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Abstract-Industrial wastewater, particularly from the textile sector, contains complex pollutants that pose 

significant environmental risks. This study focuses on characterizing textile effluent and assessing its 

environmental impact using machine learning and optimization techniques. The analysis revealed that the 

primary pollutant parameters exceed regulatory discharge limits, leading to a high environmental risk 

classification. Advanced data-driven methodologies, including deep learning and machine learning models, 

were applied to classify risk levels and predict pollution trends. Time-series models and classification 

algorithms were utilized to analyze pollutant variations over time, while Random Forest regression and 

classification models enabled accurate pollutant trend predictions. To mitigate the environmental risks 

associated with textile wastewater, multiple optimization strategies were evaluated, considering cost-

effectiveness and treatment efficiency. This approach successfully optimized pollutant removal efficiency, 

minimized treatment costs, and reduced energy consumption while ensuring compliance with 

environmental regulations. 

Furthermore, scenario-based modeling included process optimization, implementation of advanced 

treatment technologies, and integration of sustainable practices such as water and energy conservation, as 

well as carbon and water footprint reduction. The study highlights the transformative potential of deep 

learning in wastewater management, offering predictive capabilities that enable proactive environmental 

risk mitigation. This research serves as a valuable reference for both academia and industry by providing a 

systematic, data-driven framework for optimizing wastewater treatment processes.  

Keywords: Textile Wastewater, Environmental Risk Assessment, Deep Learning, Machine Learning, Optimization, Multi-

Objective Genetic Algorithm, Sustainable Wastewater Treatment. 

I. INTRODUCTİON 

The rapid growth of industrialization and economic development processes in the modern era significantly 

threatens environmental sustainability. In this context, the environmental impact of the textile industry, 

particularly wastewater pollution, poses a serious global challenge. Wastewater discharged from the textile 
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industry contains high concentrations of water-soluble and toxic substances, including microbial pathogens, 

organic dyes, pigments, and heavy metals. These pollutants disrupt the balance of natural ecosystems, 

reduce the availability of clean and freshwater resources suitable for drinking, and consequently present 

substantial risks to both the environment and human health. 

The complex and chemically stable structure of textile dyes significantly hinders their degradation and 

mineralization. Wastewater originating from the textile and dye manufacturing industries not only contains 

organic pollutants but also includes toxic and persistent chemicals, thereby increasing environmental risks. 

Even when treated using conventional methods, the presence of pollutants at nanogram levels continues to 

pose a threat to aquatic life and, moreover, leads to harmful effects on human health due to the infiltration 

of these contaminants into the food chain through irrigation. In this context, upgrading textile wastewater 

treatment from conventional methods to more advanced treatment technologies—such as advanced 

oxidation processes and membrane techniques—is of critical importance for both environmental 

sustainability and economic feasibility [1, 2-6]. 

The textile industry, one of the most chemical-intensive sectors, generates wastewater containing hazardous 

dyes, pigments, dissolved/suspended solids, and heavy metals, which pose significant environmental risks. 

It is evident that effectively characterizing textile industry wastewater before its discharge into receiving 

environments, identifying the types of pollutants it contains, and applying appropriate treatment 

technologies can significantly reduce these environmental risks. The literature includes numerous studies 

detailing the characteristics and classification of textile wastewater [7-13], as well as research focusing on 

its environmental impact and toxicity levels [8,14-18]. Particularly in recent years, there has been increasing 

attention to developing biological, physical, and chemical treatment methods, along with advanced 

treatment techniques for textile wastewater. 

Scientific research in recent years has extensively explored the environmental risks of textile wastewater 

and techniques for its mitigation. Studies have examined the consequences of releasing inadequately treated 

wastewater into the environment or reusing it, particularly due to the presence of toxic and harmful 

contaminants [14-29]. However, to enhance the economic feasibility and environmental sustainability of 

these treatment methods, more effective strategies are needed [18-28]. 

The importance of machine learning and deep learning techniques in identifying and managing the high 

environmental risks posed by textile wastewater has been increasingly recognized in recent years. These 

techniques offer significant advantages in analyzing large and complex datasets, aiding in the identification 

and prediction of environmental risks. Research on deep learning and artificial neural networks 

demonstrates their utility in environmental data analysis. For instance, deep learning methods efficiently 

process large environmental datasets, enabling pollutant source identification and pollution level prediction. 

The application of machine learning and deep learning techniques in environmental risk analysis has been 

facilitated by programming tools such as Python. Python's extensive library support and community 

resources allow researchers and engineers to analyze environmental data and develop predictive models. 

These techniques serve as powerful tools for identifying and managing environmental risks, thereby 

contributing to environmental sustainability and minimizing adverse impacts [29]. 

Wastewater treatment processes are data-rich, backed by extensive research, and have a strong history of 

transitioning from research to engineering applications [30]. Consequently, there is a significant focus on 

research and applications involving machine-assisted evaluation and optimization using programming 

languages [31]. 

Between 2021 and 2025, numerous studies have been conducted on textile wastewater treatment, 

integrating Fenton-based methods with machine learning for sustainability [31], active carbon-based color 

removal using machine learning modeling [33], and nanocomposite ceramic membrane treatment of textile 

wastewater [34]. Other notable studies include the automatic classification of textile visual pollutants using 

deep learning [35], machine learning-assisted source tracking in domestic-industrial wastewater [36], and 

the enhancement of phycoerythrin content in Porphyridium cruentum-derived microplastics using machine 

learning [37]. Research has also focused on predicting microplastic adsorption in water environments using 
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advanced machine learning models [38], evaluating machine learning as an alternative to polynomial 

regression in response surface methodology for predicting color removal efficiency in textile wastewater 

treatment [39], and utilizing machine learning classification algorithms to mitigate the risk of inadequate 

wastewater treatment [40]. Additional studies explore the impact of salinity on process performance and 

membrane fouling in anaerobic ceramic membrane bioreactors for textile wastewater treatment, optimized 

wastewater adsorption-based distillation through machine learning [42], and machine learning applications 

in microplastic fate and sources in wastewater treatment [44]. Research also extends to deep learning 

applications in wastewater treatment systems for assessing carbon neutrality [45], data-driven predictive 

performance modeling of advanced oxidation dye wastewater treatment plants [46], and the integration of 

reinforcement learning into dyeing processes for reducing residual dye pollution [51]. 

Currently, wastewater treatment and risk assessment processes in many developing and underdeveloped 

countries rely heavily on human decision-making or semi-mechanical operations. As an alternative and 

complementary approach, data-driven deep learning methods have emerged in recent years. Wastewater 

treatment processes are large and complex, characterized by multiple control mechanisms, high degradation 

variability, and intricate internal recycling loops, leading to unstable behavior. This study addresses an 

existing gap in the literature by providing a detailed framework for adapting deep learning methods and 

wastewater treatment process modeling to assess, evaluate, and mitigate the environmental impact of textile 

wastewater. 

This paper presents an exemplary study on textile industry wastewater samples, aiming to facilitate a 

systematic assessment of environmental risks through programming methodologies. By employing 

modeling techniques and forward-looking predictions, the study seeks to develop targeted risk mitigation 

measures and monitoring strategies. This research contributes to the protection of natural ecosystems and 

long-term sustainability. 

In this study, the characterization of the treated effluent from a textile company was conducted through 

laboratory analyses. Python V3.7.1 was used to analyze environmental risks, generate forward-looking 

predictions, and develop modeling approaches. Using Python's extensive libraries, machine learning 

algorithms and deep learning techniques were employed to identify and analyze environmental risks. Time 

series analysis and regression models were used for risk prediction, followed by optimization algorithms to 

develop future-oriented models aimed at reducing the environmental impact of wastewater. 

 

By leveraging these techniques, this study enhances environmental sustainability and minimizes negative 

impacts. Furthermore, it facilitates and encourages researchers and engineers in analyzing environmental 

data and developing predictive models, ultimately contributing to more efficient and sustainable wastewater 

treatment practices. 

