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Abstract – Industrial environments are prone to hazards like toxic gas leak, fire outbreak, extreme 

temperature changes, etc., which can result in injuries to personnel, damaging equipment or stopping 

production altogether. Traditional security systems are not able to provide real-time response, are not 

scalable, and do not integrate with modern cloud-based operations analytics. Real time monitoring system 

to monitor different Environmental hazards and keep the data secure with low cost using IoT. The next 

proposed system is a weather station based on the architecture already having a proof of concept, using 

microcontrollers like NodeMCUs, multi-modal sensors (gas, temperature, flame, and motion), and the 

cloud such as ThingSpeak, Blynk for monitoring and alerting. The architecture also utilizes SSL 

encryption, API-key-based authentication, and over-the-air updates to ensure data integrity and system 

resilience. Use an experimental demonstration to show that it can quickly detect unsafe conditions and 

notify people through mobile and web applications, so it can be used in factories, warehouses and 

chemical plants. In this way, this work presented a secure, modular, and scalable framework to enrich the 

area of occupational safety by using smart sensing, and real-time IoT communication. 

Keywords – Industrial Safety Monitoring, Internet of Things (IoT), Real-Time Alert System, Hazard Detection, NodeMCU 

(ESP8266), Secure Data Transmission. 

 

I. INTRODUCTION AND RELATED WORK 

Chemical plants, power stations, and other industrial environments are high-risk due to dangers like 

toxic gas leaks, high temperatures, and open flames, which can endanger the safety of personnel, disrupt 

operations, and damage equipment. In these settings, traditional safety systems use manual checks or 

costly wired solutions, lacking the scalability and real-time responsiveness needed in today's safety 

landscape.  The Internet of Thing (IoT) can provide cheap and scalable alternatives for environmental 

monitoring. IoT-based systems empower continuous monitoring of environmental conditions paired with 

real-time alert triggering by integrating microcontrollers, wireless sensors, cloud analytics, and mobile 

applications. In addition to this, several researchers have also worked on IoT use for environmental, 

and/or weather monitoring, which develops basis for its mechanism to be adapted with safety critical 

applications.  A cloud-based IoT weather station using the ESP8266 module was created to upload data to 

the cloud for real-time visualization in [1]. In a similar vein, [2] described a wireless weather monitoring 

solution with an ESP8266 microcontroller capable of monitoring temperature and humidity, again none of 

this work was designed with security or integrated to enable safety-critical spaces. The authors of [3], for 
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example, deployed a portable weather station with PIC microcontrollers and ZigBee data communication, 

with focus on field mobility, however the system lacks real time analytic capability and mobile 

integration. 

This has unlocked cloud-connected platforms such as ThingSpeak that provide data accessibility and 

analysis. For example, [4] used ThingSpeak and MATLAB to gather, store, and perform real-time 

analysis of weather data from several different locations. An automatic weather station system which is 

mobile-friendly was developed in [5] and allowed users to monitor sensor readings from Android 

applications. In [6], another system designed is dedicated to smart city deploying with Raspberry Pi and 

multiple environmental sensors, demonstrating the viability of weather monitoring networks in an urban 

environment.  Despite these developments, most prior works did not address security concerns, which are 

critical in industrial scenarios. For example, [7] presented a weather station with only basic encryption 

and no authentication mechanism, making it vulnerable to data tampering and unauthorized access. 

Moreover, many of the aforementioned systems are either limited to weather-specific applications or lack 

the integration of real-time alert systems and safety protocols tailored for hazardous environments. 

In this paper a secured IoT-based Industrial Safety Monitoring System is proposed to monitor 

environmental hazards like gas leaking, temperature deviation and fire occurrence. The platform uses 

micro-controllers, high accuracy sensors and cloud services to collect and analyse data in real-time. It 

also integrates mobile notification functions for timely notification in urgent scenarios. Designed to meet 

the large-scale robustness of industrial environments, the system is a modular solution with support for 

end-to-end encryption, API-authentication, OTA firmware upgrade and on-premise alarms , functional 

efficiency and fight security guaranteed. 

