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Abstract – An earthquake is a natural disaster that significantly impacts human life and structures. This 

study aims to contribute to the understanding of this important issue through a comprehensive evaluation 

of earthquakes from geological, seismological, and engineering perspectives. Hypotheses developed by 

assessing the effects of plate tectonics, volcanic activities, and anthropogenic triggers on earthquakes 

analyze the formation process and risk profiles of earthquakes. The strategic importance of determining the 

risk profiles of geographical regions in terms of earthquake potential has been emphasized, with a focus on 

earthquake zones and hazard analyses. 

The dataset, consisting of earthquakes from 1900 onwards, was used as a sample, and various machine 

learning models were applied to this data. Models used include Random Forest, Gradient Boosting, 

XGBoost, Linear Regression, Ridge Regression, Lasso Regression, and Support Vector Regression. The 

performance of these models in predicting earthquake magnitude was compared, and it was found that the 

XGBoost model showed the best performance with the lowest Mean Squared Error (MSE). 

The results demonstrate that machine learning models have significant potential in predicting earthquake 

magnitudes. This study aims to evaluate community preparedness for earthquakes by addressing the role 

of exploratory data analysis with artificial intelligence in earthquake risk analysis and prediction. By 

providing a multifaceted analysis of earthquakes, this study makes an important contribution to the 

academic literature.   
 

Keywords – Earthquake Prediction, Machine Learning, Risk Analysis, Artificial Intelligence. 

 

I. INTRODUCTION 

Earthquakes are natural disasters that occur as a result of dynamic processes within the Earth's crust, 

reflecting the constantly changing and evolving nature of the planet's surface. They are characterized by 

vibrations caused by the sudden release of energy from rocks in the Earth's crust and typically lead to 

varying effects depending on factors such as magnitude, depth, and local geological conditions. This article 

focuses on earthquake magnitude prediction and the multidimensional analysis of earthquakes, providing a 
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comprehensive examination of the impacts, causes, and types of magnitudes associated with these natural 

disasters. 

Among the different scale systems used to measure earthquake magnitude are the Richter scale, Moment 

Magnitude scale (Mw), and Surface Wave Magnitude (Ms). This article will provide a detailed explanation 

of the fundamental principles and advantages of each scale system, while thoroughly exploring the 

complexities of earthquake magnitude measurement and how these scales can be used to assess the potential 

danger of an earthquake. 

In conclusion, this article aims to make a significant contribution to understanding the multifaceted nature 

of earthquakes and preparing societies for future similar events. The detailed analyses presented in this 

study will allow us to better understand the impacts of earthquakes and develop more effective disaster 

management strategies. 

In this article, we focus on analyzing earthquake data in detail and developing prediction models using 

machine learning techniques. The dataset forming the foundation of our analysis includes various 

characteristics of earthquake events, such as magnitude, depth, location, and historical data. To understand 

this dataset and identify important patterns related to earthquakes, we have applied Exploratory Data 

Analysis (EDA) methods and various machine learning models. 

EDA (Exploratory Data Analysis) is a powerful tool used to understand the basic features of a dataset, 

visualize distributions, examine relationships between variables, and uncover potential patterns within the 

data. In this article, the analysis of earthquake data using various techniques and the evaluation of this data 

with machine learning models will be emphasized. The goal is to reveal important insights related to 

earthquakes and explore how this information can contribute to future earthquake management and risk 

reduction strategies. 

Further, the article will focus on the detailed results of predictions made using machine learning models, 

along with the application of EDA to the earthquake data. The models employed include Random Forest, 

Gradient Boosting, XGBoost, Linear Regression, Ridge Regression, Lasso Regression, and Support Vector 

Regression. A comparison of the performance of these models will highlight the superior performance of 

the XGBoost model. This analysis will enable us to better understand the characteristics of earthquake 

events and assess earthquake risks more effectively. It is expected that these insights will make a significant 

contribution to disaster management and the preparedness of societies for earthquakes. 

 

II. EARTHQUAKE   

Earthquakes are natural disasters that can cause significant damage and loss of life. Predicting earthquakes 

is a complex and challenging task due to the intricate structure of the Earth's crust and the unpredictability 

of seismic events [1].   

