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Abstract – Cyclic Alternating Pattern (CAP) is a crucial biomarker for assessing sleep quality and 

stability, as well as diagnosing sleep disorders. In clinical practice, manually detecting CAP A-phases and 

their subtypes by analyzing full-night electroencephalography (EEG) recordings is a time-consuming, 

labor-intensive, and error-prone process. In this study, a novel hybrid deep learning model, ResFormer-

CAP-Net, is proposed for the automated classification of CAP A-phase and its subtypes. This model 

integrates ResNet-18 for feature extraction and Transformer layers for temporal modeling. The proposed 

model was evaluated using EEG recordings from healthy and sleep-disordered individuals in the publicly 

available CAP Sleep Database (CAPSD). Evaluations on balanced datasets demonstrated that ResFormer-

CAP-Net achieved state-of-the-art performance, with 79.97% accuracy for A-phase classification and 

81.88% accuracy for subtype classification. Additionally, the effectiveness of four different EEG 

channels was analyzed, revealing that the F4-C4 channel provided the highest accuracy for A-phase 

classification, while the C4-P4 channel performed best for subtype classification. The number of 

Transformer layers was also optimized, with experiments showing that using two Transformer layers 

resulted in the highest classification performance. 
 

Keywords – Cyclic Alternating Pattern, Deep Learning, Sleep, Electroencephalogram, Vision Transformers. 

 

I. INTRODUCTION 

Sleep is one of the most fundamental aspects of human life and is defined as a complex physiological 

process essential for the repair, restoration, and proper functioning of the body and mind. It plays a 

critical role in numerous biological functions, including immune regulation, hormonal balance, cognitive 

performance, metabolic homeostasis, and overall well-being [1], [2]. Inadequate or poor-quality sleep has 

been linked to numerous health issues, including cardiovascular diseases, neurodegenerative disorders, 

obesity, and mental health disorders [3], [4]. Additionally, sleep deficiency can lead to many problems 

like impaired cognitive function, reduced productivity, mood disorders and an increased risk of accidents 

[1], [5]. Given the profound impact of sleep on health and daily functioning, understanding and analyzing 

sleep structures are crucial for diagnosing sleep-related disorders and improving sleep quality. 
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Polysomnography (PSG), also known as a sleep study, is the gold standard method for sleep analysis, 

sleep quality assessment, and sleep disorder diagnosis [6]. This technique records a comprehensive set of 

physiological signals, including electroencephalography (EEG), electrocardiography (ECG), 

electromyography (EMG), electrooculography (EOG), airflow, and respiratory parameters, during an 

overnight sleep examination in a laboratory setting. Among these, EEG plays a pivotal role in 

understanding brain activity during sleep, scoring sleep stages, and detecting microstructural patterns 

indicative of sleep stability and arousal mechanisms. One such EEG-based phenomenon that provides 

critical insight into sleep microstructure and stability is the Cyclic Alternating Pattern (CAP). CAP is 

defined as a periodic EEG activity observed exclusively during Non-Rapid Eye Movement (NREM) sleep 

and represents a fundamental marker of sleep instability and arousal regulation [7], [8]. This phenomenon 

encompasses transient, phasic events in sleep microstructure, such as K-complexes, vertex sharp 

transients, delta bursts, and polyphasic bursts. CAP consists of cyclic A-phases, reflecting brief surges in 

cortical activity lasting between 2 to 60 seconds, followed by B-phases, which correspond to periods of 

background sleep rhythm with a similar duration. The A-phase is further classified into three subtypes 

(A1, A2, and A3) based on EEG amplitude, frequency characteristics, and associated physiological 

responses. Fig. 1 illustrates these subtypes in an example EEG signal segment from CAP Sleep Database 

(CAPSD) [7], [9]. The clinical relevance of CAP and its subtypes is well established in sleep medicine, as 

their distribution, duration, and occurrence patterns have been strongly correlated with various 

neurological and sleep disorders, including insomnia [10], periodic limb movement disorder (PLMD) 

[11], nocturnal frontal lobe epilepsy (NFLE) [12] and REM behavior disorder (RBD) [13]. 
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Fig. 1 Illustration of CAP A-phase subtypes (A1, A2, A3) in an example EEG segment from the CAPSD [7], [9].  