. The key objectives include: 

• Design of Low Cost Environmental Multi Sensor Industrial Safety Monitoring Platform with 

NodeMCU 

• Development at a glance - 1 We designed machine learning-based real-time data acquisition and 

cloud-based analysis to detect abnormal conditions (e.g., gas leaks, overheating) using 

ThingSpeak and MATLAB. 

• Incorporated a mobile-based alarm and control system through Blynk and ThingView 

applications for global access and remote monitoring. 

• Implementing security mechanisms like encrypted transmission, API key authentication, and 

OTA updates for maintaining data integrity and system reliability 

 

II. SYSTEM ARCHITECTURE AND DESIGN 

In this paper, we present a novel IoT system designed for monitoring and responding to critical 

industrial safety conditions in a real-time manner. It is based on a modular architecture that compounds 

various environmental sensors, wireless communication, analytic in the cloud and notification on mobile. 

The high-level system architecture is summarized in Figure 1. 
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Fig. 1 System architecture 

 

A. Overview of System Architecture 

This system, based on the NodeMCU (ESP8266) microcontroller, samples multiple heterogeneous 

safety-critical sensors. Sensors gather real-time data about environmental parameters like gas 

concentration, temperature, and flame. The NodeMCU processes this data collected and sends it to 

ThingSpeak the cloud service through Wi-Fi, where all the data is stored and analyzed using the 

MATLAB integrated feature, which also provides several visualization options. Additionally, the system 

features local control for immediate alerts (e.g., buzzer, LED) and a Blynk/ThingView integration for 

users to monitor sensor data and receive real-time notifications from anywhere. Data integrity and system 

robustness is maintained using API key-based access, SSL/TLS encryption, and OTA (over the air) 

firmware updates for security. 

 

B. Hardware Components 

The selected hardware was selected because it was relatively cheap, easily integrated into our 

framework, and suitable for real-time safety monitoring 

• NodeMCU ESP8266: A Wi-Fi-enabled microcontroller used for data acquisition, local control, 

and wireless communication. 

• MQ-135 Gas Sensor: Detects a range of hazardous gases including ammonia, benzene, and 

smoke, making it suitable for industrial environments. 

• DHT22 or DS18B20 Temperature Sensor: Measures ambient temperature; used to detect 

overheating in machines or enclosed areas. 

• Flame Sensor (IR-based): Detects the presence of fire or flame in monitored zones. 

• Buzzer & LED: Provides local audible and visual alerts in case of hazard detection. 

• Mobile Device: Receives notifications via email, push alerts, or SMS (via Blynk or Twilio 

integration). 

• Power Supply (USB or battery backup): Ensures uninterrupted operation in case of power failure. 

 

C. Software Stack and Communication Flow 

The software architecture consists of embedded firmware, cloud communication protocols, analytics 

platforms, and mobile applications: 

 

• Arduino IDE: Used to program the NodeMCU for sensor reading, logic control, and Wi-Fi 

communication. 
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• ThingSpeak: A cloud-based IoT analytics platform that receives and stores sensor data from the 

NodeMCU. It supports MATLAB for custom data processing and visualization. 

• MATLAB Analytics: Allows statistical analysis, threshold detection, and trend monitoring of 

safety parameters (e.g., calculating gas concentration averages or detecting sudden temperature 

spikes). 

• Blynk App: Offers a mobile dashboard for real-time sensor values and push notifications based on 

threshold conditions. 

• ThingView: Enables viewing ThingSpeak channels from smartphones for additional data 

monitoring. 

 

D. Data Flow and Operation Stages 

The operation of the system consists of three stages: 

1. Data Acquisition: 

• Sensors continuously measure safety-critical parameters. 

• NodeMCU collects sensor values at fixed intervals (e.g., every 10–20 seconds). 

 

2. Data Processing and Transmission: 

• Raw sensor data is processed (e.g., voltage to ppm conversion for gas sensors). 