Additionally, real-time seismology and earthquake early warning systems have been proposed as effective 

tools to mitigate earthquake damage by providing timely alerts, enabling necessary precautions to be taken 

[2]. These systems utilize data from sources such as GPS and geoelectric field signals to estimate earthquake 

magnitude and assess associated risks [3].   

Risk assessment also plays a critical role in understanding the potential impact of earthquakes on 

vulnerable regions. Studies have evaluated earthquake risk using geospatial analysis and GIS-based 

approaches, considering factors such as population density, slope displacement, and seismic hazards [4]. 

Moreover, the development of risk assessment systems like the Major Earthquake Risk Assessment System 

has provided valuable tools for evaluating earthquake risks in specific geographical regions [5].   

Despite these advancements, the unpredictability of earthquakes remains a significant challenge. Some 

researchers have emphasized the difficulty of accurately predicting earthquakes due to the complexity of 

seismic systems and the lack of consistent prediction parameters [6]. Furthermore, the evaluation of 

earthquake prediction capabilities has been regarded as a challenging and slow process, highlighting the 

ongoing complexities in this field [7].  

In conclusion, while significant progress has been made in earthquake prediction and risk assessment, the 

complexity and unpredictability of seismic events continue to present ongoing challenges. Continued 
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research and technological advancements are essential to enhance our understanding of earthquakes and 

improve our ability to predict their impacts. 

 

III. EXPLORATORY DATA ANALYSIS 

To understand seismic activity and assess its consequences, various studies have been conducted to 

explore different aspects of earthquakes [2]. Allen and Ziv (2011) examined the application of real-time 

GPS in earthquake early warning systems, emphasizing the potential of GPS data to complement existing 

seismic methodologies. Additionally, Chartier et al. (2017) provided insights into earthquake rupture 

velocity prediction, highlighting the importance of understanding magnitude-frequency distribution of fault 

segments and specific slip rates [8]. Furthermore, Bao et al. (2019) delved into the supershear rupture of 

the 2018 Palu earthquake, verifying its continuous supershear velocity through regional seismograms [9]. 

Li et al. (2022) emphasized the importance of scientific decision-making and rescue efforts in mitigating 

the immediate consequences of earthquake disasters, focusing specifically on earthquake-related fatalities 

in mainland China [10]. Xiong et al. (2010) examined longwave radiation anomalies associated with 

earthquakes, demonstrating intense radiation concentrations in epicentral regions before earthquakes [11]. 

Moreover, Nettles & Ekström (1998) shed light on fault mechanisms by linking anomalous earthquakes 

near the Bárdarbunga Volcano to the inflation of a shallow magma chamber and stress loading on a deep 

ring fault. 

In the context of specific earthquake events, Fang et al. (2019) analyzed the Mw 7.5 Palu earthquake, 

highlighting its occurrence in a triple junction region involving converging tectonic plates [12]. Sharma et 

al. (2017) introduced the Earthquake Damage Visualization (EDV) technique for rapid detection of 

earthquake-induced damage using Synthetic Aperture Radar (SAR) data, providing an advanced approach 

to assess earthquake impacts [13]. Additionally, Guo et al. (2022) investigated the impact zone of the 2017 

Jiuzhaigou earthquake, revealing a significant decline in mobile signals after the earthquake [14]. 

These studies contribute to a comprehensive understanding of earthquakes, encompassing topics such as 

early warning systems, rupture velocity prediction, specific earthquake events, and the assessment of 

earthquake impacts. By integrating these findings, researchers and policymakers can enhance preparedness, 

response, and mitigation strategies against seismic events. 

A. Types of EDA 

Exploratory Data Analysis (EDA) refers to statistical and graphical techniques used to understand the 

features, patterns, and relationships within a dataset. There are several main types of EDA: 

• Univariate Analysis 

This type of analysis examines the statistical properties and distribution of a single variable (column). 

Graphical representations such as histograms, box plots, and density plots are frequently used. Measures of 

central tendency (e.g., mean, median), measures of spread (e.g., standard deviation), and basic statistical 

properties are part of this analysis. 

