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Abstract – Process industries have long faced the challenge of liquid level control. The performance of a 

control system largely depends on the accuracy of the mathematical model used to predict its dynamic 

behavior. This paper presents the development of a Takagi-Sugeno fuzzy model for a coupled-tank 

system, based on a linearization technique. Furthermore, the Marquardt-Levenberg optimization 

algorithm was employed to identify the parameters of the Takagi-Sugeno model. Finally, a comparison 

between the nonlinear model and the identified model was conducted, demonstrating satisfactory results.   
 

Keywords – Nonlinear System, Takagi-Sugeno Multi-Model, Identification, Levenberg-Marquardt Algorithm, Hydraulic 

System, Coupled-Tank System. 

 

I. INTRODUCTION 

Liquid level control plays a crucial role in various process industries, particularly in the petrochemical, 

biochemical, spray coating, wastewater treatment, beverage, and pharmaceutical sectors [1]. Efficient 

management of these processes is essential to ensure product quality, optimize resource consumption, and 

maintain the proper functioning of industrial systems. 

 

To achieve these objectives, modeling of hydraulic systems is a fundamental step. It allows for 

analyzing and understanding the dynamic behavior of processes, facilitating the design of effective 

control and diagnostic strategies [2]. The nonlinear nature of these systems requires advanced models 

capable of capturing complex process dynamics. 

 

In this paper, we focus on the modeling of a three-tank hydraulic system using a Takagi-Sugeno multi-

model approach [3]. This type of model is particularly well-suited for complex systems as it combines 

several local linear models, defined by fuzzy rules, to represent an overall nonlinear behavior. To enhance 

the accuracy and robustness of the model, we employed the Marquardt-Levenberg algorithm to optimize 

its parameters [4]. This algorithm, widely used for nonlinear model optimization, effectively adjusts 

model parameters by minimizing the error between predictions and actual data [5]. 
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Overall operating domain: 

𝐷 = 𝐷1 ∪ 𝐷2 ∪ 𝐷3 

Due to its advantageous mathematical properties, the Takagi-Sugeno model, optimized using the 

Marquardt-Levenberg algorithm, provides an efficient trade-off between accuracy and complexity. It also 

enables the extension of control and diagnostic techniques from linear to nonlinear systems, paving the 

way for improved management of industrial hydraulic processes.  

 

II. THE MULTI-MODEL 

The Multimodels [6] are an interesting alternative and a powerful tool in modeling non-linear systems. 

The multimodel approach is based on the decomposition of the dynamic behavior of the non-linear 

system into a number L of operating domains, each domain being characterized by a linear sub-model. 
 

 

 

 

 

 

 

 

 

 

Fig. 1 Principle of the multi-model approach 

 

Figure (1) illustrates this principle in a two-dimensional case the set of system operating points of the 

coordinate𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) , has been decomposed into three operating local domains 

noted𝐷1, 𝐷2𝑎𝑛𝑑𝐷3. The overall domain of operating is then defined by the meeting of the local 

domains𝐷 = 𝐷1 ∪ 𝐷2 ∪ 𝐷3. On each of the local domains, or sub domains, can be built a local model. 

The output of each sub-model contributes more or less to the approximation of the overall behavior of the 

nonlinear system. The contribution of each submodel is defined by a weighting function. These different 

local models can then be combined using an interpolation technique to obtain a global representation, or 

multimodel, valid on the global operating domain𝐷. 

Several structures permit to interconnect the different sub-models in order to generate the global output 

of the multimodel. Two essential structures of multimodeles can be distinguished, one where the 

submodels share the same state vector (Takagi-Sugeno multimodel), the other where the submodels are 

decoupled, each submodel then having its own state vector (decoupled multimodel). The Takagi-Sugeno 

multimodel is currently the most commonly used. 