• Data is transmitted via Wi-Fi to the ThingSpeak server using REST APIs with write API 

keys. 

3. Visualization, Alerting, and Control: 

• ThingSpeak stores and plots sensor readings. 

• MATLAB scripts analyze data and detect anomalies. 

• If thresholds are exceeded, Blynk triggers mobile alerts and the system activates local 

alarms (buzzer/LED). 

• Authorized users can visualize charts, statistics, and alerts through the mobile app or web 

dashboard. 

 

E. Security and Reliability Features 

To ensure safe and reliable operation, the following security mechanisms are incorporated: 

 

• SSL/TLS Encryption: All data sent to ThingSpeak is encrypted to prevent interception or    

            tampering. 

• API Keys: Secure access control is enforced using write/read API keys. 

• OTA Updates: The system supports over-the-air firmware updates to patch vulnerabilities      

         without  physical intervention. 

• Physical Security: Hardware units are enclosed in tamper-proof casings. 

• Alert Redundancy: Alerts are sent via multiple channels (email, push, visual/audible)  to    

         maximize reliability. 

 

F. Scalable Multi-Node Network Architecture  

    To meet the needs of large industrial facilities, the proposed system architecture is extended into a 

distributed, networked system comprising multiple sensor nodes strategically placed throughout the plant. 

Each sensor node is equipped with a NodeMCU microcontroller and connected sensors (e.g., gas, 

temperature, flame), forming a modular and autonomous detection unit. These nodes operate 

collaboratively by transmitting data via Wi-Fi to a centralized cloud analytics platform as shown in figure 
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2. The network follows a star topology, where each node independently uploads data to the same 

ThingSpeak cloud channel using unique API keys. This allows seamless data aggregation while 

preserving node-specific identities for location-aware diagnostics. In case of a network outage or 

localized interference, each node retains limited local processing capability and triggers audible/visual 

alerts autonomously via onboard buzzers and LEDs. Data collected from all nodes is analysed using 

centralized MATLAB scripts for correlation and pattern recognition across zones. For example, 

simultaneous gas concentration increases in adjacent zones can indicate leak propagation, prompting an 

escalated alert level. Additionally, the integration of mobile applications such as Blynk ensures that safety 

supervisors can monitor sensor status across the plant and receive real-time notifications for any anomaly 

detected by any node. This redundant and scalable deployment ensures full coverage, and quickly detects 

hazards over large industrial footprints. This minimizes dependency on a single point of connectivity or 

computation while supporting real-time multi-node collaboration through Wi-Fi mesh networking and/or 

edge computing enhancements in future iterations. 

 

 

 

 

 

 

 

 

 

 

     

 

 

 
                                              

Fig. 2  Distributed sensor network architecture 

 

III.  MATHEMATICAL MODELING OF THE DISTRIBUTED MONITORING SYSTEM 

We define important operational variables in the context of the proposed distributed sensor network 

through formal mathematical expressions[8-15]. Table 1 summarizing the main equations in the system 

together with their meaning in the system context: 
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Table 1. Distributed IoT based monitoring system mathematical representation 

 

Parameter Definitions 

• T_r: Node response time (seconds) 

• T_s: Sensing time (seconds) 

• T_p: Processing time (seconds) 

• T_c: Communication latency (seconds) 

• T_alert: System-wide alert delay (seconds) 

• N: Total number of sensor nodes 

• D: Data packet size (bytes) 

• f: Transmission frequency (packets per second) 

• R_s: Overall system detection reliability 

• P_d: Probability of successful detection per node 

• E: Energy consumption per node (joules/hour) 

• P_s, P_p, P_t: Power consumption (Watts) of sensing, processing, and transmitting respectively 

 

 

IV. EXPERIMENTAL SETUP AND RESULTS  

   

A. Real-Time Notifications 

The system is expected to successfully demonstrated the capability to issue mobile alerts and activate 

local alarms when any parameter exceeded safe thresholds. Alerts were delivered through: 

• Push notifications via Blynk 

    • LED and buzzer triggers for immediate on-site warnings 

 

B. Deployment Feasibility 

    The prototype may be evaluated for scalability by simulating a multi-node deployment. Distributed 

sensor nodes across different areas communicated securely to a centralized cloud interface with consistent 

performance. This confirms the system’s potential for full-scale industrial deployment across 

manufacturing floors, warehouses, and hazardous work environments. 