• Bivariate Analysis 

This type is used to understand the relationship between two variables. Techniques such as scatter plots, 

correlation analysis, and regression analysis are commonly employed. The strength and linearity of the 

relationship between two variables are the primary focus of this analysis. 

• Multivariate Analysis 

This analysis involves examining multiple variables simultaneously. It aims to understand patterns and 

discover complex relationships within multidimensional datasets. Techniques such as multiple regression 

analysis, factor analysis, and cluster analysis are examples of this type of analysis. 

• Time Series Analysis 

This analysis is used for studying variables that change over time. It is applied to understand trends, 

seasonal effects, and cycles. Time series plots, autocorrelation analysis, and spectral analysis are commonly 

used methods in this type of analysis. 
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• Geographical Analysis 

Geographical analysis is employed to understand patterns and relationships in spatial datasets. Tools such 

as maps, Geographic Information Systems (GIS), and spatial statistics are part of this analysis. For 

earthquake analysis, examining the geographical distribution of earthquakes is an example of this type. 

 

 

IV. MATERIALS AND METHOD 

This research utilized a comprehensive dataset containing information on earthquakes that have occurred 

worldwide since 1900. The dataset, obtained from the United States Geological Survey (USGS), is updated 

weekly. The objective of the study is to analyze trends, geographical distributions, and evolving 

characteristics of earthquakes over time, contributing to earthquake risk management and disaster response 

strategies. 

For analytical purposes, earthquake data were evaluated using statistical and graphical tools. Factors such 

as earthquake frequency, magnitude, geographical distribution, and temporal changes were examined, 

providing a broad perspective on seismic activities. Machine learning models were also employed to predict 

earthquake magnitudes. 

A. Dataset 

As the primary material, the dataset from the reliable USGS earthquake catalog formed the foundation 

of the study. The meaning of each column in the dataset—such as time, latitude, longitude, depth, and 

magnitude—was explained in detail. The sources from which this information was collected and the 

processes used to handle this data were also specified comprehensively.  It is shown in Table 1. 
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Table 1. Features of the Dataset and Descriptions 

Feature Name Description 

time The time of the earthquake, reported as the number of milliseconds since the Unix 

epoch (January 1, 1970, 00:00:00 UTC). 

latitude The latitude of the earthquake's epicenter, reported in decimal degrees. 

longitude The longitude of the earthquake's epicenter, reported in decimal degrees. 

depth The depth of the earthquake, reported in kilometers. 

mag The magnitude of the earthquake, reported in various magnitude scales (see 

magType column). 

magType The type of magnitude used to report the earthquake magnitude (e.g., "mb," "ml," 

"mw"). 

nst The total number of seismic stations used to calculate the earthquake's location 

and magnitude. 

gap The largest azimuthal gap between adjacent stations, in degrees. 

dmin The minimum distance to the nearest station, in degrees. 

rms The root mean square of residuals relative to the earthquake's location. 

net The network identifier for the seismic network used to locate the earthquake. 

id The unique identifier for the earthquake event. 

updated The most recent update time of the earthquake event in the catalog, reported in 

milliseconds since the Unix epoch. 

place A human-readable description of the earthquake's location. 

type The type of seismic event (e.g., "earthquake," "quarry blast," "explosion"). 

horizontalError The horizontal error of the location reported in the latitude and longitude 

columns, in kilometers. 

depthError The error in the depth column, reported in kilometers. 

magError The estimated standard error of the reported earthquake magnitude. 

magNst The number of seismic stations used to calculate the earthquake's magnitude. 

status The status of the earthquake event in the USGS earthquake catalog (e.g., 

"reviewed," "automatic"). 

locationSource The identifier of the organization or network providing the earthquake location. 

magSource The identifier of the organization or network providing the earthquake 

magnitude. 
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Statistical Analysis of Numerical Variables 

The table presents the fundamental statistics of the earthquake dataset. Each statistic reveals 

characteristics of a specific numerical variable within the dataset. It is shown in Table 2. 

