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Abstract – The increasing prevalence of multi-factory models has led to the emergence of more complex 

problems. To solve these large and complex issues, our study utilizes the Distributed Flow Shop Scheduling 

Problem (DFSP) with Particle Swarm Optimization (PSO) for inter-factory transportation. DFSP aims to 

optimize job sequencing and inter-factory transportation times to minimize the total completion time 

(makespan). Solving this problem is particularly crucial in improving resource-sharing efficiency, 

minimizing costs, and ensuring quick market response in complex and diverse production environments. 

Experiments demonstrate that PSO optimizes job sequences and balances factory assignments, achieving a 

minimum makespan of 10 units. A Gantt chart was used to visualize resource utilization and planning 

efficiency for a better understanding of the solution. Compared to methods such as Genetic Algorithms and 

Simulated Annealing, PSO offers advantages in convergence speed and computational efficiency. 

This study shows that PSO is one of the best methods applicable to real-world planning problems and 

logistical challenges. Future studies may combine PSO with other metaheuristic methods for faster 

resolution of dynamic planning problems. 
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I. INTRODUCTION 

In the past, single-factory models were prevalent, but today, factories with multiple branches are rapidly 

increasing. With global economic growth, speed and cost have become crucial competitive factors among 

businesses [1]. Companies with multiple factory branches seek methods to work faster and at lower costs. 

Multi-factories, each with unique capacities, machines, and production lines, create complex workflows 

due to inter-factory transportation operations [2]. Enhancing factory efficiency, reducing costs, and 

delivering products promptly are frequently encountered real-world problems. Being a faster method that 

can provide computational efficiency even for complex problems, the PSO algorithm facilitates the solution 

of such problems [3]. To address time and cost concerns effectively, Distributed Flow Shop Scheduling 

Problems (DFSP) were developed [4]. DFSP can be considered the best optimization problem for various 

real-world applications and workflows involving multiple factories. Typically, artificial intelligence-based 
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heuristic optimization methods are preferred to apply this problem. These methods help achieve optimal 

performance in tasks like sequencing jobs and minimizing time and costs. DFSP emerges as a more complex 

extension of Flow Shop Scheduling Problems (FSP) [5]. 

In recent years, DFSP has become a widely chosen method by both businesses and researchers due to the 

growing economy and increasing competition [6]. Optimizing and sequencing limited resources and 

workflows with DFSP is most effectively achieved using the heuristic optimization method, Particle Swarm 

Optimization (PSO). Solving this problem is critical for sharing resources efficiently, minimizing costs, 

and responding quickly to market demands, especially in complex production environments [7]. 

Optimization algorithms are typically inspired by nature, taking cues from animal behavior. Animals 

moving in swarms often achieve their goals more easily through seemingly random movements for food 

and safety [3]. PSO, a heuristic optimization algorithm, was developed in 1995 by Kennedy and Eberhart 

by studying the behavior of fish and insects. The algorithm imitates the social behavior of swarming 

animals, where each animal is referred to as a particle [8]. Although particles within the swarm appear to 

move irregularly, they exhibit a clustering behavior. Each particle in the swarm carries speed and position 

information and adjusts its position based on previous experiences to reach the best position. PSO 

fundamentally involves the position of individuals in the swarm approaching the best position within the 

group [10]. Many other optimization algorithms, such as Artificial Bee Colony (ABC) and Ant Colony 

Optimization (ACO), also draw inspiration from nature [11]. 

This study aims to develop a solution to the DFSP problem that minimizes the total completion time 

(makespan). The PSO algorithm is chosen as the most suitable method for flow shop scheduling problems, 

offering faster results in complex multi-factory workflows and optimization problems requiring constant 

parameter adjustments. 

 

II. MATERIALS AND METHOD 

 

A.  Problem Definition and General Description 

 

The problem was defined using a scheduling method. Scheduling problems are critical for optimizing 

workflows and ensuring the efficient use of resources. Multi-factory scheduling problems, in particular, 

require coordinating both production line processes and inter-factory job transfers [12]. The solution to 

DFSP, a complex sub-category of these problems, depends on many variables. 

In this problem, job sequencing in multiple factories and transportation times between factories must be 

considered. The objective is to minimize the total completion time (makespan). PSO initializes a particle 

swarm, with each particle searching for solutions based on its best value, ultimately finding the optimal 

solution [13]. This process requires minimal computation, making it computationally faster than many 

evolutionary algorithms. 

 

B. Mathematical Definition 

 

• Decision Variables are defined as follows: 

S: Sequence of jobs. 

F: Array indicating which factory processes the jobs. 