CAP events and their subtypes are scored by sleep specialists through manual analysis of EEG 

recordings, which typically span 6 to 9 hours of overnight monitoring in a clinical setting [14]. Given the 

extensive duration of these recordings, conducting a second-by-second analysis is highly time-consuming 

and labor-intensive [15]. Moreover, the accuracy of CAP scoring is susceptible to inter-scorer variability, 

as it heavily depends on the expertise and experience of the specialist [16]. These challenges associated 

with CAP scoring highlight the urgent need for reliable and accurate automated CAP detection methods 

that can enhance efficiency, reduce subjectivity, and improve reproducibility in clinical settings. 

 

Various studies have investigated automated CAP A-phase and subtype detection using both traditional 

machine learning (ML) and deep learning (DL) approaches. Traditional ML methods typically involve 

extracting handcrafted features from EEG signals and classifying them using algorithms such as support 

vector machines (SVM) [17], k-nearest neighbors (k-NN) [18], ensemble bagged trees (EBaT) [18], and 

multi-layer perceptrons (MLP) [19]. While these approaches have achieved promising results, their 

dependence on handcrafted feature extraction and dataset-specific parameter tuning has restricted their 

applicability to broader datasets. To address these challenges, recently, DL-based methods, such as 

Convolutional Neural Networks (CNNs) [15], [20], [21] have been developed to enable automated CAP 

classification with improved and automated feature learning capabilities.  Recent studies have also 

explored hybrid models that integrate CNNs with attention mechanisms to further enhance classification 
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accuracy. Despite these advancements, challenges such as high computational complexity, data 

imbalance, and the need for even higher classification accuracy remain significant research concerns in 

the field.  

 

To address these limitations, this study proposes ResFormer-CAP-Net, a novel hybrid DL model 

designed for the classification of both CAP A-phase (A-phase vs non-A-phase) and its subtypes (A1 vs 

A2 vs A3). ResFormer-CAP-Net integrates the spatial feature extraction capabilities of CNNs with the 

temporal modeling strengths of Transformer networks [22], providing a more comprehensive approach to 

EEG-based CAP detection. Additionally, this study evaluates the model's performance across four EEG 

channels, namely C4-P4, F4-C4, Fp2-F4, and P4-O2, for both CAP scoring tasks. Finally, the optimal 

model configuration is determined by fine-tuning the number of Transformer layers in ResFormer-CAP-

Net to achieve the best balance between accuracy and computational efficiency. 

 

II. MATERIALS AND METHOD 

A. Dataset 

The publicly available CAPSD [7], [9] was used in this study to develop and evaluate the proposed 

ResFormer-CAP-Net model. CAPSD serves as a benchmark dataset for detecting CAP A-phase and its 

subtypes, making it a suitable choice for this research. The dataset contains full-night PSG recordings of 

108 subjects, including 92 patients with sleep disorders and 16 healthy individuals. Each PSG recording 

includes at least three EEG channels, EMG and EKG. The CAP A-phase and its subtypes were annotated 

by expert neurologists following the Terzano’s reference atlas of rules. In this study, only EEG signals 

were utilized for classification of A-phase and its subtypes. To evaluate the ResFormer-CAP-Net on both 

healthy and sleep-disordered subjects, a subset of 12 subjects was selected. Specifically, healthy 

individuals were first examined, and only those with an EEG sampling frequency of 512 Hz were 

included, resulting in a selection of 6 subjects. To maintain balance, an equal number of NFLE patients 

(n=6) were also selected. Table 1 presents the selected subjects. 

B. Preprocessing 

A series of preprocessing steps were applied these selected PSG recordings before feeding them to the 

ResFormer-CAP-Net. First, four EEG channels (C4-P4, F4-C4, Fp2-F4, and P4-O2) were extracted from 

the selected PSG recordings to investigate the effect of EEG channels on model performance and to 

determine the most informative EEG channel.  Since CAP occur exclusively during the NREM sleep 

stage [7], only the NREM stage was retained while signals corresponding to other sleep stages were 

discarded. This was achieved using sleep stage labels annotated according to the Rechtschaffen & Kales 

(R&K) rules [23]. Following this, each EEG recording was segmented into 11-second epochs with a 3-

second shift interval. To mitigate the class imbalance issue caused by the higher prevalence and longer 

duration of B-phase (non-A-phase) compared to A-phase, only one out of every ten non-A-phase epochs 

was retained. Next, to simultaneously analyze both the temporal and spectral characteristics of the signals, 

each EEG epoch was transformed into a time-frequency representation using Continuous Wavelet 

Transform (CWT) [21]. The resulting scalograms were saved as 64 x 64 x 3 images, with label 

corresponding to sixth second of the epoch. Fig. 2 illustrates example scalogram images obtained for A-

phase, B-phase, and their subtypes.  
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Fig. 2 Example scalograms of EEG epochs for CAP A-Phase (A1, A2, A3) and B-Phase (Non-A phase). 