 

Table 2. Statistical Analysis of Numerical Variables 

 

 

Initially, the "Unnamed: 0" column contains the index numbers of the observations in the dataset. There 

are 99,749 observations, with indices ranging from 0 to 99,748. The mean index value is 49,874, and the 

standard deviation is 28,795.2. The minimum value is 0, while the maximum value is 99,748. 

The "nst" column represents numerical estimates for earthquakes. These estimates have a mean of 157.68 

and a standard deviation of 128.51. The minimum value is 0, and the maximum value is 929. 

The "longitude" and "latitude" columns represent the longitude and latitude coordinates where the 

earthquake occurred. The mean longitude is 40.97, and the mean latitude is 3.44, indicating the geographical 

distribution of earthquakes. 

The "depth" column represents the depth of the earthquake. The mean depth is 62.44, with a standard 

deviation of 108.76. The minimum depth is -4.0, and the maximum depth is 700.0, reflecting a wide 

distribution of earthquake depths. 

The "magNst" column represents the number of stations used to estimate the earthquake's magnitude. The 

mean number of stations is 53.35, with a standard deviation of 78.84. These values provide insights into 

the reliability of magnitude estimates. 

The "gap" column shows the azimuthal gap in the earthquake's coverage in a specific region. The mean 

gap is 62.87, with a standard deviation of 38.59. The minimum gap is 6.5, and the maximum gap is 360.0. 

The "latitude" column represents the latitude coordinates where the earthquake occurred. The mean 

latitude value is 3.44, and the standard deviation is 30.05, indicating earthquakes occur in various latitudes 

worldwide. 

The "depthError" column represents the error margin for depth estimates. The mean error is 8.09, with a 

standard deviation of 10.91. The minimum error is -1.0, and the maximum error is 1,091.9. 

The "dmin" column shows the distance of the earthquake to the nearest station. The mean distance is 4.24, 

with a standard deviation of 5.13. The minimum distance is 0.0, and the maximum distance is 50.901. 

  count  mean  std  min  25% 50% 75% max  

Unnamed :0 99749.000000 49874.000000 28795.200338 0.000000 24937.000000 49874.000000 74811.000000 99748.000000 

nst z 29160.000000 157.682099 128.512524 0.000000 66.000000 116.000000 211.000000 929.000000 

longitude  99749.000000 40.969569 121.855092 -
179.997000 

-72.102000 99.735000 142.794000 180.000000 

depth  99464.000000 62.442085 108.755324 -4.000000 13.000000 33.000000 51.121750 700.000000 

magNst  39781.000000 53.345919 78.841376 0.000000 12.000000 27.000000 60.000000 941.000000 

gap  39453.000000 62.868549 38.592374 6.500000 36.000000 54.200000 80.000000 360.000000 

latitude  99749.000000 3.443602 30.054950 -77.080000 -17.820000 -1.103000 29.423000 87.386000 

depthError  50038.000000 8.094846 10.913250 -1.000000 2.400000 5.000000 9.800000 1091.900000 

dmin  19514.000000 4.242374 5.130685 0.000000 1.269000 2.628000 5.139000 50.901000 

horizontalError  18140.000000 7.672779 4.498657 0.000000 6.000000 7.500000 9.100000 99.000000 

mag  99749.000000 5.453486 0.484780 5.000000 5.100000 5.300000 5.700000 9.500000 

rms  71006.000000 0.965543 0.376917 -1.000000 0.820000 0.970000 1.100000 69.320000 

magError  32770.000000 0.175678 0.156829 0.000000 0.060000 0.098000 0.230000 1.840000 
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The "horizontalError" column represents the horizontal error margin. The mean error is 7.67, with a 

standard deviation of 4.5. The minimum error is 0.0, and the maximum error is 99.0. 

The "mag" column represents the earthquake's magnitude. The mean magnitude is 5.45, with a standard 

deviation of 0.48. The minimum magnitude is 5.0, and the maximum magnitude is 9.5. 

The "rms" column represents the Root Mean Square (RMS) value, indicating measurement errors for the 

earthquake. The mean RMS is 0.97, with a standard deviation of 0.38. The minimum RMS is -1.0, and the 

maximum RMS is 69.32. 