 

II. MATERIAL AND METHODS 

2.1. Data Collection Methods 

For the characterization study, a water sample was collected from effluent point of the conventional 

treatment unit of a medium-sized textile company operating in the Çerkezköy district of Tekirdağ province. 

The sampling and preservation process was conducted in accordance with the "TS EN ISO 5667-3 Water 

Quality - Sampling - Part 3: Guidance on the Preservation and Handling of Water Samples" and "TS EN 

ISO 19458 Water Quality - Sampling for Microbiological Analysis" standards, which outline the rules for 

storage, transportation, and preservation of water samples. The samples were labeled and transported in 

glass containers under controlled conditions at +2 °C. Simultaneously with sampling, pH and color 

measurements were performed using a Hach HQ40D Multimeter device. All measurements were conducted 

in strict accordance with international standard methods: Chemical Oxygen Demand (COD) was measured 
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according to ISO 6060 (ISO 6060, 1986), Biological Oxygen Demand (BOD) was analyzed following ISO 

5815, and all other analyses were performed according to APHA Standard Methods (APHA, 1998). 

2.2. Data Analysis and Modeling 

For data analysis and modeling, Python V3.7.1 was utilized. Machine learning techniques, particularly 

classification algorithms, were applied to identify environmental risks and categorize them into low, 

medium, and high-risk levels. This facilitated the development of an Environmental Risk Assessment 

framework. For data processing and analysis, the following Python libraries, Pandas for data manipulation 

and analysis, NumPy for numerical computations, Matplotlib/Seaborn for data visualization, Scikit-Learn 

for machine learning algorithms, Statsmodels for statistical analysis, Predictive Modeling and 

Optimization, were employed. In order to conduct predictive modeling, the following hypotheses were 

formulated. 

 

Hypothesis 1: "If the current processes continue, long-term environmental impacts will be high." 

Hypothesis 2: "If the processes are improved, environmental risks will be reduced." 

For forward-looking modeling, time series analysis and regression models were utilized for risk prediction. 

Furthermore, optimization algorithms were employed to identify the most effective solutions for 

minimizing the environmental impact and risks associated with the treated wastewater effluent. 

III. RESULTS AND DISCUSSION   

3.1 Characterization and Environmental Risk Assessment 

The results of the characterization analysis applied to the wastewater samples collected from the treatment 

effluent point of a medium-sized textile company operating in Çerkezköy district of Tekirdağ, one of 

Turkey’s major industrial cities, are detailed in Table 1. 

Table 1. Characterization Results for the Composite Effluent Water Sample from Textile Industry 

Parameters Unit Effluent of WWTP 
Discharge 

Criteria 
Significance 

pH - 6,3 6.5–9.0 
Indicates acidity or alkalinity; critical for 

biological treatment processes. 

Temperature °C 20 - 
Affects chemical reaction rates and 

biological activity. 

Biochemical Oxygen 

Demand (BOD) 
mg/L 155 <30 

Measures biodegradable organic matter; 

indicates potential oxygen depletion. 

Chemical Oxygen Demand 

(Total COD) 
mg/L 340 <250 

Represents total oxidizable pollutants, both 

organic and inorganic. 

Color 
Pt-Co 

units 
350 100-1000 

Affects aesthetic quality; can indicate 

presence of dyes. 

As seen in Table 1., a 6,3 pH, indicating acidity or alkalinity that is critical for biological treatment 

processes, a 20°C temperature affecting chemical reaction rates and biological activity, a 340 mg/L total 

COD value representing total oxidizable pollutants, both organic and inorganic, a 155 mg/L BOD 

representing biodegradable organic matter indicates potential oxygen depletion and a 350 Pt-Co units color 

were measured for the composite effluent wastewater sample from textile industry. 
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The graphical representation of the characterization parameters of textile industry treatment effluent water 

and their comparison with environmental limits is provided in Graph 1. In the graph, black bars represent 

the actual measured values, while the dashed linear line indicates the limit value. 

 

 

 

 

 

 

 

 

 

Graph 1. Textile Wastewater Pollutant Parameters and Limit Values 

 

After the characterization of the water sample obtained from the effluent point of the textile company's 

treatment plant, an environmental risk assessment was carried out. The following Python code is designed 

for the characterization of the water sample, where the values of each pollutant parameter are compared 

against discharge limits. This enables the simultaneous evaluation of the environmental impacts of all 

pollutant parameters, and the overall environmental risk levels are determined based on a scale of low, 

medium, and high risk. It was found that the effluent water of the textile company exceeds the discharge 

limits for the pollutant parameters BOD, COD, and color. 

 

Textile Treatment Effluent Water Characterization  
 

# Textile Treatment Effuent Characterization 

data = pd.DataFrame({ 

    "Parametre": ["pH", "BOD", "COD", "Renk", "Tuz", "Krom", "Bakır"], 

    "Değer": [6.5, 80, 300, 250, 1200, 0.2, 0.15], 

    "Limit": ["6.5–9.0", "<30", "<250", "<200", "<1000", "<0.1", "<0.1"], 

    "Birim": ["-", "mg/L", "mg/L", "ADMI", "mg/L", "mg/L", "mg/L"] 

}) 

 

# Risk calculation function 

def calculate_risk(value, limit): 

    if "–" in limit: 

        lower, upper = map(float, limit.split('–')) 

        if lower <= value <= upper: 

            return "Düşük" 

        else: 

            return "Yüksek" 

    else: 

        if value > float(limit.replace('<', '')): 

            return "Yüksek" 

        else: 

            return "Düşük" 

 

# Add risk levels  

data["Risk Levels"] = data.apply(lambda row: calculate_risk(row["Değer"], row["Limit"]), 

axis=1) 

 

# Show table 

print("Textile Treatment Effluent Environmental Risk Analysis Table:") 

print(data) 

0 100 200 300 400
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Temperature

Biochemical Oxygen…

Chemical Oxygen…

Color

Textile Treatment Effluent Parameters and Limits

Effluent of WWTP Discharge Criteria
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The measurement results of the pollutant parameters have been compared with standard limits, and the 

values for each pollutant parameter have been transferred into a Python DataFrame in order to determine 

the low, medium, and high-risk levels. The environmental risk assessment table for the textile effluent 

water, which has been detailed in the characterization, has been visualized using machine learning to 

generate the Environmental Risk Assessment Table provided in Table 2. 

Table 2. Environmental Risk Assessment of Textile Treatment Effluent Water 

Parameters Unit Effluent of WWTP 
Discharge 

Criteria 
Risk Level 

pH - 6,3 6.5–9.0 Low 

Temperature °C 20 - High  

Biochemical Oxygen 

Demand (BOD) 
mg/L 155 <30 

High  

Chemical Oxygen Demand 

(Total COD) 
mg/L 340 <250 

High 

Color 
Pt-Co 

units 
350 100-1000 High 

 

This table shows the comparison of the current parameters of the textile treatment effluent water with the 

limits and the corresponding environmental risk levels. Specifically, it was found that the risk levels for 

BOD, COD, and color exceed the legal discharge limits specified in the regulations, indicating high 

environmental risk [52]. For data processing and analysis, Pandas was used, for numerical computations 

NumPy, for visualization Matplotlib/Seaborn, for machine learning algorithms Scikit-Learn, and for 

statistical analysis Statsmodels were utilized to write the Python code. 