Table 1 presents the number of epochs obtained from each subject for A-phase and its subtypes. 

As seen in the table, there is an imbalance between classes, which may cause the model to produce biased 

results toward the majority class. To address this dataset imbalance issue, the number of samples in all 

classes was equalized by down-sampling. After balancing, each CAP A-phase subtype contained 3,509 

epochs, while the A-phase and non-A-phase classes each included 10,527 epochs. 

Table 1. The number of A-phase subtypes (A1, A2, and A3), total A-phase), and non-A phase epochs. 

Subjects 
Number of epochs 

A1 A2 A3 Total A Non-A 

N1 744 247 567 1558 978 

N2 397 233 1361 1991 792 

N3 219 217 790 1226 877 

N5 973 108 350 1431 863 

N10 490 155 1190 1835 670 

N11 577 193 269 1039 947 

NFLE1 1120 191 322 1633 789 

NFLE2 465 270 2028 2763 700 

NFLE3 425 197 1681 2303 872 

NFLE4 669 986 785 2440 872 

NFLE5 725 401 1053 2179 835 

NFLE7 1277 311 1089 2677 843 

Total 8081 3509 11485 23075 10038 

 

Proposed ResFormer-CAP-Net 

In this study, a novel model, called ResFormer-CAP-Net, is proposed for the accurate and automated 

classification of CAP A-phase and its subtypes. ResFormer-CAP-Net integrates CNN architecture and 

Transformer layers [22], leveraging the spatial feature extraction power of CNNs and the long-range 

temporal modeling capability of Transformers to effectively capture both spatial and temporal 

dependencies in EEG signals. Fig. 3 illustrates the overall architecture of ResFormer-CAP-Net. The 

proposed network consists of three main stages: a feature extraction module based on CNN (specifically 

ResNet-18 [24]), a Transformer encoder for temporal modeling, and a classification layer for predicting 

CAP A-phase (A-phase vs non-A-phase) or its subtypes (A1 vs A2 vs A3). 
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Fig. 3.  The architecture of the proposed ResFormer-CAP-Net. 

ResNet-18 receives 64 × 64 scalogram images obtained from EEG epochs as input. Therefore, the first 

layer of ResNet-18 is modified to accept 64 × 64 × 3 input images. During the feature extraction stage, 

these images are processed through the CNN model, where hierarchical features are extracted. ResNet-18 

[24] was chosen as the backbone due to its efficiency in capturing spatial hierarchies in image-based data 

while optimizing gradient flow through residual connections. The extracted features are obtained from 

ResNet-18’s final pooling layer (pool5). Given the input scalogram image 𝑋, the extracted feature maps 𝐹 

are defined as follows. 

𝐹 = 𝑅𝑒𝑠𝑁𝑒𝑡18(𝑋) (1) 

To better model long-term dependencies and temporal relationships, these extracted features are passed 

through n Transformer encoder [22] layer in the second stage The value of n varies between 1 and 3, 

determined based on experimental results. As shown in Fig. 3, each Transformer layer consists of a multi-

head self-attention (MHSA) mechanism, followed by two fully connected layers. Feature maps are first 

passed through layer normalization. Then, the multi-head self-attention (MHSA) mechanism is applied to 

identify the most important feature representations. This mechanism evaluates the relationships between 

each input feature and all others, allowing the model to learn long-term dependencies. A self-attention 

mechanism operates using query (𝑄), key (𝐾) and value (𝑉) matrices and is defined as follows. 

𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (2) 

Where 𝑑𝑘 is a scaling factor for normalization. The multi-head self-attention mechanism performs this 

operation in parallel across multiple attention heads. The output of MHSA is expressed as follows: 

𝑍𝑀𝐻𝑆𝐴 = 𝑀𝐻𝑆𝐴(𝑍𝑖𝑛) (3) 

The output of MHSA is passed through layer normalization and added to the input features. Then, it is 

processed through two consecutive fully connected layers to obtain the final feature representations for a 

Transformer layer. The final feature representation obtained from the last Transformer layer is passed to 

the classification layer to classify either A-phase vs. non-A-phase or A1 vs. A2 vs. A3. 