The "magError" column represents the error margin for magnitude estimates. The mean error is 0.18, with 

a standard deviation of 0.16. The minimum error is 0.0, and the maximum error is 1.84. 

Data Analysis and Cleaning 

Before analysis, columns with more than 20% missing values were removed. Missing values in the 

"Depth" and "Place" columns were filled with mean values. Additionally, underscores were replaced with 

spaces, and column names were standardized to uppercase. 

1. Univariate Analysis 

a. Magnitude and Depth Analysis 

The univariate analysis of the "Magnitude" feature in the earthquake dataset aims to examine the 

distribution of earthquake magnitudes. Magnitude is a parameter that measures the energy of an earthquake 

and is typically expressed using the Richter scale or Moment Magnitude Scale (Mw). The first step in the 

analysis is to create a histogram showing the general distribution of earthquake magnitudes. This histogram 

reveals the frequency of earthquakes occurring within specific magnitude ranges. 

The depth distribution analysis explores the depths at which earthquakes typically occur. This analysis is 

used to understand the distribution of earthquakes at varying depths below the Earth's surface. It is shown 

in Figure 1. 

 
Figure 1. Univariate Analysis by Mag and Depth 

 

b. Type of Magnitude Distribution 

MB (Body Wave Magnitude) stands out as the type with the highest recorded magnitudes compared to 

other types. Several factors contribute to this: the type of wave used for measurement, the body wave, 

propagates through the Earth's interior. These waves can travel longer distances and provide more accurate 

results when measuring large earthquake magnitudes. 

MB is particularly sensitive to larger earthquakes because it is calculated based on the amplitude of large 

body waves. This characteristic makes MB an ideal magnitude type for capturing and analyzing significant 

seismic events. It is shown in Figure 2. 
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Figure 2. Distribution Mag Type 

2. Bivariate Analysis 

The bivariate analysis conducted on the earthquake dataset aims to examine the relationship between 

earthquake magnitudes and depths. This analysis seeks to classify earthquakes into specific depth ranges 

and identify potential connections between magnitude and depth. 

The depth ranges are defined as follows: 

• Shallow earthquakes: 0–70 km 

• Intermediate-depth earthquakes: 70–300 km 

• Deep earthquakes: Greater than 300 km 

By categorizing earthquakes in this manner, the analysis provides insights into how depth influences the 

magnitude of seismic events, highlighting trends or patterns within each depth category. It is shown in 

Figure 3. 

 

 
Figure 3. Magnitude vs Depth 

3. Multivariate Analysis 

In the multivariate earthquake analysis, the MB magnitude was utilized to derive insights into the intensity 

and potential impacts of seismic events. The findings indicated that using the MB magnitude provides more 

accurate and reliable information regarding the severity of earthquakes. 

This magnitude type was selected to understand the relationships among various variables depicted in the 

graphical analysis. By incorporating multiple variables simultaneously, the analysis highlights complex 

interdependencies and patterns that contribute to a deeper understanding of earthquake dynamics. It is 

shown in Figure 4. 
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Figure 4. Magnitude vs Depth on Magtype 

Feature Engineering 

The following features were utilized in the model: 

• Latitude 

• Longitude 

• Depth 

• Year 

• Month  

• Day  

These features represent the location, time, and depth of earthquakes, enabling the model to predict 

earthquake magnitudes effectively. 

 

Creation of Training and Test Sets 

The dataset was divided into training and test sets. The training set was used to train the model, while the 

test set was used to evaluate the model's performance. A split ratio of 80% for training and 20% for testing 

was applied using the train_test_split function. 

 

Modeling 

In this study, multiple machine learning models were employed to predict earthquake magnitudes. The 

models used are: 

• Random Forest Regressor 

• Linear Regression 

• Ridge Regression 

• Lasso Regression 

For each model, training and prediction were performed using the sklearn library. The models' 

performance was evaluated using the Mean Squared Error (MSE) metric on the test set. 