Tij: Transportation time between factory i and factory j. 

 

• The objective function aims to minimize the total completion time, known as makespan: 

Minimize:  Cmax = max{Ci,m}, here ∀i ∈ Factories, ∀m ∈ Machines. 

Ci, m: Completion time of machine m in factory i. 

• Constraints: 

Each job must be processed in one factory:  

∑j Fi j = 1, here ∀i∈ İ ∈ Jobs. 
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Job sequencing must be maintained machine-dependently. 

Inter-factory transportation times must be included in the total time. 

• The PSO algorithm follows these steps for solving the DFSP problem: 

 

• Particle Representation: 

Each particle is defined by two components: job sequence (S) and factory assignment (F). 

 

• Velocity Update: 

vi(t+1) = w⋅vi(t) + c1⋅r1⋅(Pbest,i−xi(t)) + c2⋅r2⋅(gbest−xi(t)). 

 

• Position Update: 

xi(t+1) = xi(t)+vi(t+1). 

 

w: Inertia coefficient. 

c1,c2: Individual and social learning coefficients. 

r1,r2: Random values between [0,1]. 

pbest, gbest: Local and global best positions. 

 

Fitness function focuses on minimizing the total completion times (Cmax). The performance of particles 

is evaluated based on this value. 

• Algorithm Parameters: 

Number of particles: 10. 

Maximum iterations: 50. 

Inertia coefficient (w): 0.3. 

Individual and social learning coefficients (c1,c2): 1.5. 

 

• Dataset: 

6 jobs, 3 machines, and 2 factories. 

 

• Processing Times matrix.  

[
 
 
 
 
 

 
2     3     1     2     3     1 

 
 1     2     2     1     3     2

 
 3     1     2     3     2     1

]
 
 
 
 
 

 

Machine 1 

Machine 2 

Machine 3 

 

In the given matrix, each row represents a machine. Each row contains a total of 6 jobs, starting from Job 

0 to Job 5. The numbers indicate the processing times for these jobs. The notation can be summarized as 

follows: Machine X completes Job Y in Z units of time. 

 

For example: 

Machine 1 takes 2 units of time to complete Job 0. 

Machine 2 takes 1 unit of time to complete Job 3. 

Machine 3 takes 1 unit of time to complete Job 5. 

 

• Transportation Times matrix between factories. 
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[
 0     1  

 
1     0

] 

 

III. RESULTS 

 

A. Experimental Settings 

 

In this study, the DFSP problem was solved using the PSO algorithm. The algorithm's performance was 

tested with the following parameters: 

Number of particles: 10, 20, 50, 100 

Maximum iterations: 50, 70, 90, 100 

Inertia coefficient (w): 0.3 

Individual learning coefficient (c1): 1.5 

Social learning coefficient (c2): 1.5 

 

The dataset consisted of 6 jobs, 3 machines, and 2 factories, utilizing previously defined processing and 

transportation times. 

 

B. Obtained Results 

 

The PSO algorithm has been tested with different numbers of iterations and particles to minimize the 

makespan of the DFSP problem. The solutions obtained from the algorithm are as follows in Table 1. In 

Table 1, an example result is shown with 10 particles and 50 iterations, and the values represented by it are 

explained. 

Table 1. Results obtained with 10 particles and 50 iterations 

Best job 

sequence 

Factory 

assignments 

Lowest 

makespan 

[5 4 1 3 2 0] [1 0 1 1 0 0] 11.0 

 

The best job sequence here indicates the order in which the jobs are processed. For example, it shows that 

job number 5 is processed first, followed by job number 4, then job number 1, and subsequently the other 

jobs in order. The best factory assignments show which factory each job is processed in. According to the 

results, the jobs are processed in the following factories: 

Job number 5 is processed in Factory 1. 

Job number 4 is processed in Factory 0. 

Job number 1 is processed in Factory 1. 

Job number 3 is processed in Factory 1. 

Job number 2 is processed in Factory 0. 

Job number 0 is processed in Factory 0. 

In trials with different particle numbers, the following results were obtained as Table 2. 
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Table 2. Results obtained with different values 

Particle numbers Iteration numbers Lowest makespan 
10 100 11 

10 90 10 

10 70 10 

20 100 11 

20 90 10 

20 70 10 

50 100 10 

50 90 10 

50 70 11 

100 100 10 

100 90 10 

100 70 10 

 

In Table 2, when the number of particles is 100, the lowest makespan always results in 10. However, 

during iterations where one particle is replaced by another, the makespan can increase and take values such 

as 11 or 12. In Table 3, the best cycle time and the best factory assignments are observed across iterations 

with numbers continuing up to 100. In this case, the lowest makespan value for the job sequence and factory 

assignments is always 10. 