A. Conception a structure of multimodel  

     Three distinct methods can be used to obtain a multimodel by identification, by linearization around 

different operating points (in this case, they are affine local models due to the presence of the 

linearization constant) or by convex polytopic transformation. In the first situation, from inputs and 

outputs data, we can identify the parameters of the local model corresponding to the various operating 

points. In the second and third situation, we assume to have a nonlinear mathematical model. In this 

document we present the second method. To illustrate this method, we consider a nonlinear mathematical 

model (1) of the physical process that is linearized around various judiciously chosen operating points, for 

which we seek to determine a multimodel representation allows to describ the behavior of this system. 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))      (1) 

With  𝑓(. ) ∈ 𝐶1   is a nonlinear function, 𝑥(𝑡) ∈ ℜ
𝑛

 is   the state vector and 𝑢(𝑡) ∈ ℜ
𝑚

  is the input 

vector. 

𝑥2(𝑡) 
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Suppose we have a set of N local models 𝑓𝑖(𝑥(𝑡), 𝑢(𝑡)), 𝑖 ∈ {1, . . . , 𝑁}describing the behavior of the 

system in different areas of operation, each local model built by the linearization of the system (1) around 

an arbitrary operating points  (𝑥𝑖, 𝑢𝑖) ∈ ℜ
𝑛 ×ℜ

𝑚
: 

𝑓𝑖(𝑥(𝑡), 𝑢(𝑡)) = 𝐴𝑖(𝑥(𝑡) − 𝑥𝑖) + 𝐵𝑖(𝑢(𝑡) − 𝑢𝑖) + 𝑓(𝑥𝑖, 𝑢𝑖)          (2) 

That can be rewritten in the form:  

𝑓𝑖(𝑥(𝑡), 𝑢(𝑡)) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝑑𝑖   (3) 

With 

𝐴𝑖 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
|𝑥=𝑥𝑖
𝑢=𝑢𝑖

, 𝐵𝑖 =
∂𝑓(𝑥,𝑢)

∂𝑢
|𝑥=𝑥𝑖
𝑢=𝑢𝑖

 , 𝑑𝑖 = 𝑓(𝑥𝑖, 𝑢𝑖) − 𝐴𝑖𝑥𝑖 − 𝐵𝑖𝑢𝑖 

 

The local validity of each mode 𝑓𝑖 is indicated by a validity function 𝑤𝑖(𝜉(𝑡)) for 𝑖 ∈ {1, . . . , 𝑁} 
The global model is obtained in the following way: 

𝑥̇𝑚(𝑡) =
∑ 𝑤𝑖(𝜉(𝑡))𝑓𝑖(𝑥(𝑡),𝑢(𝑡))
𝑁
𝑖=1

∑ 𝑤𝑗(𝜉(𝑡))
𝑁
𝑗=1

    (4) 

We Pose :  

𝜇𝑖(𝜉(𝑡)) =
𝑤𝑖(𝜉(𝑡))

∑ 𝑤𝑗(𝜉(𝑡))
𝑁
𝑗=1

          (5) 

By combining equations (4) and (5), we obtain the general expression of a structure multi-model: 

𝑥̇𝑚(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))𝑓𝑖(𝑥(𝑡), 𝑢(𝑡))
𝑁
𝑖=1      (6) 

We replace the equation (3) in (6), we obtain :  

𝑥̇𝑚(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑑𝑖)
𝑁
𝑖=1        (7) 

The activation function 𝜇𝑖(𝜉(𝑡)), 𝑖 ∈ {1, . . . , 𝑁} determines the degree of activation of the associated iih 

local model, this function indicates the more or less important contribution of the corresponding local 

model in the global model (multimodal). It ensures a gradual transition from this model to neighboring 

local models. These functions are generally triangular, sigmoidal or Gaussian, and must satisfy the 

following properties: 

{
∑ 𝜇𝑖(𝜉(𝑡)) = 1
𝑁
𝑖=1

0 ≤ 𝜇𝑖(𝜉(𝑡)) ≤ 1
         (8) 

 

And 𝜉(𝑡) is the vector of the decision variables, depending on the measurable state variables and 

eventually the command𝑢(𝑡) . We note that in this case, the number of local models (N) depends on the 

desired modeling accuracy, the complexity of the non-linear system and the choice of the structure of the 

activation functions. 