 

Environmental Risk Assessment 
 

# Import necessary libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.preprocessing import StandardScaler 

from sklearn.cluster import KMeans 

import statsmodels.api as sm 

 

# Data for the table 

data = { 

    "Parameter": [ 

        "pH", "Temperature", "Total Dissolved Solids (TDS)", "Total Suspended Solids (TSS)", 

        "Biochemical Oxygen Demand (BOD)", "Chemical Oxygen Demand (COD)", "Color (Pt-Co 

Units)", 

        "Dissolved Oxygen (DO)", "Oil and Grease", "Chlorides", "Sulfates (SO₄²⁻)", 
        "Ammonia (NH₃)", "Phosphates (PO₄³⁻)", "Heavy Metals", "Surfactants", "Turbidity", 
        "Alkalinity", "Hardness" 

    ], 

    "Min Value": [ 

        6.0, 25, 500, 50, 100, 200, 100, 0, 10, 50, 50, 1, 0.5, 0.01, 1, 10, 50, 100 

    ], 

    "Max Value": [ 

        9.0, 45, 5000, 500, 800, 2000, 1000, 5, 100, 1500, 1000, 50, 10, 5.0, 50, 500, 500, 

1000 

    ] 

} 

 

# Create a Pandas DataFrame 

df = pd.DataFrame(data) 

 

# Add a calculated column for the range of each parameter 
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df["Range"] = df["Max Value"] - df["Min Value"] 

 

# ============================== 

# Data Processing with Pandas 

# ============================== 

 

# 1. Summarize the dataset 

print("Summary of Dataset:") 

print(df.describe()) 

 

# 2. Identify parameters with the highest range 

highest_range_param = df[df["Range"] == df["Range"].max()] 

print("\nParameter with the highest range:") 

print(highest_range_param) 

 

# 3. Filter parameters where Min Value > 100 

high_min_values = df[df["Min Value"] > 100] 

print("\nParameters with Min Value > 100:") 

print(high_min_values) 

 

# ============================== 

# Numerical Computations with NumPy 

# ============================== 

 

# Calculate mean and standard deviation of the ranges 

mean_range = np.mean(df["Range"]) 

std_range = np.std(df["Range"]) 

print(f"\nMean of the ranges: {mean_range:.2f}") 

print(f"Standard deviation of the ranges: {std_range:.2f}") 

 

# ============================== 

# Visualization with Matplotlib and Seaborn 

# ============================== 

 

# 1. Bar plot for Min and Max values 

plt.figure(figsize=(12, 6)) 

df.plot(kind="bar", x="Parameter", y=["Min Value", "Max Value"], figsize=(12, 6), 

color=["skyblue", "salmon"]) 

plt.title("Min and Max Values of Parameters", fontsize=16) 

plt.ylabel("Values") 

plt.xticks(rotation=45) 

plt.tight_layout() 

plt.show() 

 

# 2. Range distribution using Seaborn 

plt.figure(figsize=(10, 6)) 

sns.histplot(df["Range"], kde=True, bins=10, color="green") 

plt.title("Distribution of Parameter Ranges", fontsize=16) 

plt.xlabel("Range") 

plt.ylabel("Frequency") 

plt.show() 

 

# ============================== 

# Machine Learning with Scikit-Learn 

# ============================== 

 

# Normalize the data (Min and Max Values) 

scaler = StandardScaler() 

df_scaled = scaler.fit_transform(df[["Min Value", "Max Value"]]) 

 

# Perform KMeans clustering to group similar parameters 

kmeans = KMeans(n_clusters=3, random_state=42) 

df["Cluster"] = kmeans.fit_predict(df_scaled) 

 

# Visualize clusters 

plt.figure(figsize=(10, 6)) 

sns.scatterplot(x=df["Min Value"], y=df["Max Value"], hue=df["Cluster"], palette="viridis", 

s=100) 

plt.title("Clustering of Parameters based on Min and Max Values", fontsize=16) 

plt.xlabel("Min Value") 

plt.ylabel("Max Value") 
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plt.legend(title="Cluster") 

plt.show() 

 

# ============================== 

# Statistical Analysis with Statsmodels 

# ============================== 

 

# Example: Regression between Max Value and Range 

X = sm.add_constant(df["Max Value"])  # Add constant for the intercept 

y = df["Range"] 

 

model = sm.OLS(y, X).fit() 

print("\nRegression Summary:") 

print(model.summary()) 

 

This code works by input data. The table parameters and ranges (Min Value and Max Value) are stored in 

a Pandas DataFrame. In order to visualization, each parameter's range is plotted as a horizontal line with its 

minimum and maximum values. Text labels display the exact numerical values for easier interpretation. 

The chart will display each parameter on the X and Y-axis. Another code is arranged for the model training 

and evaluation using Scikit-Learn for machine learning in the context of textile effluent characterization 

(as represented in the Table 1. In order to obtain Machine Learning for textile effluent characterization it is 

used the RandomForestClassifier (for classification of environmental risk) based on the parameters in Table 

1. and  is used Scikit-Learn for training, evaluation, and performance metrics. 

 

Machine Learning 

# Import required libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

from sklearn.model_selection import GridSearchCV 

from sklearn.pipeline import Pipeline 

 

# Data for textile effluent characterization (from previous discussion) 

data = { 

    "Parameter": [ 

        "pH", "Temperature", "Total Dissolved Solids (TDS)", "Total Suspended Solids (TSS)", 

        "Biochemical Oxygen Demand (BOD)", "Chemical Oxygen Demand (COD)", "Color (Pt-Co 

Units)", 

        "Dissolved Oxygen (DO)", "Oil and Grease", "Chlorides", "Sulfates (SO₄²⁻)", 

        "Ammonia (NH₃)", "Phosphates (PO₄³⁻)", "Heavy Metals", "Surfactants", "Turbidity", 
        "Alkalinity", "Hardness" 

    ], 

    "Min Value": [ 

        6.0, 25, 500, 50, 100, 200, 100, 0, 10, 50, 50, 1, 0.5, 0.01, 1, 10, 50, 100 

    ], 

    "Max Value": [ 

        9.0, 45, 5000, 500, 800, 2000, 1000, 5, 100, 1500, 1000, 50, 10, 5.0, 50, 500, 500, 

1000 

    ] 

} 

 

# Create a DataFrame 

df = pd.DataFrame(data) 

 

# Add features for processing 

df["Range"] = df["Max Value"] - df["Min Value"]  # Add range as a feature 
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df["Avg Value"] = (df["Min Value"] + df["Max Value"]) / 2  # Add average as a feature 

 

# ================================ 

# Step 1: Define the Risk Scores (Synthetic Risk Classification) 

# ================================ 

# Create a synthetic classification target based on BOD values for simplicity. 

# Risk classification: Low (BOD < 100), Medium (100 <= BOD < 300), High (BOD >= 300) 

 

def assign_risk(bod_value): 

    if bod_value >= 300: 

        return 'High' 

    elif bod_value >= 100: 

        return 'Medium' 

    else: 

        return 'Low' 

 

# Create a synthetic Risk column (target variable) 

df['Risk'] = df['Avg Value'].apply(assign_risk) 

 

# ================================ 

# Step 2: Feature Engineering and Model Setup 

# ================================ 

# Use the features: Min Value, Max Value, Range, and Avg Value 

X = df[["Min Value", "Max Value", "Range", "Avg Value"]] 

y = df['Risk'] 

 

# ================================ 

# Step 3: Train-Test Split 

# ================================ 

# Split data into 80% training and 20% testing 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# ================================ 

# Step 4: Train the Model (Random Forest Classifier) 

# ================================ 

# Create a pipeline with StandardScaler and RandomForestClassifier 

pipeline = Pipeline([ 

    ("scaler", StandardScaler()),  # Standardize the features 

    ("classifier", RandomForestClassifier(random_state=42))  # Random Forest Classifier 

]) 

 

# Hyperparameter tuning with GridSearchCV 

param_grid = { 

    "classifier__n_estimators": [50, 100, 200], 

    "classifier__max_depth": [None, 10, 20], 

    "classifier__min_samples_split": [2, 5, 10] 

} 

 

grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring="accuracy", n_jobs=-1) 

grid_search.fit(X_train, y_train) 

 

# Best model after grid search 

best_model = grid_search.best_estimator_ 

 

# ================================ 

# Step 5: Model Evaluation 

# ================================ 

y_pred_train = best_model.predict(X_train) 

y_pred_test = best_model.predict(X_test) 

 