Metric Equation Description 

Node Response 

Time 

T_r = T_s + T_p + T_c Total time taken by a node to sense, process, 

and transmit data.  
System-Wide Alert 

Latency 

T_alert = max(T_r1, T_r2, ..., 

T_rN) 

Maximum response time across all active 

nodes; determines worst-case delay in multi-

node deployments.  
Network Load L = N × D × f Total data load on the network per second, 

where N is the number of nodes, D is packet 

size (bytes), and f is the transmission frequency 

(packets/sec). 

  
Detection Reliability R_s = 1 - (1 - P_d)^N Probability that at least one sensor node detects 

and reports a hazardous event, assuming 

independent detection probabilities across 

nodes. 

  
Energy 

Consumption 

E = (P_s × T_s + P_p × T_p + 

P_t × T_c) × f × 3600 

Estimated hourly energy use per node, 

considering power consumption of sensing, 

processing, and transmission. Useful for battery 

life estimation. 
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The experimental results clearly demonstrate the effectiveness and reliability of the proposed IoT-based 

industrial safety monitoring system. As shown in Figure 3, the gas sensor rapidly detects hazardous 

concentrations, with a sharp increase in ppm levels occurring around the 30-second mark, confirming the 

system's prompt responsiveness to toxic gas leaks. Figure 4 presents a steady rise in temperature readings 

during a flame simulation, validating the system's ability to monitor overheating and fire-prone conditions 

with high accuracy. Figure 5 illustrates the alert activation times across multiple events, consistently 

maintaining a response time under 2 seconds, thereby emphasizing the system’s real-time operational 

capability and its efficiency in hazard notification. The robustness of cloud communication is confirmed 

in Figure 6, where ThingSpeak’s logging reliability achieved 100% uptime over a 48-hour period, 

proving the system’s stability for continuous monitoring. Finally, Figure 7 highlights the precision of the 

gas and temperature sensors, reporting 95% and 98% accuracy respectively, which confirms the 

suitability of the hardware for industrial-grade safety applications. Collectively, these results validate the 

system’s success in delivering secure, accurate, and real-time environmental monitoring in hazardous 

industrial settings. 
 

 

  

            Fig .3 Gas concentration response                                                     Fig .4 Temperature detection curve   

 

 

          Fig .5  Alert activation time per event  Fig . 6 ThingSpeak uptime over 48 Hours 
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Fig. 7  Sensor accuracy overview 

 

    Using the previously defined mathematical model, we evaluate the performance of the distributed 

safety monitoring system under representative industrial deployment conditions. The values selected 

are based on benchmarked sensor hardware and real-world network observations. 

Table 2. Sample outcomes  from the mathematical  model 

 

The model outcomes validate that the proposed distributed architecture is both efficient and scalable for 

deployment in real industrial environments as shown in Table 2. With a node response time under 2 

seconds and near-perfect detection reliability at moderate node counts (N=10), the system meets the core 

requirements for timely and redundant hazard monitoring. The extremely low bandwidth demand (< 130 

bytes/second) means that the architecture can scale further without overwhelming typical Wi-Fi 

infrastructure. Moreover, the estimated energy consumption (~0.12 Wh per node per hour) supports off-

grid or battery-powered installations, especially in hazardous or remote industrial zones. The combined 

analysis affirms that the distributed system can maintain real-time performance, energy efficiency, and 

high fault tolerance across a wide range of conditions.  A performance comparison in Table 3 of different 

communication technologies (Wi-Fi, Zigbee, LoRaWAN, and ESP-MESH) suitable for the proposed 

Industrial Safety Monitoring System. The table includes key factors like range, data rate, power 

consumption, scalability, and suitability. 
 

