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Abstract –This study aims to rapidly and accurately estimate the fat content of milk using near-infrared 

spectroscopy and various chemometric analysis methods. In the study, different pre-processing techniques 

such as standard normal variate, multiplicative scatter correction, Savitzky-Golay smoothing, and spectral 

differentiation were applied along with various modeling approaches such as partial least squares 

regression, ridge regression, support vector regression, lasso regression, and random forest regression. 

The findings show that pre-processing methods have a decisive impact on model success. In particular, 

the use of standard normal variate and first derivative pre-processing methods in combination with partial 

least squares regression and ridge regression resulted in the highest accuracy and lowest error values. The 

results suggest that near-infrared spectroscopy can be an effective and reliable tool for automation and 

real-time monitoring of quality control processes in the dairy industry. 
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I. INTRODUCTION 

Milk has an important place as a basic food in human nutrition. Milk, which contains many nutrients 

such as protein, carbohydrates, vitamins, minerals, and fat, is an indispensable food source, especially for 

children, the elderly, and the sick [1]. One of the most important parameters determining the nutritional 

value of milk is its fat content. Milk fat is of critical nutritional importance as it is a source of energy and 

plays a role in the transportation and absorption of fat-soluble vitamins (A, D, E, K) [2]. In addition, milk 

fat directly affects the flavor, aroma, and texture of milk. Therefore, accurate and rapid determination of 

fat content is of great importance in the quality control of milk and dairy products. 

Various chemical and physical analysis methods are traditionally used to determine the fat content of 

milk. One of the most widely used methods is the Gerber method, in which milk fat is separated and 

measured volumetrically with the help of sulfuric acid and amyl alcohol added to milk. Other techniques, 

such as gravimetric methods and the Babcock method, are also widely used [3]. However, these 

traditional methods are often time-consuming, costly, and sometimes involve the use of environmentally 

hazardous chemicals. Furthermore, the applicability of these methods can be limited when high sample 

numbers are required [4]. 

https://as-proceeding.com/index.php/ijanser


International Journal of Advanced Natural Sciences and Engineering Researches 

32 

In recent years, the need for fast, reliable, and environmentally friendly alternative methods for the 

analysis of milk and dairy products has increased. In this context, Near Infrared (NIR) spectroscopy has 

become one of the leading modern techniques in milk analysis [5], [6]. NIR spectroscopy is a method that 

works in the wavelength range of 780-2500 nm and can be analyzed without damaging the sample and 

without using any chemical reagents. The basic principle of NIR spectroscopy is that the characteristic 

vibrations of organic molecules show absorption in this wavelength range. In complex matrices such as 

milk, components such as fat, protein, and lactose have unique signals in the NIR spectrum. This enables 

rapid and non-invasive estimation of important parameters such as milk fat content [7]. 

The advantages of NIR spectroscopy in milk analysis include fast measurement time, no sample 

preparation, multi-parameter analysis, and no use of environmentally harmful chemicals. Furthermore, 

NIR instruments are portable and can be used in field applications. However, since NIR spectra often 

contain complex and overlapping signals, advanced data processing and calibration techniques are needed 

to obtain accurate and reliable results [8]. 

In this study, a regression analysis of milk fat content was performed using a readily available milk NIR 

spectroscopy dataset. The dataset was divided into calibration and validation sets using the Kennard-

Stone (KS) algorithm. Then, various pre-processing methods were applied to the spectral data. The pre-

processed data were analyzed using different regression models. The main objective of the study is to 

compare the performance of different combinations of pre-processing and regression models in the 

estimation of milk fat content and to determine the most appropriate approach. The findings aim to 

demonstrate the potential of NIR spectroscopy for fast and reliable fat determination in the dairy industry. 

 

II. MATERIALS AND METHOD 

A. Dataset Description and Split 

The dataset used for the regression analysis of milk fat content in this study is a publicly available NIR 

spectroscopy dataset published by Jose A. Diaz-Olivares et al. [9]. The dataset contains NIR spectral 

measurements of 1224 raw milk samples collected over eight weeks in 2017 at the Hooibeekhoeve 

experimental farm in Antwerp, Belgium. Measurements were made by taking a representative sample of 

raw milk at each milking with an automatic milking system. Each milk sample was obtained from 41 

Holstein cows with an average lactation period of 168 ± 84 days and an average number of calvings of 

2.0 ± 1.1. Milk samples were collected from a total of 1270 milkings, averaging 158 per week; however, 

1224 samples with complete laboratory reference analyses and spectral measurements were used in the 

analysis. 

An NIR spectrometer (1.7-256 Plane Grating Spectrometer, Carl Zeiss, Jena, Germany) with a 256-

pixel cooled InGaAs diode array operating in the wavelength range 960-1690 nm was used for each milk 

sample. Spectral measurements were averaged over 100 repetitions for each sample with a resolution of 

2.86 nm/pixel and an integration time of 100 ms. The measurement system was equipped with a 20 W 

integrated halogen light source, milk flow control by a peristaltic pump, a special borosilicate cuvette, 

white reference, and dark reference. For each milk sample, the white and dark reference spectra were 

recorded along with the sample spectrum. These references were used to correct for variations in light 

source intensity and spectrometer sensitivity. The spectral data were normalized with the following 

formula: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑝𝑒𝑐𝑡𝑟𝑎 =  
𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑝𝑒𝑐𝑡𝑟𝑎 − 𝐷𝑎𝑟𝑘 𝑆𝑝𝑒𝑐𝑡𝑟𝑎

𝑊ℎ𝑖𝑡𝑒 𝑆𝑝𝑒𝑐𝑡𝑟𝑎 − 𝐷𝑎𝑟𝑘 𝑆𝑝𝑒𝑐𝑡𝑟𝑎
 

 

The data set contains chemical and physical parameters of each milk sample, such as cow ID, week, 

milk yield, fat, protein, lactose, urea, SCC, and NIR spectral data normalized at 256 wavelengths. 