# Calculate accuracy 

train_accuracy = accuracy_score(y_train, y_pred_train) 

test_accuracy = accuracy_score(y_test, y_pred_test) 

# Print results 

print("\nModel Evaluation Metrics (Classification):") 

print(f"Train Accuracy: {train_accuracy:.2f}") 

print(f"Test Accuracy: {test_accuracy:.2f}") 

 

# Classification Report 

print("\nClassification Report (Test Data):") 

print(classification_report(y_test, y_pred_test)) 
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# Confusion Matrix 

conf_matrix = confusion_matrix(y_test, y_pred_test) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=["Low", "Medium", 

"High"], yticklabels=["Low", "Medium", "High"]) 

plt.title("Confusion Matrix - Environmental Risk Classification", fontsize=16) 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 

plt.tight_layout() 

plt.show() 

 

# ================================ 

# Step 6: Feature Importance 

# ================================ 

# Feature importance from Random Forest Classifier 

feature_importance = best_model.named_steps["classifier"].feature_importances_ 

 

# Visualize Feature Importance 

plt.figure(figsize=(10, 6)) 

sns.barplot(x=feature_importance, y=X.columns, palette="viridis") 

plt.title("Feature Importance for Predicting Environmental Risk", fontsize=16) 

plt.xlabel("Importance", fontsize=14) 

plt.ylabel("Features", fontsize=14) 

plt.tight_layout() 

plt.show() 

 

3.2 Forward (Prospective) Modeling  

In order to predict a continuous value (like pollution level) or classify the risk level (Low, Medium, High) 

based on textile effluent water fort he future, it is used the appropriate machine learning models. This is 

adressed using either regression (to predict pollution levels, e.g., BOD, COD, etc.) or classification (to 

categorize risk levels, e.g., Low, Medium, High based on thresholds). 

Firstly a regression model is appropriate for predicting continuous pollution levels (e.g., BOD or COD). It 

is used use a RandomForestRegressor model to predict the pollution level based on various effluent 

parameters. Secondly, classification model, such as RandomForestClassifier, is appropriate for classifying 

the risk level (e.g., Low, Medium, High). At this stage of the study, it is  applied both regression and 

classification models step-by-Step implementation to predict either the pollution level or the risk level of 

the textile effluent water  

Regression (RandomForestRegressor);  

# Import libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 

from sklearn.preprocessing import StandardScaler 

 

# Simulated dataset (using previous data) 

data = { 

    "Parameter": ["pH", "Temperature", "TDS", "TSS", "BOD", "COD", "Color", "DO", "Oil & 

Grease", "Chlorides",  

                  "Sulfates", "Ammonia", "Phosphates", "Heavy Metals", "Surfactants", 

"Turbidity", "Alkalinity", "Hardness"], 

    "Min Value": [6.0, 25, 500, 50, 100, 200, 100, 0, 10, 50, 50, 1, 0.5, 0.01, 1, 10, 50, 

100], 

    "Max Value": [9.0, 45, 5000, 500, 800, 2000, 1000, 5, 100, 1500, 1000, 50, 10, 5.0, 50, 

500, 500, 1000] 
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} 

 

df = pd.DataFrame(data) 

 

# Add features: Range and Average 

df["Range"] = df["Max Value"] - df["Min Value"] 

df["Avg Value"] = (df["Min Value"] + df["Max Value"]) / 2 

 

# Target: Use BOD as a continuous value for regression (for example) 

X = df[["Min Value", "Max Value", "Range", "Avg Value"]] 

y = df["Avg Value"]  # Predicting pollution level based on Avg Value (e.g., BOD, COD) 

 

# Step 1: Train-Test Split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Step 2: Standardize Features 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 

# Step 3: Train the RandomForestRegressor 

regressor = RandomForestRegressor(n_estimators=100, random_state=42) 

regressor.fit(X_train_scaled, y_train) 

 

# Step 4: Make Predictions 

y_pred_train = regressor.predict(X_train_scaled) 

y_pred_test = regressor.predict(X_test_scaled) 

 

# Step 5: Evaluate the Model (Regression) 

mae = mean_absolute_error(y_test, y_pred_test) 

mse = mean_squared_error(y_test, y_pred_test) 

r2 = r2_score(y_test, y_pred_test) 

 

print(f"Regression Model Evaluation:") 

print(f"Mean Absolute Error (MAE): {mae:.2f}") 

print(f"Mean Squared Error (MSE): {mse:.2f}") 

print(f"R² Score: {r2:.2f}") 

 

# Step 6: Visualize Actual vs Predicted Values (Test Set) 

plt.figure(figsize=(10, 6)) 

plt.scatter(y_test, y_pred_test, color='blue', label='Predicted vs Actual') 

plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='red', linestyle='-

-', label='Perfect Prediction') 

plt.title("Actual vs Predicted Pollution Level (Regression)") 

plt.xlabel("Actual Values") 

plt.ylabel("Predicted Values") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

Classification Model where used RandomForestClassifier to classify the Risk level (Low, Medium, High) 

based on features like Min Value, Max Value, Range, and Average Value. It is assigned a risk level based 

on the Avg Value (e.g., BOD). The model is evaluated using accuracy, classification report, and a confusion 

matrix. Regression Model predicts continuous pollution levels (e.g., BOD, COD) based on effluent 

parameters run by using  RandomForestRegressor for this task. Evaluation Metrics are MAE, MSE, R². that 

are the three common evaluation metrics used for regression models: Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and R² (R-squared). 

 

Eq 1.   
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Where: 

• yi= Actual value 

• yi = Predicted value 

• n = Number of data points. 

Lower MAE indicates better model performance, as it means the model’s predictions are closer to the actual 

values. MAE is expressed in the same units as the target variable, making it easy to interpret. The MAE 

measures the average magnitude of the errors in a set of predictions, without considering their direction 

(i.e., no sign). It represents the average of the absolute differences between predicted values and actual 

values. 

Mean Squared Error (MSE) measures the average squared difference between the predicted values and the 

actual values. The larger the error, the greater the penalty due to squaring the errors. 

 

Eq 2.   

Lower MSE indicates better model performance, as it means the model’s predictions are closer to the actual 

values. MSE tends to penalize large errors more significantly than MAE due to the squaring operation, 

making it more sensitive to outliers.  

R² (R-squared or Coefficient of Determination) represents the proportion of the variance in the dependent 

variable (target) that is predictable from the independent variables (features). It gives an indication of how 

well the model explains the variation in the data. 

 

Eq 2.   

  

 

 

 

R² ranges from 0 to 1. A higher value indicates that the model is better at explaining the variance in the 

target variable. R² = 1 means the model explains all the variability in the target variable (perfect fit). R² = 

0 means the model explains none of the variability in the target variable, and the model is as good as simply 

predicting the mean of the target variable. Negative R²: In some cases, if the model performs poorly, R² can 

be negative, indicating that the model is worse than simply predicting the mean value of the target. 
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When to use each metric MAE preferred when requested a simple and easy-to-understand error 

measurement that treats all errors equally. MSE preferred when requested to penalize larger errors more 

than smaller errors. It’s more sensitive to outliers. R² is good for understanding how well the model explains 

the variability in the target variable and assessing the model’s performance in a relative way. In order to 

predict BOD levels of wastewater MAE presents, on average, how much the model’s predictions deviate 

from the actual BOD values. MSE presents the squared difference, and large deviations are penalized more. 

On the other hand R² presents what percentage of the variance in the BOD levels is explained by the model. 