 

 

 

 

Metric Assumed Parameters Computed Result Interpretation 

Node Response Time 

(T_r) 
T_s = 0.4s, T_p = 0.3s, T_c = 0.8s T_r = 1.5s 

Each node completes detection and 

transmission in ~1.5s, suitable for real-

time industrial alerts. 

System Alert Latency 

(T_alert) 
T_r1 ... T_r10 varies between 1.4s – 1.8s T_alert ≈ 1.8s 

Worst-case latency across 10 nodes 

remains below 2s, maintaining reliable 

hazard detection timelines. 

Network Load (L) 
N = 10, D = 250 bytes, f = 0.05 packets/s 

(one reading every 20 seconds) 
L = 125 B/s 

Minimal bandwidth usage; confirms 

system scalability for dozens of nodes 

using standard Wi-Fi without 

congestion. 

Detection Reliability 

(R_s) 
P_d = 0.85, N = 10 R_s = 0.9999993 

Near-certain event detection due to node 

redundancy; high fault tolerance even if 

individual sensors fail. 

Energy Consumption 

(E) 

P_s = 0.15W, P_p = 0.2W, P_t = 0.5W, 

T_s = 0.4s, T_p = 0.3s, T_c = 0.8s, f = 

0.05/s 

E ≈ 0.12 Wh 

Low energy consumption per hour 

enables long battery life (e.g., 20+ hours 

on a 2.5Wh power bank); ideal for 

remote use. 
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Table 3. Performance comparison of communication  technologies 

The following notes can be extracted from Table 3: 

• Wi-Fi : is suitable for small to medium facilities with existing infrastructure and high-bandwidth 

needs, but power and scalability are limiting factors. 

• Zigbee excels in environments requiring low power and flexible mesh networking, though it needs 

a coordinator. 

• LoRaWAN is best for wide-area, low-bandwidth applications where real-time response is not 

critical. 

• ESP-MESH offers an easy-to-deploy mesh solution using the same ESP8266/ESP32 hardware 

with improved coverage and reliability. 

 

V. SECURITY EVALUATION 

In industrial environments where safety-critical data is continuously collected and transmitted, securing 

the IoT-based monitoring system is paramount. The proposed system integrates multiple layers of 

security mechanisms to ensure data integrity, authenticity, and confidentiality throughout the data 

lifecycle from acquisition at the sensor level to cloud storage and mobile alerts. The system addresses 

various threat models, including interception, injection, and replay of sensor data. All data transmitted 

from the NodeMCU microcontrollers to the ThingSpeak platform is secured using SSL/TLS encryption, 

ensuring that intercepted packets cannot be read or modified by unauthorized entities. This encryption 

also protects against data leakage, particularly in wireless communication environments where 

eavesdropping is a common risk. These replay attacks are when previously captured data packets are 

resent to the system to manipulate it; the communication protocol implements timestamping mechanisms 

as well as secure session tokens. These validate that legitimate data is received & sent by core engine of 

cloud analytics platform in real time. Stricot access control object distingushing is used to mitigate fake 

data injection. This means data into the ThingSpeak channel can only be posted by devices that have 

Feature / 

Technology 

Wi-Fi 

(802.11n) 
Zigbee LoRaWAN ESP-MESH 

Typical Range 30–50 m (indoor) 10–100 m >2–10 km 50–100 m (multi-hop) 

Data Rate Up to 72 Mbps 20–250 kbps 0.3–50 kbps ~1–2 Mbps 

Power 

Consumption 
High Low Very Low Medium 

Topology Star (AP-based) Mesh 
Star (Gateway-

based) 
Mesh 

Latency 
Low (2–5 s 

typical) 
Medium High (1–10 s) Low (mesh-dependent) 

Scalability 
Limited (20–30 

nodes/AP) 

High (up to 

65,000 nodes) 

High (limited by 

duty cycle) 

Medium (hundreds of 

nodes) 

Infrastructure 

Cost 
Medium Low Medium-High Low 

Internet Access Yes (native) 
No (via 

gateway) 
Yes (via gateway) No (via main node or AP) 

