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Abstract – Solar energy plays a pivotal role in the global transition toward sustainable energy systems, 

providing a clean and renewable power source. However, the inherent variability of solar irradiance 

presents significant challenges for energy management and grid stability. Accurate forecasting of Global 

Horizontal Irradiance (GHI) is crucial for optimizing photovoltaic (PV) power generation and ensuring a 

reliable energy supply. GHI prediction is particularly complex due to its dependence on dynamic 

meteorological factors, including cloud cover, atmospheric aerosols, temperature, and humidity. 

Traditional statistical and physical models often struggle to capture these nonlinear patterns, whereas 

artificial intelligence (AI)-based approaches, particularly artificial neural networks (ANNs), have 

demonstrated significant potential in improving forecasting accuracy. This study examines GHI 

prediction in Dakhla City, Morocco, utilizing two AI-based models: the Multilayer Perceptron (MLP) and 

the Nonlinear Autoregressive Model with Exogenous Inputs (NARX). The objective is to enhance 

forecasting accuracy to facilitate more efficient solar energy integration. A performance evaluation based 

on statistical metrics reveals that the NARX model significantly outperforms the MLP model, achieving a 

regression coefficient (R) of 0.999 and a root mean square error (RMSE) of 8.722. This superior 

performance is attributed to the NARX model’s capacity to capture nonlinear dependencies and 

incorporate past values alongside exogenous inputs. These findings underscore the effectiveness of AI-

driven models in solar energy forecasting. Enhanced GHI predictions can contribute to improved grid 

stability, optimized solar energy utilization, and the advancement of Morocco’s renewable energy 

objectives. As such, AI-based forecasting emerges as a critical tool for sustainable energy management.   
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I. INTRODUCTION 

The escalating global energy demand, driven by industrial expansion and shifts in investment patterns, 

has contributed to a significant rise in crude oil prices[1]. However, the depletion of fossil fuel reserves, 

coupled with growing environmental concerns, underscores the unsustainability of continued reliance on 

conventional energy sources[2]. The transition to sustainable energy sources is both imperative and 

unavoidable for long-term sustainability[3]. Beyond mitigating global warming, renewable energy fosters 
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economic growth and enhances quality of life by mitigating greenhouse gas emissions and minimizing the 

environmental impacts associated with fossil fuel consumption[4]. 

Solar energy is a prominent renewable energy source due to its abundant availability, scalability, and 

diverse applications[5]. It provides a sustainable and environmentally responsible alternative to fossil 

fuels, as it does not produce greenhouse gas emissions during operation. Advances in photovoltaic and 

concentrated solar power technologies have improved efficiency, making solar energy suitable for 

residential, commercial, and large-scale power generation. Its applications extend to grid integration, 

water desalination, agriculture, and space technology[6], [7]. 

Solar energy generation is inherently intermittent and highly dependent on weather conditions, leading 

to power fluctuations that can affect grid stability. To mitigate these challenges, advances in energy 

storage, grid modernization, and predictive modeling are essential for improving reliability[8], [9]. Solar 

irradiance is classified into four main components: Direct Normal Irradiance (DNI), Global Horizontal 

Irradiance (GHI), Diffuse Horizontal Irradiance (DHI), and Ground Reflected Irradiance (GRI). Among 

these, GHI is the primary metric for evaluating photovoltaic (PV) system performance, though its 

accurate estimation remains challenging due to complex atmospheric processes and meteorological 

variability[10]. Traditional physical models struggle to capture these nonlinear dependencies, highlighting 

the need for advanced methodologies to enhance GHI forecasting and support the seamless integration of 

solar energy into modern power systems[11]. 

Machine learning (ML) and deep learning (DL) have emerged as pivotal methodologies in solar energy 

forecasting due to their capability to analyze large, complex datasets and capture intricate, nonlinear 

relationships between meteorological variables and energy outputs[12]. These advanced computational 

models have demonstrated superior accuracy, efficiency, and robustness compared to traditional 

forecasting approaches, thereby enhancing the reliability of solar energy predictions. Their integration 

into energy management systems contributes to improved grid stability and optimized resource allocation. 

The increasing adoption of ML and DL underscores their transformative potential in renewable energy 

forecasting, positioning them as critical tools in facilitating the global transition toward sustainable 

energy systems[13]. 