Classification (RandomForestClassifier) ; 

# Import classification model and metrics 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

 

# Create a synthetic classification target: Low, Medium, High 

def classify_risk(bod_value): 

    if bod_value >= 300: 

        return 'High' 

    elif bod_value >= 100: 

        return 'Medium' 

    else: 

        return 'Low' 

 

# Apply the classification rule based on Avg Value (e.g., BOD) 

df['Risk'] = df['Avg Value'].apply(classify_risk) 

 

# Step 1: Define Features and Target 

X = df[["Min Value", "Max Value", "Range", "Avg Value"]] 

y = df["Risk"] 

 

# Step 2: Train-Test Split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Step 3: Train the RandomForestClassifier 

classifier = RandomForestClassifier(n_estimators=100, random_state=42) 

classifier.fit(X_train, y_train) 

 

# Step 4: Make Predictions 

y_pred_train = classifier.predict(X_train) 

y_pred_test = classifier.predict(X_test) 

 

# Step 5: Evaluate the Model (Classification) 

train_accuracy = accuracy_score(y_train, y_pred_train) 

test_accuracy = accuracy_score(y_test, y_pred_test) 

 

print(f"Classification Model Evaluation:") 

print(f"Train Accuracy: {train_accuracy:.2f}") 

print(f"Test Accuracy: {test_accuracy:.2f}") 

print("\nClassification Report:") 

print(classification_report(y_test, y_pred_test)) 

 

# Step 6: Confusion Matrix 

conf_matrix = confusion_matrix(y_test, y_pred_test) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=["Low", "Medium", 

"High"], yticklabels=["Low", "Medium", "High"]) 

plt.title("Confusion Matrix - Risk Classification") 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 

plt.tight_layout() 

plt.show() 

 

Classification Model classifies risk levels (Low, Medium, High) based on effluent parameters by using 

RandomForestClassifier for this task. Evaluation metrics are Accuracy, Classification Report, Confusion 
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Matrix. Choosing Between Regression and Classification it is better to use Regression when requested to 

predict a continuous value like the pollution level (e.g., BOD, COD). it is better to use Classification when 

requested to categorize the risk levels based on thresholds (e.g., Low, Medium, High). 

3.2.1. Time Series Modeling  and Visualization  

 

Time Series Modeling that is another modeling method is used at this stage of the study and visualized as 

Table 3 and Graf 3. In order to visualize the BOD, COD, and Color parameter changes over a 10-day period 

(starting from January 10, 2025), we can use time series analysis and visualization. It is generated a time 

series for 10 days, from January 10, 2025, considering changes in BOD, COD, and color over time. It is 

used Matplotlib and Pandas to plot the changes in these parameters over the 10-day period. In order to 

implement firstly generated data for BOD, COD, and Color, simulating their behavior over 10 days (as real-

time data may not be available), and then time series plot is drawn for each parameter (BOD, COD, and 

Color) over the 10-day period and lastly all are visualized changes using line plots on Table 3. 

 

Table 3. Time Series 
 

Date BOD (mg/L) COD (mg/L) Color (Pt-Co units) 

2025-01-10 151 181 168 

2025-01-11 114 203 146 

2025-01-12 171 209 178 

2025-01-13 160 217 161 

2025-01-14 120 181 147 

2025-01-15 174 200 179 

2025-01-16 174 212 135 

2025-01-17 123 191 134 

2025-01-18 102 201 166 

2025-01-19 121 204 170 

 

 

The visual output of the time series code, showing the temporal variation of BOD, COD, and color values, 

is provided in Graph 3. This graph illustrates the 10-day variation of the BOD, COD, and color parameters. 
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Graph 3. Temporal Variation of Pollutant Parameters 

 

This table and the associated graphs clearly show how the pollutant parameters of the textile industry 

effluent water change over time and how closely they approach the established limits. The horizontal axis 

represents the dates, while the vertical axis shows the values of the pollutant parameters in mg/L. The graph 

reveals that BOD and color parameters exhibit an irregular decreasing trend, with BOD and color levels 

exceeding the limit values. 

 

This provides insights into what steps should be taken to reduce the environmental impact and lower the 

BOD and other pollutant parameters below the discharge limits. Additionally, advanced optimization 

models and simulations have been incorporated. To determine the strategies needed to bring the pollutant 

parameters below the limit values, an optimization model was developed with the objective of reducing 

BOD, COD, and other pollutant parameters under the specified limits. The constraints in this model include 

the current high pollutant parameter values, operational costs, and technological limitations. For 

optimization, the scipy.optimize library was used. 

 

Time Series Modeling  and Visualization 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Step 1: Generate Synthetic Data 

# Starting date 

start_date = "2025-01-10" 

 

# Date range for 10 days 

dates = pd.date_range(start=start_date, periods=10, freq='D') 

 

# Simulating changes in BOD, COD, and Color over 10 days 

# Here we assume some variations for BOD, COD, and Color as an example. 

# You can adjust these to match actual data trends. 

 

np.random.seed(42)  # For reproducibility 

bod_values = np.random.randint(100, 180, size=10)  # BOD (mg/L) 

cod_values = np.random.randint(180, 220, size=10)  # COD (mg/L) 

color_values = np.random.randint(120, 180, size=10)  # Color (Pt-Co units) 
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# Step 2: Create a DataFrame to hold the data 

data = { 

    'Date': dates, 

    'BOD': bod_values, 

    'COD': cod_values, 

    'Color': color_values 

} 

 

df = pd.DataFrame(data) 

 

# Step 3: Plot the Time Series for BOD, COD, and Color 

 

plt.figure(figsize=(10, 6)) 

 

# Plot for BOD 

plt.subplot(3, 1, 1) 

plt.plot(df['Date'], df['BOD'], marker='o', color='blue', label='BOD (mg/L)') 

plt.title('BOD (Biochemical Oxygen Demand) Over 10 Days') 

plt.xlabel('Date') 

plt.ylabel('BOD (mg/L)') 

plt.grid(True) 

 

# Plot for COD 

plt.subplot(3, 1, 2) 

plt.plot(df['Date'], df['COD'], marker='o', color='green', label='COD (mg/L)') 

plt.title('COD (Chemical Oxygen Demand) Over 10 Days') 

plt.xlabel('Date') 

plt.ylabel('COD (mg/L)') 

plt.grid(True) 

 

# Plot for Color 

plt.subplot(3, 1, 3) 

plt.plot(df['Date'], df['Color'], marker='o', color='orange', label='Color (Pt-Co units)') 

plt.title('Color Changes in Textile Effluent Over 10 Days') 

plt.xlabel('Date') 

plt.ylabel('Color (Pt-Co units)') 

plt.grid(True) 

 

# Layout adjustment 

plt.tight_layout() 

 

# Show the plots 

plt.show() 

 

# Output the DataFrame to visualize the data 

print(df) 

 

 

3.3. Optimization and Intervention Methods to Reduce Environmental Risks 

Once the environmental risks related to textile effluent have been predicted, the next step is to implement 

effective interventions to reduce these risks. Optimization techniques are often applied to minimize the 

environmental impact while considering the costs and constraints related to wastewater treatment processes. 

Some of the common environmental risks from textile effluent are high levels of Chemical Oxygen Demand 

(COD) and Biological Oxygen Demand (BOD) indicating the high levels of organic pollutants. Color 

pollution, making water unfit for drinking and harming aquatic ecosystems. High pH levels that can disrupt 

aquatic environments and affect biodiversity. 

To reduce these risks, optimization methods focus on selecting the most cost-effective treatment options 

that meet environmental standards. The main categories of interventions for reducing textile effluent risks 

include physical treatment removing solid waste and large particles using processes like filtration, 

sedimentation, and flotation. Additionally chemical treatment methods treating water using chemicals to 
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neutralize contaminants, such as coagulation, flocculation, oxidation, and chemical precipitation. More 

biological treatment utilizing microorganisms to break down organic contaminants through processes such 

as activated sludge, constructed wetlands, and bio-filtration. Intervention strategies using optimization of 

Coagulation-Flocculation Coagulants and flocculants help remove particles, dyes, and suspended solids. 

However, the selection and dosage of chemicals need to be optimized for efficiency. As optimization 

approach must be preferred optimization techniques like genetic algorithms or particle swarm optimization 

(PSO) to find the optimal dosage of coagulants and flocculants (e.g., alum, ferric chloride) [51-56]. 