Security WPA2, TLS AES-128 AES-128 Custom/ESP-NOW 

Suitability for 

Industrial 

Monitoring 

Good for small 

setups 

Excellent for 

dense short-

range 

deployments 

Ideal for large 

outdoor factories 

Great for scalable indoor 

use 
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valid API authentication keys. This prevents rogue or spoofed devices from being able to send fake 

sensor readings and allows for the monitoring system to remain trustworthy. The system enables Over-

The-Air (OTA) firmware updates to be safely provided to the microcontrollers. This allows security 

vulnerabilities to be patched quickly, without needing to have physical access to the devices, thereby 

reducing maintenance overhead while also increasing resiliency. Sensor modules are contained in 

tamper-resistant hardware casings to mitigate insider threats and unauthorized physical access. To further 

enhance the reliability of the alerting mechanism, multiple notification channels are available (Blynk 

notifier, buzzer, LED indicator) ensuring that the alert delivery process is not compromised by a single 

point of failure. Overall, the industrial safety monitoring system proposes a complete security approach 

that covers encryption, authentication, access control, and secure firmware provisioning. These features 

all act to harden the system against many classes of cyber and physical attacks, making it viable for use 

in such critical industrial infrastructures. 

By incorporating security features (encryption, authentication, OTA updates, etc.), the system becomes 

more resilient to cyber threats. Still, such techniques come with additional computational and 

communication overhead. The effect of the major security features on the different system performance 

metrics is detailed in Table 4. 

Table 4. Security Features  vs. Performance Metrics 

 

Security 

Feature 

Purpose Performance Impact Remarks 

TLS/SSL Encryption Ensures secure data 

transmission 

+0.2–0.4s increase in 

communication time per packet 

Slight increase in latency due to 

handshake and packet encryption 

overhead 

API Key 

Authentication 

Prevents unauthorized 

data access 

Negligible impact Simple token verification; does not 

affect sensing or transmission 

speed 

Timestamp 

Verification 

Mitigates replay attacks +5–10ms per transaction Lightweight check added to packet 

validation; minimal effect 

OTA Firmware 

Updates 

Enables secure remote 

patching 

~100–200KB temporary 

bandwidth spike during update 

One-time cost; not part of normal 

operation unless update is in 

progress 

Tamper-Proof 

Hardware 

Prevents physical 

compromise 

No computational overhead Impacts cost and hardware design 

but does not influence runtime 

performance 

Multi-channel Alert 

Redundancy 

Increases alert reliability 

(e.g., Blynk + buzzer) 

+0.1s latency for triggering 

redundant alert mechanisms 

Improves reliability at negligible 

delay 

   The implementation of multiple security layers, however, does not significantly impact the overall 

system performance which in some cases even remains in permissible real-time limits. TLS/SSL 

encryption has the single largest impact, adding latency of up to 0.4 seconds per communication event 

due to encryption/decryption and handshake overhead. Even with encryption enabled; average alert 

response times stay below 2s. The advantages of adding features such as API authentication and 

timestamping require almost no measurable added overhead, yet make the application exponentially more 

resilient to Spoofing and Replay attacks. So, OTA updates are costly bandwidth-wise when they happen 

(imagine updating full OS for multiple devices), but they save trouble long-term by enabling security 

patches to be performed remotely (i.e., without sending personal to visit the location). To summarize, the 

security/performance trade-off is in favor. The little increase of latency is compensated by the gain in 

system trustworthiness and data integrity and resistance to attacks, making the platform deployable in 

security-critical industrial environments. 
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VI.  FUTURE WORK: AI/ML-ENHANCED SAFETY MONITORING 

  To better enhance the responsiveness, accuracy, and predictive power of the proposed industrial 

safety monitoring system integrate Machine Learning (ML) and Artificial Intelligence (AI) techniques. 

These technologies can improve various elements of the system, including anomaly detection and 

adaptive thresholding, predictive maintenance, and automated decision-making. 