 

III. RESULTS 

This section presents the experimental results obtained from the proposed ResFormer-CAP-Net. All 

experiments including preprocessing were conducted on a high-performance workstation equipped with 

an NVIDIA GeForce RTX 4090 GPU, 128 GB RAM, and a 13th generation Intel Core i9-13900K CPU. 

All coding and implementation were performed on in MATLAB R2024a. The balanced datasets prepared 

for both tasks during the preprocessing stage were divided into 80% training and 20% validation. The 

ResFormer-CAP-Net was trained using the Adam optimizer, with a batch size of 64, a learning rate of 

0.001, and a maximum of 20 epochs. To mitigate overfitting, an early stopping mechanism was applied, 
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automatically stopping training if validation loss did not improve over four consecutive epochs. To 

evaluate the classification performance of the proposed model, commonly used performance metrics, 

including accuracy, sensitivity, specificity, precision, and F1-score were employed [20]. These metrics 

were computed from confusion matrix.   

 

Table 2 presents the accuracy results obtained by ResFormer-CAP-Net for each EEG channel as the 

number of Transformer layers increases. For CAP A-phase classification, the highest accuracy of 79.97% 

was achieved using the F4-C4 channel with two Transformer layers. Similarly, the Fp2-F4 channel 

exhibited a comparable performance, reaching 79.82% accuracy with the same number of Transformer 

layers. In contrast, the P4-O2 channel demonstrated the lowest accuracy, remaining around 75% across all 

Transformer configurations. For CAP subtype classification, the highest accuracy of 81.88% was 

obtained using the C4-P4 channel with two Transformer layers. Likewise, the Fp2-F4 channel yielded a 

similar accuracy of 81.61%, while the P4-O2 channel consistently produced the lowest accuracy values, 

remaining around 78%. Table 3 summarizes the detailed performance metrics for the best-performing 

configuration in each CAP classification task. Since the dataset was balanced, the values of these 

performance metrics closely align with the accuracy values. These results indicate that ResFormer-CAP-

Net achieves high classification performance across different EEG channels and Transformer 

configurations, with optimal results observed for two Transformer layers in both tasks. 

 

Table 2. Accuracy (%) of the ResFormer-CAP-Net for Different EEG Channels and Transformer Layers. 

Classification task #Transformer C4-P4 F4-C4 Fp2-F4 P4-O2 

A-phase 1 77.49 79.04 79.13 75.64 

2 78.26 79.97 79.82 75.87 

3 77.13 79.31 78.67 75.73 

Subtype 1 81.18 80.72 81.42 78.39 

2 81.88 81.05 81.61 78.88 

3 81.21 80.64 81.12 78.13 

 

Table 3. Performance metrics (%) of ResFormer-CAP-Net for the best-performing configurations. 

Classification task Acc Sen Spe Pre F1 

A-phase 79.97 79.35 80.26 80.18 79.73 

Subtype 81.88 81.88 84.67 82.12 81.92 

IV. DISCUSSION 

The experimental results obtained the proposed model demonstrated the ResFormer-CAP-Net in the 

automated classification of CAP A-phase and its subtypes. The results indicate that the integration of 

ResNet-18 model for feature extraction and Transformer layer for temporal long dependencies 

relationships provides a significant performance enhancement in CAP classification tasks. The F4-C4 and 

Fp2-F4 channels achieved the highest accuracy rates for CAP A-phase detection, suggesting that frontal 

and central electrode placements are particularly informative for distinguishing CAP-related activity. In 

contrast, the P4-O2 channel consistently exhibited lower classification accuracy across all Transformer 

configurations, implying that occipital electrodes may contribute less discriminative information for CAP 

detection. The effect of Transformer depth was also examined in the study. The results show that using 

two Transformer layers provided the highest classification accuracy for both CAP A-phase and subtype 

classification tasks. While increasing the number of Transformer layers beyond two did not significantly 

improve performance, a slight decline was observed in some cases. This suggests that excessive 