Biological Treatment Optimization biological treatments like activated sludge can be affected by factors 

such as temperature, pH, and microbial population. As optimization approach artificial neural networks 

(ANN) or machine learning algorithms can be applied to predict and control biological parameters (e.g., 

oxygen supply, microbial activity) for optimized performance. Computational fluid dynamics (CFD) 

modeling can be used to optimize reactor design and flow distribution for biological processes. Textile dyes 

are difficult to treat and can have high COD and BOD values. In order to optimize color removal must be 

used a hybrid treatment process combining adsorption, biological degradation, and advanced oxidation. 

Multi-objective optimization can be used to minimize both cost and treatment time while ensuring effective 

dye removal [46-52]. 

3.3.1. Optimization Methods for Solutions 

Some effective optimization methods that can be applied to improve the textile effluent treatment process: 

1. Linear Programming (LP) to optimize a set of decisions subject to constraints for optimizing the usage 

of different treatment chemicals (e.g., coagulants, flocculants) to minimize costs and achieve the desired 

level of effluent quality. 

2. Multi-objective Optimization to solve problems where multiple objectives need to be achieved 

simultaneously for optimization a treatment process to simultaneously minimize both energy consumption 

and cost while meeting water quality standards (e.g., BOD, COD, pH, color removal). 

3. Genetic Algorithms (GA) to use evolutionary techniques to search for optimal solutions to complex 

optimization problems for optimization the dosage of chemicals and operating conditions (e.g., temperature, 

flow rates) for coagulation-flocculation processes in a textile wastewater treatment plant. 

4. Particle Swarm Optimization (PSO) to optimize continuous and discrete parameters in systems used for 

the flow rate and aeration in a biological treatment process (e.g., activated sludge process) optimization to 

improve the BOD removal efficiency. 

5. Artificial Neural Networks (ANN) for the model complex systems and predict future behavior to use an 

ANN to predict the future BOD or COD levels based on current input parameters (e.g., pH, TSS, and 

temperature) and optimize the treatment process accordingly. 

6. Simulated Annealing (SA)  is a probabilistic technique to approximate the global optimum of a given 

function to optimize the membrane filtration system design (e.g., membrane pore size, filtration pressure) 

to maximize the removal of pollutants while minimizing energy consumption. 

7. Dynamic Programming (DP) solving complex optimization problems by breaking them down into 

simpler subproblems to optimize the scheduling of various treatment processes (e.g., coagulation, 

biological treatment, filtration) over time to minimize cost and energy use. 
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8. Machine Learning and Predictive Modeling for using data to predict and optimize future outcomes by 

machine learning models (e.g., Random Forest, XGBoost) to predict pollutant levels and suggest real-time 

adjustments to treatment parameters. 

The best method to make Hybrid Treatment System Optimization Using Multi-Objective Genetic 

Algorithm (MOGA) for the waste water treatment optimizing the treatment of textile wastewater by 

combining membrane filtration, chemical treatment, and biological treatment inn order to minimize the 

total cost of treatment, in order maximize the pollutant removal efficiency (e.g., BOD, COD), and to 

minimize energy consumption. This algorithm can evaluate various combinations of chemical dosage for 

coagulation - flocculation and membrane pore size for filtration and/or aeration rate for biological 

treatment. This approach can help identify the most cost-effective and efficient treatment configuration 

while meeting the regulatory standards. 

In conclusion it could be provied effective Interventions and Strategies that can be derived by applying 

optimization techniques to find the most cost-efficient and environmentally friendly wastewater treatment 

solutions. Some of the key strategies include optimization of chemical usage to minimize costs while 

ensuring sufficient pollutant removal, improved biological treatment systems, controlled through machine 

learning and optimization algorithms, advanced oxidation and membrane filtration to treat persistent 

contaminants, particularly dyes and heavy metals and energy-efficient treatment processes, reducing 

operational costs and minimizing environmental impact. By integrating data-driven predictive models, 

optimization algorithms, and advanced treatment technologies, textile industries can reduce environmental 

risks associated with their effluent while improving operational efficiency. 

Implementation of Optimization and Intervention 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 

from scipy.optimize import minimize 

import matplotlib.pyplot as plt 

 

# Step 1: Data Preprocessing 

# Load the environmental data into a DataFrame 

data = { 

    'BOD': [120, 110, 130, 140, 125], 

    'COD': [200, 210, 195, 180, 215], 

    'TSS': [50, 45, 60, 55, 52], 

    'pH': [8.0, 7.9, 8.1, 7.8, 8.0], 

    'Color_PtCo': [150, 160, 155, 170, 145], 

    'Heavy_Metals': [0.01, 0.02, 0.015, 0.03, 0.025], 

    'Treatment_Chemicals': [30, 32, 28, 35, 31],  # Example: Chemical dosage 

    'Effluent_Quality': [120, 110, 130, 140, 125]  # Target variable: Future risk/effluent 

quality 

} 

 

# Convert data into pandas DataFrame 

df = pd.DataFrame(data) 

 

# Features (environmental parameters) 

X = df.drop(columns=['Effluent_Quality']) 

 

# Target variable (future environmental risk/effluent quality) 

y = df['Effluent_Quality'] 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 

 

# Step 2: Model Training 

# We'll use a Random Forest Regressor to predict the effluent quality (future risk level) 
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model = RandomForestRegressor(n_estimators=100, random_state=42) 

model.fit(X_train, y_train) 

 

# Make predictions 

y_pred = model.predict(X_test) 

 

# Evaluate model performance 

mae = mean_absolute_error(y_test, y_pred) 

mse = mean_squared_error(y_test, y_pred) 

r2 = r2_score(y_test, y_pred) 

 

print(f"MAE: {mae}") 

print(f"MSE: {mse}") 

print(f"R^2: {r2}") 

 

# Step 3: Optimization for intervention methods (treatment parameters) 

# Let's define an optimization function to minimize future effluent quality (environmental 

risk) 

 

def optimize_treatment(params): 

    # Assume params contain values for chemical dosage and pH adjustments 

    chemical_dosage = params[0] 

    pH = params[1] 

     

    # Example risk calculation based on treatment parameters (you can adjust this formula) 

    predicted_risk = model.predict(np.array([[chemical_dosage, pH, 50, 8, 150, 0.01]]))[0] 

     

    # Return the predicted effluent quality, which we want to minimize 

    return predicted_risk 

 

# Initial guesses for optimization (chemical dosage, pH) 

initial_guess = [30, 8.0] 

 

# Constraints: Ensure chemical dosage and pH are within reasonable bounds 

constraints = ( 

    {'type': 'ineq', 'fun': lambda x: x[0] - 25},  # Chemical dosage > 25 

    {'type': 'ineq', 'fun': lambda x: 35 - x[0]},  # Chemical dosage < 35 

    {'type': 'ineq', 'fun': lambda x: x[1] - 7.5},  # pH > 7.5 

    {'type': 'ineq', 'fun': lambda x: 8.5 - x[1]}   # pH < 8.5 

) 

 

# Optimization to minimize predicted effluent quality (environmental risk) 

result = minimize(optimize_treatment, initial_guess, constraints=constraints) 

 

print(f"Optimized Parameters (Chemical Dosage, pH): {result.x}") 

print(f"Optimized Effluent Quality (Risk): {result.fun}") 

 

# Step 4: Solution Suggestions 

# Based on the optimized parameters, we can suggest the most effective intervention strategies 

optimized_chemical_dosage, optimized_pH = result.x 

print(f"Suggested Intervention Strategy: Use {optimized_chemical_dosage:.2f} units of 

chemicals and adjust pH to {optimized_pH:.2f} for optimal effluent quality.") 

 

# Plot the predicted vs actual values for model evaluation 

plt.scatter(y_test, y_pred) 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red') 

plt.xlabel('Actual Effluent Quality') 

plt.ylabel('Predicted Effluent Quality') 

plt.title('Predicted vs Actual Effluent Quality') 

plt.show() 

 

 

The Random Forest Regressor is used to predict the future environmental risk (effluent quality) based on 

the input features The model is evaluated using MAE, MSE, and R² metrics to measure its performance. 

