 𝑧23(𝑡) 𝑧33(𝑡) 

𝛿1 1 1 1 1 0 0 1 0 0 

𝛿2 0 1 0 1 1 1 0 1 0 

𝛿3 0 0 1 0 0 1 1 1 1 

 

Note 𝛿𝑖a variable associated with the sensor iit can take two values 0 or 1, see Table (2). 

- 𝛿𝑖 = 1 ⇒ the sensor i is faulty, 

- 𝛿𝑖 = 0 ⇒normal operating, 

From Table (2), we notice that the failure signatures are independent. Thus, it is theoretically possible to 

detect and locate sensor faults even if they appear simultaneously on tow outputs. Consider now the case 
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of the appearance of a fault affecting the measurement y1 (t) appears s at the at time t = 90 sec and disappears 

at time t = 130 sec, with a constant amplitude equal to 2.2. 
   

The residues 𝑟𝑖1(𝑗 = 1) 
𝑎𝑛𝑑 𝑖 = 1,2,3 

The residues  𝑟𝑖2(𝑗 = 2) 
𝑎𝑛𝑑 𝑖 = 1,2,3 

The residues  𝑟𝑖3(𝑗 = 3) 
𝑎𝑛𝑑 𝑖 = 1,2,3 

Fig. 8 Residues 𝑟𝑖𝑗(𝑡) obtained by the bank of multi-observers in the presence of faults 

B. Evaluation and analysis of the residues 

    The generation of the experimental signature matrix consists of associating each residue with the value 

0 or 1 according to whether or not it is assigned by default. In a simplified manner, the detection of defects 

at a residue is similar to the following logical test: 

if  |𝑟𝑖j(𝑡)| ≤ 𝜏𝑖𝑗   then no fault affects the residue  

if  |𝑟𝑖j(𝑡)| > 𝜏𝑖𝑗 then the residue is affected by a fault 

where the variable 𝜏𝑖𝑗 represents the threshold associated, its value, can for example, being determined 

starting from the following expression:  𝜏𝑖𝑗 = 𝛼√𝑉𝑎𝑟(𝑟𝑖𝑗)                (26) 

Where 𝛼 is a parameter of adjustment of the sensitivity of detection and 𝑉𝑎𝑟(𝑟𝑖𝑗) is the empirical variance 

of the residue 𝑟𝑖𝑗(𝑡) under normal functioning.  

At the end of the test of each of the residues 𝑟𝑖𝑗(𝑡), the experimental binary signature, noted 𝑧𝑖𝑗
∗ , is 

generated at each instant t, as follows: 𝑧𝑖𝑗
∗ = {

0𝑠𝑖|𝑟𝑖𝑗(𝑡)| ≤ 𝜏𝑖𝑗

1𝑠𝑖|𝑟𝑖𝑗(𝑡)| ≥ 𝜏𝑖𝑗
      (27) 

C. Location of faults 

The location of the faults is based on the comparison, at each moment, of the experimental fault signature 

with the different theoretical signatures. 

the analysis of the residues in figure (8) gives the experimental signature of defect as follows: 

(111100100), According to the comparison of the resulting experimental signature with the theoretical 

signatures of the output’s faults, we find that the first sensor is at default. 

 

VI. CONCLUSION  

      In This paper, a strategy for state estimation and diagnosis of nonlinear systems is presented. The 

proposed methodology uses Takagi Sugeno models this type of model permits to design of multi-observer 

which allows the estimation of states, and the detection and location of sensor faults using bank of 

observer. In order to test their efficiencies, we applied on a nonlinear system "three-tank system". The 

simulation results showed the ability of multi-models in the approximation of nonlinear models by local 

linear models, and the performance of multi-observer for state estimation and for fault detection and 

localization. The multi-observer bank according to the DOS architecture was created for the detection and 

localization of sensor faults. 
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