Table 3. Results obtained with different particle numbers 

Particle 

numbers 

Iteration 

numbers 

Best job 

sequence 

Factory 

assignments 

Lowest 

makespan 

100 100 [3 5 0 2 1 4] [0 0 1 0 1 1] 10 

100 90 [3 0 2 5 1 4] [1 0 0 0 1 0] 10 

100 70 [2 5 0 3 4 1] [1 0 0 0 1 0] 10 

 

When we create the convergence graph according to particle preference, it can be seen in Fig. 1 below 

that the makespan value is always 10 for the preference of 100 particles, while it can vary in other cases. 
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Fig. 1 Makespan according to particle preference 

 

To better understand the results, the solution was visualized using the Gantt chart shown in Fig 2. The 

Gantt chart displays the timeframes in which jobs were processed on each machine and inter-factory 

transfers. In the Gant chart, we can better observe the optimal job sequence and the preferred factories. 

 

 

Fig. 2 Gantt chart 

 

In the graph, the Horizontal Axis (Time) represents the timeline. It shows the time intervals during which 

jobs are processed in factories and machines. The Vertical Axis (Factory - Machine) displays the hierarchy 

of factories and machines. For example: 

• Factory 0 - Machine 0: Machine 0 in Factory 0. 

• Factory 1 - Machine 2: Machine 2 in Factory 1. 

In the chart, different colors represent each job (Job). Labels indicate the job definitions (e.g., "J4" for 

Job 4). The chart clearly shows how jobs were balanced across factories and machines. Efficient resource 
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utilization and minimized total completion times were observed. The best solution was typically obtained 

within the first 20 iterations, demonstrating the algorithm's ability to rapidly explore the solution space. The 

parameter combinations used positively impacted the algorithm's stability and success rate. PSO proved to 

be an effective method for minimizing total completion times. 

These results demonstrate the effectiveness of the PSO algorithm in solving the DFSP problem. Strengths 

and weaknesses of the algorithm will be evaluated in the next Discussion section. 

 

IV. DISCUSSION 

This study aimed to solve the Distributed Flow Shop Scheduling Problem with Inter-Factory 

Transportation using the PSO algorithm. The results obtained demonstrate the algorithm's effectiveness in 

minimizing total completion times (makespan). The algorithm successfully optimized total completion 

times and effectively explored the solution space. Balanced job sequencing and factory assignments ensured 

efficient resource utilization. The algorithm quickly achieved optimization by finding the best solution in 

early iterations. The Gantt chart illustrates how jobs were balanced across factories and machines. An 

optimized solution was achieved by considering transportation times and machine conflicts. PSO 

effectively struck a balance between local and global best solution points, achieving good results rapidly. 

The parameters were adaptable for different problems. Concurrent processing of multiple jobs without 

conflict utilized resources efficiently and reduced total time. However, PSO sometimes struggles with local 

optima instead of achieving the global optimum. Inertia coefficient ("w"), individual ("c1"), and social 

("c2") learning coefficients play critical roles in algorithm performance. 

 

V. CONCLUSION 

This study addressed the Distributed Flow Shop Scheduling Problem with Inter-Factory Transportation 

(DFSPT) using the Particle Swarm Optimization (PSO) algorithm. The problem involved sequencing jobs 

and optimizing transportation times across multiple factories to minimize total completion times 

(makespan). As a heuristic optimization method, PSO provided an effective solution for complex problems 

like DFSPT. The algorithm effectively optimized multi-factory workflows, minimizing total completion 

times. The Gantt chart demonstrated the balance and efficiency of the solution. The algorithm's rapid 

convergence capability achieved good results in early iterations. The balanced search mechanism between 

local and global best points effectively explored the solution space. The optimized job sequence and factory 

assignments provided a tailored solution for the given dataset. PSO was observed to have advantages over 

other methods in the literature. 

This study highlighted the potential of PSO for solving complex optimization problems encountered in 

real-world scenarios like DFSPT. Future studies may enhance the algorithm's adaptability to changing 

conditions. Combining PSO with other methods such as Genetic Algorithm (GA) or Tabu Search (TS) may 

lead to more effective hybrid models. The algorithm's performance can be tested under limited constraints 

in dynamic and real-time systems such as logistics, production, and distribution. 

In conclusion, this study provides significant contributions to the application of PSO in scheduling 

problems. Considering its position in the literature and practical applications, the algorithm is shown to be 

an effective solution method, especially in production and logistics fields. 
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