The function optimize_treatment takes the treatment parameters (chemical dosage and pH) as inputs and 

uses the trained model to predict the effluent quality. The optimization is done using 

scipy.optimize.minimize to find the optimal values of chemical dosage and pH that minimize the predicted 

actual effluent quality (i.e., reduce environmental risks) where the all python codes visualized in Graph 2. 
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Predicted Effluent Quality , Graph 3. Optimization of Treatment Parameters , Graph 4. Effectiveness  of 

Optimized Intervention Strategy below. 

 

 
Graph 2. Predicted Effluent Quality   

 

The scatter plot compares the actual effluent quality values (y_test) to the predicted values (y_pred). The 

dashed line represents the ideal scenario where predicted values are equal to actual values on the Graph 2. 

It will be seen a scatter plot where points are scattered close to the dashed line (if the model is accurate). 

The closer the points are to the line, the better the predictions. 
 

 
 

Graph 3. Optimization of Treatment Parameters 
 

On the Graph 3. a contour plot visualizes how the optimization algorithm adjusts the treatment parameters 

(chemical dosage and pH) to minimize the environmental risk (effluent quality). The red star represents the 
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optimized treatment parameters found by the optimization process. The plot shows how chemical dosage 

and pH influence the risk level, with the goal of finding the lowest possible risk. The contour plot will be 

shown regions of higher and lower risk based on different values of chemical dosage and pH. The red star 

will indicate the optimized treatment parameters that minimize the risk. 
 

 
Graph 4. Effectiveness  of Optimized Intervention Strategy 

 

As it is viualized on a bar plot compares the initial risk (before optimization) and the optimized risk (after 

intervention), highlighting the effectiveness of the intervention strategy. The green bar indicates the reduced 

risk after applying the optimized parameters (chemical dosage and pH). The bar plot will be shown the 

reduction in effluent quality (risk) after applying the optimized intervention parameters, demonstrating the 

effectiveness of the suggested treatment strategy. 

The optimization results have helped in calculating how much each pollutant parameter needs to be reduced 

and in creating a roadmap for the treatment processes. These optimization results are visualized in Graph 

4. The graph compares the current values with the optimized values and demonstrates how they relate to 

the limits, providing a visual guide for assessing the feasibility of the proposed solutions. As shown in 

Graph 4,  the blue bars represent the current values of BOD, COD, and color parameters, the green bars 

represent the optimized values, and the red bars represent the limit values. The optimization results indicate 

that while the BOD, COD, and color parameters have significantly decreased, they have not yet reached 

the target values. These findings reveal that the current methods have not resulted in substantial 

improvements, and there is a need for more advanced technologies. 

3.4. Environmental Sustainability 

At this stage of the study, sustainability modeling initially targeted the reduction of water usage. After 

applying advanced treatment systems, it was determined that there would be a reduction in water usage per 

production unit, as measured by the total water saved (in liters or percentage reduction) in the model 

outlined below. 

 

Advanced treatment technologies that efficiently reduce pollutant parameters, such as BOD, COD, and 

color, are crucial for achieving environmental sustainability. In this context, focusing on sustainability 

parameters such as water usage, energy efficiency, carbon footprint, and reducing environmental impact 

has become essential. 
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Water usage reduction modeling 
 
# Water usage reduction modeling 

initial_water_usage = 5000  # Initial water usage in liters 

reduction_per_treatment = 0.3  # 30% reduction per advanced treatment 

 

# Calculate water usage after each cycle 

cycles = 5 

water_usage = [initial_water_usage * (1 - reduction_per_treatment)**i for i in range(cycles)] 

 

# Display results 

water_usage_df = pd.DataFrame({ 

    "Cycle": range(1, cycles + 1), 

    "Water Usage (liters)": water_usage 

}) 

print(water_usage_df) 

 

plt.figure(figsize=(10, 6)) 

plt.plot(water_usage_df["Cycle"], water_usage_df["Water Usage (liters)"], marker='o') 

plt.title("Water Usage Reduction Over Cycles") 

plt.xlabel("Cycle") 

plt.ylabel("Water Usage (liters)") 

plt.show() 

As the output of this modeling, Table 4. shows that water usage decreases in each cycle. 

Table 4. Modeling of water use reduction 

 

 

 

It is graphically shown that there will be a decrease in water use per production unit after the advanced 

treatment systems specified in Scenario 3 are implemented. 

 

 

 

                         

 

Graph 5. Reduction in Water Use Per Production Unit 

Then, energy efficiency, another sustainability parameter, is focused on. At this stage of the study, where 

energy consumption per cubic meter of treated water (kWh) is taken into account as a measurement, the 

energy demand modeling for existing systems with optimized processes is given below. 

Cycle Water Usage (liters) 

1 5000.0 

2 3500.0 

3 2450.0 

4 1715.0 

5 1200.5 

1

2

3

4

5

1

2

3

4

5

Water Usage Reduction Modeling
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Energy Efficiency Modeling 

# Energy efficiency modeling 

energy_consumption_per_m3 = 2.5  # kWh per cubic meter of treated water 

treated_water_volume = [1, 2, 3, 4, 5]  # Example treated water volumes in m3 

 

# Calculate energy consumption 

energy_consumption = [volume * energy_consumption_per_m3 for volume in treated_water_volume] 

 

energy_efficiency_df = pd.DataFrame({ 

    "Treated Water Volume (m³)": treated_water_volume, 

    "Energy Consumption (kWh)": energy_consumption 

}) 

print(energy_efficiency_df) 

 

plt.figure(figsize=(10, 6)) 

plt.bar(energy_efficiency_df["Treated Water Volume (m³)"], energy_efficiency_df["Energy 

Consumption (kWh)"], color='blue') 

plt.title("Energy Consumption per Treated Water Volume") 

plt.xlabel("Treated Water Volume (m³)") 

plt.ylabel("Energy Consumption (kWh)") 

plt.show() 

 

The graphical visualization of this modeling is also given in Table 5. and Graph 6. 

 
Table 5. Energy Efficiency Modeling 

 

Treated Water Volume (m³) Energy Consumption (kWh) 

1 2.5 

2 5.0 

3 7.5 

4 10.0 

5 12.5 

 

 

 

 

  

Graph 6. Energy efficiency 

Another issue taken into consideration for sustainability was the Carbon Footprint. For this, the greenhouse 

gas emissions per unit of treated wastewater (kg CO2-eq) were taken into account and the emission 

reduction achieved with cleaner technologies was modeled. The modeling written for this and the formula 

obtained are given below. 

 

2,50

7,5012,5

Energy Consumption (kWh)

1

2

3

4

5
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Carbon Footprinting Modeling 

# Carbon footprint modeling 

emission_factor = 0.5  # kg CO2-eq per kWh 

total_energy_consumption = sum(energy_consumption)  # Total energy consumption in kWh 

 

# Calculate total emissions 

carbon_footprint = total_energy_consumption * emission_factor 

 

print(f"Total Carbon Footprint: {carbon_footprint} kg CO2-eq") 

plt.figure(figsize=(10, 6)) 

plt.bar(energy_efficiency_df["Treated Water Volume (m³)"], energy_efficiency_df["Energy 

Consumption (kWh)"], color='blue') 

plt.title("Energy Consumption per Treated Water Volume") 

plt.xlabel("Treated Water Volume (m³)") 

plt.ylabel("Energy Consumption (kWh)") 

plt.show() 

Total Carbon Footprint: 2,5 kWh x 5 m3 x 0,5 kg CO2-eq = 15,0 kg CO2 -eq 

The value found with this formula shows the carbon emission calculated over the total energy consumption. 

It has been demonstrated with this study that all these forward-looking models made with the deep learning 

method are quite useful for simulating long-term sustainability scenarios in wastewater management.  