B. Parametric optimization 

    The Parametric optimization consists in estimating the parameters of the activation functions and 

those of the local models, these parameters must be optimized by an iterative procedure because of the 

non-linearities of the global model (multimodel) to its parameters. The Parametric identification methods 

are generally based on the minimization of a functional of the difference between 𝑥𝑚(𝑡) estimated by the 

multimodel and𝑥(𝑡) estimated by the system (1). The criterion most often used is the criterion which 

represents the quadratic difference between the two indicated outputs. 

 

𝐽(𝜃) =
1

2
∑ 𝜀(𝑡, 𝜃)2 =𝑀
𝑡=1

1

2
∑ (𝑥𝑚(𝑡) − 𝑥(𝑡))

2𝑀
𝑡=1  (9) 

 

Where M is the observation horizon and𝜃 is the parameter vector of the local models and those of the 

activation functions. Among the iterative optimization methods of the Quasi-Newton type, the Marquardt 

method, which is considered one of the most efficient resolution methods, does not require long 

calculations or large memory space. 
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III. MARQUARDT ALGORITHM 

If n is iteration index of the Marquardt algorithm and 𝜃𝑛 the value of the solution at iteration n, the 

update of the estimate is done as follows:  

𝜃𝑛+1 = 𝜃𝑛 − [𝐺(𝜃𝑛)𝑇𝐺(𝜃𝑛) + 𝜇𝑛𝐷
2(𝜃𝑛)]−1𝐺(𝜃𝑛)𝑇𝜀(𝑡, 𝜃)    (10) 

Where:   𝐺(𝜃𝑛): represents the jacobian matrix 

So:      

𝐺 =

[
 
 
 
 
 
 
 
 
𝜕𝜀1(𝑡, 𝜃)

𝜕𝜃(1)

𝜕𝜀1(𝑡, 𝜃)

𝜕𝜃(2)
. .
𝜕𝜀1(𝑡, 𝜃)

𝜕𝜃(𝑛)
𝜕𝜀2(𝑡, 𝜃)

𝜕𝜃(1)

𝜕𝜀2(𝑡, 𝜃)

𝜕𝜃(2)
. .
𝜕𝜀2(𝑡, 𝜃)

𝜕𝜃(𝑛)
. . . . .
. . . . .
𝜕𝜀𝑚(𝑡, 𝜃)

𝜕𝜃(1)

𝜕𝜀𝑚(𝑡, 𝜃)

𝜕𝜃(2)
. .
𝜕𝜀𝑚(𝑡, 𝜃)

𝜕𝜃(𝑛) ]
 
 
 
 
 
 
 
 

 

𝐷2(𝜃𝑛): is the diagonal matrix containing the elements of the diagonal of 𝐺𝑇𝐺 . To remedy the case 

where the elements of the diagonal are null, we take: 

𝐷2(𝑖, 𝑖) = 𝐺𝑇𝐺(𝑖, 𝑖) + 1 

𝜇𝑛: is a parameter of Marquardt and which is chosen in such a way that:  

𝐽(𝜃𝑛+1) < 𝐽(𝜃𝑛)               (11) 

 

IV. APPLICATION TO THE THREE-TANK SYSTEM 

To approach a nonlinear dynamic system by a multimodel we have chosen to study the system of the 

three tanks because we know relatively well its  mathematical description. 

 

 

 

 

 

 

 

Fig. 2 Schematization of the 3-tank system 

A. System description 

The benchmark considered consists of three cylindrical vessels of identical section S, the tanks are 

connected by two cylindrical pipes of section 𝑆𝑝whose viscosity coefficient is 𝜇1 = 𝜇3. the output of the 

system is located at the tank 2, it is also characterized by a section 𝑆𝑝 and a viscosity coefficient 𝜇2. Two 

pumps controlled by DC motors feed tanks 1 and 2 with flow rates 𝑞1(𝑡) and  𝑞2(𝑡). The three tanks are 

equipped with pressure sensors to measure the liquid level (𝐿1(𝑡), 𝐿2(𝑡)  et 𝐿3(𝑡)). 
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B. Mathematical model of the system 

      By writing the equations of the conservation of the volume of liquid, we obtain: 

 

∑𝑁𝐿:

{
 
 

 
 𝑆

𝑑𝐿1(𝑡)