The research literature encompasses numerous published studies that employ various methodologies for 

forecasting solar irradiation. For example, [14] assessed the performance of five machine learning 

algorithms: random tree, random forest, decision stump, multilinear regression, and linear regression, for 

forecasting solar radiation in three South African locations with diverse radiation patterns. The results 

demonstrated high prediction accuracy, with R² values varying from 53.7% to 98.6% and RMSE values 

between 47.1923 and 83.0989, depending on the location. Strong forecasting performance was observed 

in Pretoria and Vuwani, especially on cloudy days. Bloemfontein achieved the best overall results, with 

RMSE values nearing zero across all algorithms. [13] proposed a dual-branch deep learning model for 

hourly GHI forecasting, incorporating global and local temporal extractors with attention mechanisms to 

enhance feature representation. To improve robustness, an autoregressive linear model is integrated to 

compensate for nonlinear outputs. Experimental validation on public datasets shows a 41.76% 

improvement in forecasting accuracy over baseline models, surpassing state-of-the-art approaches. Zina 

and Octavian [15] conducted a study on predicting daily direct solar radiation utilizing the NARX model 

and found that it yielded robust results throughout periodic training. Similarly, M. A. Hamdan and E. 

Abdelhafez [16] forecasted hourly solar radiation using three different neural network models: NARX, 

Feedforward, and Elman. Their study demonstrated that the NARX model outperformed other models, 

yielding the most accurate results in both the training and validation phases of solar radiation prediction. 

In an analysis of solar radiation in Mutah, Yazeed and Khaled [17] developed seven different NARX 

network models by varying input variables, number of neurons, and time delays. Their findings indicated 

that the model incorporating three key factors temperature, humidity, and wind speed was the most 

effective for estimating solar radiation. Likewise, [18] used the NARX network to forecast hourly solar 

radiation in Amman. To assess the performance of the NARX model, they maintained a fixed model 

structure while varying the training algorithms: LM (Levenberg-Marquardt), RP (Resilient 

Backpropagation), SCG (Scaled Conjugate Gradient), CGP (Conjugate Gradient with Polak-Ribiére 
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updates), CGF (Conjugate Gradient with Fletcher-Reeves updates), CGB (Conjugate Gradient with 

Powell-Beale restarts), and OSS (One-Step Secant Backpropagation). They concluded that the LM 

algorithm provided the most successful results. 

This study aims to forecast Global Horizontal Irradiance (GHI) in Dakhla city using hourly 

meteorological data from the years 2019 to 2022. To tackle this regression problem, supervised learning 

techniques are applied using two distinct types of neural networks. The first model is the MLP, which 

consists of multiple layers where information flows from the input to the output layer through a 

feedforward process. The second model the NARX model. This model incorporates feedback loops that 

allow the network to store information from previous inputs, making it well-suited for time series 

forecasting. By comparing the performance of the MLP and NARX networks, the study aims to identify 

the most effective approach for GHI forecasting in Dakhla city. This research contributes to the field of 

renewable energy by providing valuable insights into how advanced neural network models can improve 

the accuracy of GHI predictions. 

 

 

II. MATERIALS AND METHOD 

This research employs a data-driven approach that integrates environmental variables specific to 

Dakhla, Morocco (23.684°N, 15.957°W), to predict short-term hourly temperature variations critical for 

optimizing solar energy systems. Various neural network algorithms are applied to determine the most 

effective model for ambient temperature forecasting, enhancing the operational efficiency of renewable 

energy systems. The study follows a structured methodology, beginning with data collection from the 

National Renewable Energy Laboratory (NREL) and subsequent preprocessing, including data cleaning, 

normalization, and partitioning. Two artificial intelligence models, the Multilayer Perceptron (MLP) and 

the Nonlinear Autoregressive Model with Exogenous Inputs (NARX-SP), are selected for comparison and 

trained using climatic input data to predict Global Horizontal Irradiance (GHI). Their performance is 

assessed using statistical metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

and the coefficient of determination (R²), with a focus on minimizing errors. A comparative analysis 

identifies the most accurate model, supporting improved solar power forecasting and grid stability. 

 

A. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational models that replicate the structure and function 

of biological neural networks, enabling them to solve complex problems across a wide range of 

applications. Typically, ANNs are composed of three layers: an input layer, one or more hidden layers, 

and an output layer. The key advantages of ANNs include their speed, simplicity, and ability to learn 

from historical data to generate accurate predictions. ANNs are widely used in tasks such as pattern 

recognition, optimization, clustering, regression, and forecasting. 