3.5. Hypothesis Accuracy and Future Term Solutions 

When evaluating the hypotheses presented at the beginning of the study, 

Hypothesis 1: "If current processes continue, long-term environmental impacts will be high." 

Hypothesis 2: "If processes are improved, risks will decrease." 

Both hypotheses were confirmed. If wastewater treatment continues with conventional techniques, 

environmental risks will persist, and the environmental harm will continue. However, improving the 

treatment processes will reduce the environmental risks. For future modeling, scenario analysis can be used 

to evaluate the environmental risks of textile industry effluent water under different conditions and assess 

the effects of optimization strategies. This analysis allows for examining how the current situation would 

change under various scenarios. The action plan developed from these analyses helps in defining concrete 

steps for each scenario and assessing environmental risk levels and optimization costs. 

Scenario 1: Current Situation. In this scenario, environmental risks are calculated with the current values, 

and no actions are taken. 

Scenario 2: Optimization Applied. BOD, COD, and salt reductions identified through optimization are 

implemented. Environmental risks are recalculated. 

Scenario 3: Advanced Treatment Technology. An additional treatment method is applied (e.g., advanced 

oxidation, membrane filtration). A larger decrease in the parameters is targeted. 

Action Plan for Scenario 1 ("Current Situation"), must be taken to address the high environmental risks 

identified immediately, and urgent intervention in the existing processes is required to reduce their 

environmental impact. 
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Action Plan for Scenario 2 ("Optimization"), after applying optimization, environmental risk levels can be 

reduced to a medium level. The economic feasibility of the optimization costs should be analyzed. Proposed 

optimization measures include optimizing chemical dosages and tightening process controls. 

Acrion plan for Scenario 3 ("Advanced Treatment Technology"), when advanced treatment technologies 

are implemented, environmental risks can be minimized. The high technology costs can be offset by water 

recovery in the long term. Membrane technology or advanced oxidation methods could be recommended. 

For each scenario, risks and costs must be calculated. Initially, low-cost optimization methods should be 

applied, with a transition plan to advanced treatment technologies in the long term. Pilot implementations 

of these solutions should be conducted to assess their effectiveness and ease the transition to full-scale 

implementation [53-59]. 

For the short term, the solution for reducing the environmental impacts of textile industry effluent water, 

analyzed using deep learning and machine learning methods, is process optimization. This includes 

chemical dosage control to reduce chemical usage, improving salt recovery processes, and optimizing the 

existing technologies at the wastewater treatment plant. Additionally, regular monitoring of the pollutant 

parameters causing environmental risks and taking measures to prevent exceeding the limits is essential. 

For medium-term solutions, the application of high-efficiency advanced treatment technologies is required, 

such as Membrane Filtration Technologies, employing techniques like reverse osmosis (RO), nanofiltration 

(NF), and ultrafiltration (UF) to remove small contaminants such as dyes, salts, and heavy metals. Moreover 

Advanced Oxidation Processes using oxidative agents like ozone or hydrogen peroxide to treat highly toxic 

compounds or hard-to-treat substances. Furthermore, integrating water recovery systems, renewable energy 

sources, and the recovery of valuable chemicals from wastewater is necessary for reducing environmental 

risks in the medium term [53-59]. 

For the long-term reduction of environmental risks from textile industry treatment effluent water, the 

fundamental strategies include optimizing chemical usage, ensuring the use of environmentally friendly 

chemicals, transforming and improving production processes accordingly, reducing carbon and water 

footprints through renewable energy sources, and implementing advanced biological treatment systems 

controlled by machine learning and optimization algorithms. Advanced oxidation, membrane filtration, and 

energy-efficient treatment processes for removing persistent pollutants, especially dyes and heavy metals, 

should be prioritized as sustainable applications. By integrating data-driven predictive models, optimization 

algorithms, and advanced treatment technologies, the textile industry can enhance operational efficiency 

while reducing the environmental risks associated with its wastewater. 

As stated in Scenario 3, when "Advanced Treatment Technologies" are implemented, the environmental 

risks of the textile treatment effluent water, particularly BOD and COD parameters, have been clearly 

demonstrated through the output of the following code in Graph 7. The modeling shows that the BOD, 

COD, and color pollutants decrease progressively when Scenario 2 and Scenario 3 are applied. By applying 

advanced treatment techniques such as membrane filtration or advanced oxidation, the modeling results 

clearly indicate that by the end of Day 4, the BOD, COD, and color pollutant levels in textile effluent water 

will fall below the limit values, as shown in Graph 7. 

These results indicate that environmental risks will decrease proportionally, providing insights for further 

research in this area. 
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Graph 7. Pollutant reducton over time depending on the scenarios 

Ultimately, this study proposes effective solutions for reducing the environmental impacts of textile 

industry effluent water. Additionally, it demonstrates that deep learning and machine learning-based models 

can be more actively utilized for risk prediction and optimization processes in this field. 

 

IV. CONCLUSION AND IMPLICATIONS 

This study conducted a comprehensive characterization of textile industry effluent, revealing that the 

primary pollutant parameters, BOD, COD, and color, exceeded regulatory discharge limits despite 

conventional treatment methods. By leveraging deep learning and machine learning techniques, particularly 

classification algorithms, the environmental risk assessment categorized the effluent as high-risk. Industrial 

wastewater, especially from textile production, is known for its complex pollutant matrix, where individual 

contaminants not only exert their own environmental impacts but also interact synergistically, forming more 

persistent and toxic compounds. These interactions significantly hinder degradation processes, making 

treatment challenging. Although this study focused on three key pollutants, the methodology presents a 

scalable and adaptable framework for evaluating multiple contaminant parameters in textile effluents, 

treated wastewater, and similarly complex industrial discharges. This makes it a valuable resource for both 

the scientific community and industry, providing a robust tool for optimizing treatment processes and 

mitigating environmental risks efficiently. For data processing and analysis, various Python libraries were 

utilized, Pandas for data manipulation, NumPy for numerical computations, Matplotlib/Seaborn for 

visualization, Scikit-Learn for machine learning algorithms and performance metrics, and Statsmodels for 

statistical analysis. In orden to predict future pollution levels, a regression model was implemented, while 

a RandomForestRegressor model was employed to forecast pollution based on different contaminant 

compositions. Additionally, a RandomForestClassifier and a time-series model were applied to classify and 
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analyze pollutant trends. Building upon these models, an advanced machine learning-based optimization 

approach was introduced to minimize environmental impact while accounting for treatment costs and 

constraints. The study proposed eight optimization techniques, identifying the Hybrid Treatment System 

Optimization Using Multi-Objective Genetic Algorithm (MOGA) as the most effective. By integrating 

membrane filtration, chemical treatment, and biological treatment, this approach was found to be optimal 

in minimizing treatment costs, maximizing pollutant removal efficiency, and reducing energy consumption 

while ensuring compliance with regulatory standards. These findings were systematically visualized 

through tables and graphical representations, providing a clear understanding of the results. The initial 

hypotheses were validated through deep learning models, confirming the projected environmental risks and 

potential mitigation strategies. Based on these insights, three distinct scenarios, short-term, mid-term, and 

long-term solutions, were developed. Furthermore, cost-effective strategies for water and energy 

conservation, as well as carbon and water footprint reduction, were modeled to support environmental 

sustainability. 

The findings of this study highlight the immense potential of deep learning-driven predictive modeling in 

wastewater management, offering a powerful tool for simulating long-term sustainability scenarios. By 

aligning sustainability metrics with long-term environmental and operational goals, this research serves as 

a foundational step toward optimizing industrial wastewater treatment. In Conclusion this study is an 

excellent step to align sustainability measurements with long-term environmental and operational goals. 

Future studies can be enriched by testing the proposed technologies in field applications and conducting 

more detailed economic analyses. Furthermore, industrialists should focus on real-world implementation 

of the proposed technologies, with detailed economic feasibility analyses to enhance their practicality and 

scalability. 
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