Transformer depth may lead to overfitting or redundancy in feature extraction, particularly when working 

with limited EEG data. 
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Table 4 compares ResFormer-CAP-Net with previous state-of-the-art studies in terms of methodology, 

the number of subjects used in the dataset, reported performance metrics, and key limitations. As 

observed from the table, the majority of existing studies rely on traditional ML methods [18], [19], [25],  

which require handcrafted feature extraction processes. While these methods have shown moderate 

success, they are often limited by dataset-specific parameter tuning and feature selection biases. From a 

different perspective, most studies have focused exclusively on CAP A-phase classification, with limited 

efforts directed toward subtype classification. Among these, Halder et al. [20] achieved the highest 

reported accuracy rates of 90.31% for A-phase classification and 86.72% for subtype classification using 

a 1D-CNN with an attention mechanism. However, despite the high accuracy, the authors reported 

significantly lower F1-scores of 65.73% for A-phase and 59.59% for subtypes, suggesting that their 

model struggled with imbalanced class distributions. This highlights the importance of considering F1-

score over accuracy when working with highly imbalanced datasets. In contrast, in this study, a balanced 

dataset was used, leading to 79.97% accuracy for A-phase classification and 81.88% accuracy for subtype 

classification. Unlike Halder et al.'s study [20], ResFormer-CAP-Net also achieved F1-scores of 79.73% 

for A-phase and 81.92% for subtypes, demonstrating more stable performance across different classes. 

This result underscores the significance of dataset balancing techniques in achieving more reliable and 

unbiased classification results. Furthermore, ResFormer-CAP-Net eliminates the need for complex and 

labor-intensive handcrafted feature extraction processes, which are required in traditional ML-based 

approaches. This hybrid architecture improves classification performance while reducing the dependence 

on manual preprocessing and expert-driven feature engineering. 

Table 4. Comparison of the proposed ResFormer-CAP-Net with previous studies. 

Ref, 

year 
Class Method Results (%) Limitations 

[19], 

2024 
A–A' 

hand-crafted feature 

extraction feature selection, 

MLP 

Acc: 73.0, Sen: 77.0 

Low accuracy, hand-crafted 

feature extraction, only A-phase 

detection 

[26], 

2024 
A–A' 

11-s epochs, Wigner-Ville 

distribution, and ResNet18 

Acc: 77.5, Sen: 75.9 

(balanced data) 

Low accuracy, only A-phase 

detection, testing only on healthy 

individuals 

[25], 

2024 
A–A' 

2-s epochs, sub-band 

decomposition, hand-crafted 

feature extraction, kNN 

Acc: 79.1, F1: 79.2 

(balanced data) 

Hand-crafted feature extraction, 

only A-phase detection, testing 

only on healthy individuals 

[18], 

2023 
A–A' 

2-s epochs, subband 

decomposition, hand-crafted 

feature extraction, EBaT for 

A-phase, kNN for subtype 

Acc: 83.6 F1:74-88 Hand-crafted feature extraction, 

low accuracy for subtype class A1-A2-

A3 

Acc: 78.8, F1: 80-63-

85 

[15], 

2023 
A–A' 

2-s epochs, three 1D-CNN, 

ensemble averaging  

Acc: 82-87, Sen: 72-

80 
Complex, and post-processing 

[20], 

2023 

A–A' 30-s epochs, 1D-CNN with 

attention  

Acc: 90.31, F1: 65.73 Low F1, testing only on healthy 

individuals A'-A1-2-3 Acc: 86.72, F1: 59.59 

[21], 

2023 

A-A' 31-s epochs, MobileNetV2, 

transfer learning, fine-tuning 

for subtype 

Acc: 80, Sen: 75 

Complex A1-A2-

A3 

Acc: 80-75-71 Sen: 

84-72-59 

This 

study 

A–A' 11-s epochs, ResFormer-

CAP-Net 

Acc: 79.97, F1:79.73 
Complex A1-A2-

A3 

Acc: 81.88, F1:81.92 
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V. CONCLUSION 

In this study, we developed a novel hybrid DL model ResFormer-CAP-Net, for the automated 

classification of CAP A-phase and its subtypes. ResFormer-CAP-Net combines the well-known CNN 

architecture ResNet-18 for feature extraction with Transformers to capture temporal dependencies in 

EGG signals. Experimental results Experimental results show that F4-C4 and Fp2-F4 channels achieved 

the highest accuracy for CAP A-phase detection, while C4-P4 and Fp2-F4 channels performed best for 

subtype classification, emphasizing the importance of frontal and central EEG regions. The optimal 

number of Transformer layers was found to be two, as deeper configurations led to performance 

degradation due to overfitting. The use of a balanced dataset resulted in more reliable classification, 

yielding higher F1-scores compared to studies using imbalanced datasets. 
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