1) Random Forest Regressor 

Random Forest is an ensemble method that combines multiple decision trees for prediction. In this study, 

the model was trained with 100 trees. 

2) Linear Regression 

Linear Regression models the linear relationship between dependent and independent variables. It serves 

as a fundamental regression technique. 

3) Ridge Regression 

Ridge Regression extends Linear Regression by adding an L2 penalty term to prevent overfitting. In this 

study, the penalty coefficient (alpha) was set to 1.0. 
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4) Lasso Regression 

Lasso Regression adds an L1 penalty term to Linear Regression, aiming to prevent overfitting and perform 

feature selection by reducing some coefficients to zero. The penalty coefficient (alpha) was set to 0.1 in 

this study. 

 

Prediction and Performance Evaluation 

The performance of each model on the test set was evaluated using the MSE metric. Additionally, the 

predictions of each model were compared for two different location and depth combinations representing 

potential future earthquakes. It is shown in Table 3. 

 
Tablo 3. Model Results 

Model Prediction 1 Prediction 2 
Mean Squared Error 

(MSE) 

Random Forest Regressor 5.317 6.3202 0.161 

Lasso Regression 5.19975435 5.19900361 0.180 

Linear Regression 5.19051159 5.18897125 0.182 

Ridge Regression 5.1905116 5.18897126 0.182 

 

 

Based on the performance evaluation of each model, the model with the lowest MSE was identified. The 

Random Forest Regressor exhibited the best performance, indicating its superior ability to predict future 

earthquake magnitudes. Further analysis was conducted to evaluate its predictive capability for potential 

future earthquakes. 

 

V. RESULTS 

A comprehensive analysis of earthquakes from geological, seismological, and engineering perspectives 

has fulfilled the primary objectives of this study. Hypotheses evaluating the effects of plate tectonics, 

volcanic activities, and human-induced triggers on earthquakes provided an in-depth understanding and 

unveiled critical relationships in these domains. The study emphasized the strategic importance of 

identifying risk profiles for geographic regions based on their earthquake potential, laying a scientific 

foundation for hazard analysis and risk assessment in earthquake-prone areas. 

Detailed analyses under the effects of earthquakes shed light on the complex relationships between 

seismic activity and phenomena such as structural damage, tsunami generation, and landslides. The 

exploration of natural and artificial precursors, alongside the role and working principles of early warning 

systems, has contributed to a better understanding of these vital mechanisms. 

The significant focus of this research, the application of machine learning and artificial intelligence 

technologies in earthquake risk analysis and prediction, serves as a potential guide for future studies. In this 

context, the study employed various machine learning models to predict earthquake magnitudes, yielding 

valuable insights into model training and performance. 

The findings demonstrate that machine learning models hold considerable potential for predicting 

earthquake magnitudes. In particular, the Random Forest Regressor achieved the best performance, with 

the lowest MSE value, highlighting its superior accuracy in earthquake magnitude prediction. 

By evaluating the preparedness of societies against earthquake risks, this study offers recommendations 

for proactive measures, shedding light on strategies to mitigate earthquake impacts. This research 

contributes a multidimensional analysis to the academic literature and emphasizes the role of data-driven 

approaches in improving disaster resilience. 
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VI. DISCUSSION 

This study enhances the understanding of earthquake phenomena by integrating geological, 

seismological, and engineering perspectives. The findings confirm the complex interplay between natural 

and human-induced factors in seismic activity. The application of machine learning, particularly the 

Random Forest Regressor, demonstrates strong predictive potential, aligning with prior research. However, 

challenges remain in data quality and model generalization. The study also reinforces the importance of 

risk profiling, early warning systems, and mitigation strategies for disaster resilience. Future research 

should refine predictive models and expand datasets for improved earthquake forecasting. 

 

VII. CONCLUSION 

This study provides a comprehensive analysis of earthquake risks, highlighting the role of machine 

learning in seismic prediction. The Random Forest Regressor showed the highest accuracy, demonstrating 

its potential for improving risk assessment. Additionally, the study emphasizes the importance of early 

warning systems and preparedness strategies. While the findings are promising, further research is needed 

to enhance predictive models and broaden data integration. 
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