The process of developing an ANN model involves three key steps: First, the input data and 

corresponding desired outputs are provided to the network. Second, the network is trained to approximate 

the output through iterative learning. Finally, during the testing phase, the trained network predicts 

outputs using previously unseen input data[19]. 

 

B. MLP Model 

MLP is a type of artificial neural network characterized by its layered design, which includes an input 

layer, one or more hidden layers, and a final output layer. It functions as a feedforward network, allowing 

data to flow in a forward direction, progressing from the input layer through the hidden layers to the final 

output layer[20]. 

The Multi-Layer Perceptron (MLP) consists of three primary components[21]: 

Input Layer: Functions as the initial point of data entry, where each neuron represents a distinct feature 

of the input dataset. 
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Hidden Layers: These layers transform the input data by applying weights, biases, and nonlinear 

activation functions to enable learning and model expressiveness. 

Output Layer: Generates the final predictions, with the number of neurons determined by the task (e.g., 

binary classification, multi-class classification, or regression). 

The hierarchical structure of the MLP allows it to approximate complex functions and identify intricate 

patterns in data, making it a core model in DL and ML applications. The mathematical model of an MLP 

is represented by the equation[22]: 

𝑦 = 𝑓(𝑠) = 𝑓(∑𝑤𝑖𝑗 𝑥𝑗 + 𝑏𝑖)            (1) 

where s is the summation function, xj are the inputs, wij are the connection weights, bi is the bias, and 

f is the hyperbolic tangent activation function. Figure 2 illustrates an example of a multilayer perceptron 

comprising a hidden layer and an output layer. 

 

 

Fig. 2 Architecture of multilayer artificial neural network[19]  

 

C. NARX Model 

The NARX model is a variant of ANN that employs training methodologies akin to those used in 

traditional networks, utilizing the gradient backpropagation algorithm[23]. A key distinguishing feature of 

NARX is its capacity to effectively analyze nonlinear time series, particularly in dynamic systems. 

Moreover, the gradient descent algorithm within the NARX framework exhibits faster convergence 

compared to alternative neural network models. The model can be deployed in both closed-loop and 

open-loop configurations, as illustrated in Figures 3(a) and 3(b), enhancing its flexibility and 

effectiveness in forecasting complex temporal patterns. 
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(a) 

 

 
(b) 

Fig. 3 The NARX architectures in (a) an Open Loop Arrangement and (b) in a Closed Loop Arrangement[24], [25]  

D. Evaluation Metrics 

Mean Square Error (MSE), Root Mean Square Error (RMSE), and the Coefficient of Determination 

(R²) were employed to assess the accuracy and performance of the prediction models. MSE and RMSE 

quantify the discrepancy between actual and predicted values, with lower values indicating higher 

predictive accuracy[1]. The R² value measures the proportion of variance in the dependent variable that is 

explained by the model, with values approaching 1 signifying a better fit. An optimal model is 

characterized by minimal MSE and RMSE, alongside a high R² value, indicating strong predictive 

capability[26]. 

The formulas for MAE, RMSE, and R² are as follows[26]:  

𝑀𝐴𝐸 =
1

𝑁
∑|ŷ𝑖 − 𝑦𝑖|  (2) 

𝑅𝑀𝑆𝐸 = √∑
(ŷ𝑖−𝑦𝑖)

2

𝑁
   (3) 

𝑅2 = 1 −
∑(ŷ𝑖−𝑦𝑖)

2

∑𝑦𝑖−𝑦̅
   (4) 

Where, y represents the actual value, ŷ is the predicted value, N is the number of samples, and ȳ is the 

mean of the actual values. 

 

III. RESULTS 

E. Correlation Analysis 

The relationship between the input features and the target variable is analyzed using correlation 

analysis. Specifically, Pearson’s correlation coefficient is computed, and the resulting correlation matrix 

is presented in Fig. 5. The analysis reveals that GHI exhibits a strong positive correlation with clearsky 

GHI, clearsky DNI, and DNI, while demonstrating strong negative correlations with solar zenith angle, 

and relative humidity. Conversely, surface albedo and pressure show minimal correlation with GHI. 