𝑑𝑡
= 𝑞1(𝑡) − 𝑞13(𝑡)

𝑆
𝑑𝐿2(𝑡)

𝑑𝑡
= 𝑞2(𝑡) − 𝑞32(𝑡) − 𝑞20(𝑡)

𝑆
𝑑𝐿3(𝑡)

𝑑𝑡
= 𝑞13(𝑡) − 𝑞32(𝑡)

             (12) 

 

Where 𝑞𝑖𝑗(𝑡) is the flow rate of liquid from the tank i to the tank 𝑗(𝑖, 𝑗 = 1,2,3∀𝑖 ≠ 𝑗) 

which can be expressed using Torricelli's law by: 

𝑞𝑖𝑗 = 𝜇𝑖. 𝑆𝑝. 𝑠𝑖𝑔𝑛(𝐿𝑖(𝑡) − 𝐿𝑗(𝑡)).√2𝑔|𝐿𝑖(𝑡) − 𝐿𝑗(𝑡)|        (13) 

And 𝑞20(𝑡) represents the output flow, with: 

𝑞20 = 𝜇2. 𝑆𝑝. √2𝑔𝐿2(𝑡)                             (14) 

Without restricting our study, we consider the system as the levels verify the following 

inequalities𝐿1(𝑡) > 𝐿3(𝑡) > 𝐿2(𝑡). Also, we consider a particular sense of inter-tank flow rates (𝑞𝑖𝑗(𝑡)). 

With these equations, we assume that the system of the three tanks is perfectly described using the 

defined nonlinear model (15) 

 

∑𝑁𝐿 :

{
 
 
 

 
 
 𝑥̇1(𝑡) = −2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) + 𝑢1(𝑡)/𝑆

𝑥̇2(𝑡) = 2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡) − 2𝐶2√𝑥2(𝑡) + 𝑢2(𝑡)/𝑆

𝑥̇3(𝑡) = 2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) − 2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡)

𝑦1(𝑡) = 𝑥1(𝑡)
𝑦2(𝑡) = 𝑥2(𝑡)
𝑦3(𝑡) = 𝑥3(𝑡)

   (15) 

 

With 𝑥𝑖(𝑡) is the level of liquid in the tank i and 𝐶𝑖 = (1/2). (1/𝑆). 𝜇𝑖. 𝑆𝑃. √2𝑔. The two control 

signals 𝑢1(𝑡), 𝑢2(𝑡)  are   respectively the two input flow rates 𝑞1(𝑡) and 𝑞2(𝑡) . 
 

 

 

 

 

 

 
 

 

Fig.3 flow rates q1(t) et q2(t) 

C. Representation of the nonlinear model by a multimodel 

   We consider a multimodel composed from three coupled local models : 

{
𝑥̇𝑚(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖𝑥𝑚(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐷𝑖)

3
𝑖=1

𝑦𝑚(𝑡) = 𝐶𝑥𝑚(𝑡)
   (16) 

with         

𝑥̇𝑚(𝑡) = [𝑥̇𝑚1(𝑡)𝑥̇𝑚2(𝑡)𝑥̇𝑚3(𝑡)]
𝑇 

The activation functions 𝜇𝑖 were constructed as follows: 
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
-4

0

0.5

1

u1(t)

 

 

µ1

µ2

µ3

𝑤𝑖(𝑢(𝑡)) = 𝑒𝑥𝑝(
−(𝑢1(𝑡) − 𝑢𝑖)

2

2𝜎𝑖
2 ); 𝜇𝑖(𝑢(𝑡)) =

𝑤𝑖(𝑢1(𝑡))

∑ 𝑤𝑖(𝑢1(𝑡))
3
𝑖=1

 

the index i corresponds to the ith local model, each local domain i have an operating point  

 

𝑝𝑖(𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑢1𝑖, 𝑢2𝑖) ⥂ such that 𝑖 = 1,2,3 

The different operating point coordinates are obtained by the resolution of the system (19) 

 

{

−2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) + 𝑢1(𝑡)/𝑆 = 0

2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡) − 2𝐶2√𝑥2(𝑡) + 𝑢2(𝑡)/𝑆 = 0