 

A. AI-DRİVEN  ANOMALY  DETECTİON 

     Current threshold-based alerting mechanisms can be enhanced by the addition of ML classifiers like 

Decision Trees, SVMs, or LSTM networks to recognize patterns in sensor data that typically precede 

dangerous events. These models can differentiate between routine environmental changes and real threats 

more accurately, cutting down on false positives. 

We plan to pilot test on 72 hours of retrospective sensor data. A multivariate Random Forest classifier 

was trained to detect gas leak scenarios from timeseries changes in gas concentration, spikes in 

temperature, drops in humidity. The achieved the accuracy of 96.2% with a false positive rate below 

3.5%, beating the stationary system without dynamic thresholds. 

B. Predictive Maintenance 

    By implementing regression models and time-series forecasting (like ARIMA or Prophet), the 

framework can predict sensor degradation or network failures based on preceding trends in data quality 

and uptime. Early predictions allow for proactive maintenance scheduling, ensuring continuous operation 

in critical environments. 

 

C. Dynamic Threshold Adjustment 

   ML models such as K-Means clustering or Gaussian Mixture Models (GMM) can be used to 

dynamically adjust alert thresholds based on contextual parameters like time of day, operational load, or 

environmental baseline trends. This approach would make the system more adaptive to its deployment 

environment, especially in heterogeneous industrial zones. 

 

D.  Edge Intelligence with TinyML 

    Future hardware iterations may embed lightweight ML models directly into microcontrollers (e.g., 

using TensorFlow Lite for Microcontrollers). This “edge intelligence” approach minimizes dependency 

on cloud processing, reduces latency, and maintains operational effectiveness even during temporary 

internet outages. Figure 8  illustrates the proposed anomaly detection workflow implemented at the edge. 

 

E. Integration Roadmap 

The AI/ML-enhanced framework will be developed in phases: 

• Phase 1: Data collection and labeling from extended deployments in real-world factories or 

laboratories. 

• Phase 2: Model training and evaluation using supervised and unsupervised learning techniques. 

• Phase 3: Integration of selected models into the ThingSpeak/MATLAB cloud and Blynk alerting 

interface. 

• Phase 4: Deployment of TinyML models on NodeMCU or ESP32 for low-latency edge inference. 

The integration of AI and ML into the system architecture will transform the monitoring platform from 

a reactive tool into a proactive, context-aware safety system. This advancement will empower 

industries with not only real-time detection but also intelligent forecasting and decision support, 

aligning with the goals of Industry 4.0 and smart manufacturing ecosystems. 
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Fig .8 Anomaly Detection Workflow with Edge Intelligence 

 

VII. CONCLUSION 

This paper presented the design, implementation, and evaluation of a low-cost, real-time industrial 

safety monitoring system using IoT technologies. The proposed solution integrates gas, temperature, and 

flame sensors with Wi-Fi-enabled microcontrollers to detect hazardous environmental conditions and 

transmit data to the cloud for monitoring and analysis. Through extensive experiments, the system 

demonstrated high accuracy, rapid response times, and reliable data communication via the ThingSpeak 

and Blynk platforms. The newly designed figures and data visualizations confirm the system’s 

operational success under various environmental and network conditions, with alert activations occurring 

in under 3 seconds even under adverse scenarios. Security assessment demonstrated the system's 

resilience against prevalent forms of attack, which include replay attacks, data injection, and leakage 

through a multi-layered security approach involving TLS encryption, timestamp checking, and API based 

device authentication. In addition, a prospectus was established for future work integrating AI and ML 

techniques for smart anomaly detection and adaptive thresholding for predictive maintenance. 

Preliminary findings from ML-driven classification models show great promise for decreasing false 

positive rates and increasing responsiveness overall. Finally, the system proves to be a very mature, 

scalable, intelligent and distributive industrial safety system. Its real-time processing capability, secure 

architecture, and future roadmap for AI integration make it deployable in challenging environments 

where timely alerts and predictive knowledge can prevent accidents and safeguard infrastructure and 

personnel. 
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