Consequently, these two features are excluded from further analysis to enhance model efficiency and 

reduce dimensionality. 
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Fig. 4 Heatmap of the correlation between GHI and climatic variables 

 

F. GHI Forecasting 

The plot represents the performance of the MLP model in predicting GHI. The blue dots indicate the 

actual GHI values, while the orange crosses represent the predicted values. The model follows the general 

trend of the true GHI values, capturing the peaks and fluctuations in solar irradiance. However, there are 

some deviations, particularly in certain peaks where the predictions slightly underestimate or overestimate 

the actual values. The model effectively learns the pattern of GHI variation but may struggle with sudden 

changes, indicating potential improvements with more advanced architectures or additional temporal 

features. 

 

 

Fig. 5 The forecasting of GHI using the MLP model 

 

Figure 6 illustrates the performance of the NARX-SP model in predicting GHI. Compared to the MLP 

model, the NARX-SP model appears to achieve a closer alignment between true (blue dots) and predicted 

(orange crosses) values. The predictions effectively capture both the peaks and fluctuations in GHI, 

indicating that the model leverages past GHI values and external meteorological factors efficiently. There 

are fewer noticeable deviations, suggesting an improvement in capturing temporal dependencies and 
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sudden changes. This implies that incorporating autoregressive components enhances the model’s ability 

to learn the dynamic patterns of solar irradiance. 

 

 

Fig. 6 The forecasting of GHI using the NARX model 

Table 1 indicates that the NARX-SP model outperforms the MLP model in terms of prediction 

accuracy. With an MAE of 4.498 compared to 11.891 for MLP, NARX-SP demonstrates a significantly 

smaller average deviation from the actual values. Similarly, the RMSE is nearly half that of MLP (8.722 

vs. 16.851), suggesting that NARX-SP makes fewer large errors. Additionally, both models exhibit high 

R² values (0.999 for NARX-SP and 0.997 for MLP), indicating that they explain almost all the variance in 

the data. However, the slightly higher R² of NARX-SP suggests a marginally better fit. Overall, NARX-

SP proves to be the superior model, offering higher accuracy and better generalization compared to MLP. 

 

Table 1. Performance metrics for MLP, and NARX-SP Models 

Performance metrics MLP NARX-SP 

MAE  11.891 4.498 

RMSE 16.851 8.722 

R² 0.997 0.999 

 

IV. DISCUSSION 

The comparison between the MLP and NARX-SP models for GHI forecasting highlights the superior 

performance of the NARX-SP model. While both models exhibit a strong ability to predict GHI values, 

key differences emerge in their ability to capture fluctuations and sudden variations in solar irradiance. 

The MLP model, despite following the general trend, struggles with rapid changes, occasionally 

underestimating or overestimating peak values. This limitation suggests that it lacks an effective 

mechanism to account for temporal dependencies, making it less reliable in capturing dynamic variations 

in GHI. On the other hand, the NARX-SP model demonstrates a much closer alignment between actual 

and predicted GHI values. By leveraging past GHI data and external meteorological factors, it effectively 

captures both trends and sudden fluctuations, resulting in a more accurate forecast. The reduced deviation 

in predictions suggests that the model benefits from its autoregressive structure, allowing it to better 

understand the inherent patterns of solar irradiance. This improvement is further supported by the error 

metrics, where the NARX-SP model achieves significantly lower MAE and RMSE compared to the MLP 

model. In numerical terms, the performance gap is evident. The MAE of the NARX-SP model is 4.498, 

which is less than half of the MLP model’s 11.891, indicating that its predictions are much closer to the 
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true values. Similarly, the RMSE of NARX-SP (8.722) is nearly half that of MLP (16.851), reinforcing its 

ability to minimize large errors. Although both models achieve high R² values, the NARX-SP model 

(0.999) slightly outperforms the MLP model (0.997), indicating a marginally better fit and improved 

variance explanation. 

 

V. CONCLUSION 

In this study, two distinct neural networks (MLP and NARX) were employed to forecast Global 

Horizontal Irradiance (GHI) in Dakhla, Morocco, using hourly meteorological data from 2019 to 2022. 

The findings indicate that the NARX-SP model demonstrates superior reliability for GHI forecasting, 

particularly in environments characterized by sudden fluctuations in solar irradiance. These results 

underscore the critical role of incorporating temporal dependencies in predictive models, as evidenced by 

the enhanced performance of NARX-SP. Future research could focus on further advancements, such as 

hybrid models that integrate deep learning architectures like GRU-LSTM-TCN, which may offer 

improved accuracy and adaptability in solar energy forecasting. 
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