2𝐶1√𝑥1(𝑡) − 𝑥3(𝑡) − 2𝐶3√𝑥3(𝑡) − 𝑥2(𝑡) = 0

          (17) 

 

The numerical values of the operating points are: 

 

Table 1. The three operating points 

i 𝑥1𝑖 𝑥2𝑖 𝑥3𝑖 𝑢1𝑖 𝑢2𝑖 
1 7.476 3.182 5.413 0.2480 0.0600 

2 3.635 2.629 3.152 0.1200 0.1600 

3 18.008 5.917 12.195 0.4160 0.0040 

 

The numerical values of the different matrices are :  

𝐴1 = [-3.9   0   3.9  ; 0  -6.7 3.6 ; 3.9  3.6 -7.5] ∗ 10−3 
𝐴2 = [-8.0  0   8.0 ;  0   -10.9  7.4 ; 8.0  7.4   -15.5] ∗ 10−3 
𝐴3 = [-2.3   0   2.3 ;0   -4.4    2.1 ; 2.3  2.1    -4.4] ∗ 10−3 

 

𝐵1 = 𝐵2 = 𝐵3 = [64.9351     0 ;0     64.9351 ; 0      0] 
 

𝐷1 = [
 -0.0081
-0.0019
     0 

] , 𝐷2 = [
-0.0039
-0.0052 
      0

] , 𝐷3 = [
-0.0135
-0.0001
     0

] 

 

We identify the parameters of the activation functions 𝜎𝑖 from the minimization of the criterion 𝐽(𝜃) 
defined as follows:         

𝐽(𝜃) =
1

2
∑ [(𝑥𝑖𝑠(𝑡) − 𝑥𝑖𝑚(𝑡))

2]3
𝑡=1    (18) 

We minimize the criterion (18) by the algorithm of Marqurdt, after the optimization, we have found:  

 

𝜎1 = 0.1274 . 10-4; 𝜎2 = 0.1251. 10
-4𝜎3 = 0.0277. 10-4 

 

 

 

 

 

 

 

 

Fig. 4 The evolution of the three activation functions 

To evaluate the simulation results, we simulate two models in parallel: the multimodel (16), and the 

nonlinear model (15). The figure (5) shows the superposition of the output vector components of the 

nonlinear model and their approximation by the multimodel. 
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Fig. 5 The state variables of the nonlinear model "X1m, X2m X3m,", and those of the multimodel "X1s, X2s X3s". 

 

V. CONCLUSION 

In this work, we developed a Takagi-Sugeno (TS) fuzzy model based on three local linear models and 

three Gaussian membership functions for a hydraulic system. The optimization of the local model 

parameters and membership functions was performed using the iterative Marquardt-Levenberg algorithm. 

The results obtained show that the TS model outperforms the nonlinear analytical model in terms of both 

accuracy and simplicity. 

 

More generally, the multimodel approach has proven to be an effective technique for approximating 

nonlinear systems using local models. It thus enables the extension of control and diagnostic techniques 

from linear systems to nonlinear systems, paving the way for future improvements, particularly through 

the integration of new optimization methods and the use of neuro-fuzzy controllers. 
 

REFERENCES 

 
[1] T. L. Mien, “Liquid level control of coupled-tank system using fuzzy-PID controller,” International Journal of  

Engineering Research & Technology, vol. 6, no. 11, pp. 459-464, November, 2017 

[2] R. Jovanović, V. Zarić, M. Vesović, L. Laban “Modeling and Control of a Liquid Level System Based on the 

Takagi-Sugeno Fuzzy Model Using the Whale Optimization Algorithm”, IcEtran, Belgrade, Serbia, 2020, 

[3] Takagi & Sugeno, Fuzzy Modeling Approach to Complex Systems, IEEE Transactions on Systems, 1985. 

[4] K. Levenberg, A Method for the Solution of Certain Non-Linear Problems, Quarterly Journal of Applied 

Mathematics, 1944. 

[5] D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for 

Industrial and Applied Mathematics, 1963. 

[6] R. Murray-Smith et T.A. Johansen. Multiple model approaches to modelling and control. Taylor & Francis, London, 

1997. 

 

 