In the study, during the modeling process, the data set was divided into calibration (training) and 

validation (validation) sets using the Kennard-Stone (KS) algorithm. The Kennard-Stone algorithm is a 

widely used sample selection method in multivariate data analysis. Its primary purpose is to select a 

subset that best represents the distribution of samples in the data set. This algorithm is used to increase the 
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generalizability of the model, especially in the construction of calibration and validation sets [10]. The 

working principle of the KS algorithm is as follows: 

Selection of Initial Samples: The algorithm starts by selecting the two samples with the largest distance 

between the samples in the dataset. These two samples are determined as the initial members of the 

calibration set. 

Adding Samples: For the remaining samples, the smallest distances to the samples in the calibration set 

are calculated. Then, the largest of these smallest distances is selected. This means identifying the sample 

that is furthest from the calibration set. This sample is also added to the calibration set. 

Iteration: The second step is repeated until the desired number of samples is added to the calibration 

set. At each step, the sample farthest from the calibration set is selected, increasing the diversity and 

representativeness of the set. 

The KS algorithm ensures that the calibration and validation sets are representative and homogeneous 

by taking into account the distribution of the samples in the spectral space. This improves the 

generalizability and accuracy of the model. The validation set consists of samples that are not included in 

the calibration set and are used to evaluate the performance of the model independently. 

 

B. Pre-processing Methods 

Raw spectral data from NIR spectroscopy often contains scattering effects, baseline shifts, noise, and 

other physical/matrix-induced variations. Such unwanted variations can adversely affect the performance 

of modeling based on chemical information. For this reason, various pre-processing methods are applied 

to spectral data to improve the signal-to-noise ratio and highlight variations based on chemical 

information [11]. The pre-processing methods used in this study and their mathematical basis are 

described in detail below. 

Standard Normal Variate 

Standard Normal Variate (SNV) is a pre-processing method used to correct scattering effects and baseline 

shifts in spectral data [12]. SNV normalizes each spectrum by its mean and standard deviation. Thus, each 

spectrum is rescaled so that its mean is zero and its standard deviation is one. Assuming a spectrum is 

defined as 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], the SNV transformation is applied as follows: 

𝑥𝑖
𝑆𝑁𝑉 =

𝑥𝑖 − 𝑥̅

𝑠
 

Where 𝑥𝑖 is the value of the original spectrum at wavelength 𝑖, 𝑥̅ is the mean of the spectrum, and 𝑠 is the 

standard deviation of the spectrum. SNV is particularly effective in reducing scattering variations due to 

particle size differences or heterogeneity on the sample surface. 

Multiplicative Scatter Correction 

Multiplicative Scatter Correction (MSC) is a method for correcting multiplicative and additive scattering 

effects in spectral data. MSC linearly aligns each spectrum to the average spectrum chosen as a reference 

[13]. For a spectrum 𝑥 and a reference spectrum 𝑥𝑟𝑒𝑓, the MSC transformation is applied as follows: 

First, linear regression is performed between 𝑥 and 𝑥𝑟𝑒𝑓: 

𝑥 = 𝑎 + 𝑏. 𝑥𝑟𝑒𝑓 + 𝜖 
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The MSC corrected spectrum is obtained as follows: 

𝑥𝑖
𝑀𝑆𝐶 =

𝑥 − 𝑎

𝑏
 

In particular, MSC reduces scattering variations due to physical differences in the sample matrix and 

emphasizes variations based on chemical composition. 

Savitzky-Golay (SG) Smoothing 

Savitzky-Golay (SG) filtering is a smoothing and differentiation method used to reduce noise in spectral 

data and preserve the fundamental structure of the signal. The SG filter applies a moving polynomial 

regression with a given window width and a given polynomial degree [14]. Assuming that a spectrum is 

denoted by 𝑥, the SG filter calculates a new value by polynomial fitting a given range around each data 

point. The SG filter is also commonly used to take the first and second derivatives of the spectrum. 

The mathematical basis of the SG filter is to fit the following polynomial for each window: 

𝑦𝑖 = ∑ 𝑎𝑘(𝑥𝑖)
𝑘

𝑑

𝑘=0

 

Here, 𝑑 is the degree of the polynomial, 𝑎𝑘 is the polynomial coefficients. The SG filter reduces high-

frequency noise in spectral data while preserving the main structure and peaks of the signal. 

 

Fig. 1 The original and pre-processed spectra  
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First Derivative 

First derivative pre-processing is used to remove baseline shifts and fixed offsets in spectral data. It also 

helps to separate overlapping peaks. The first derivative shows the rate of change of the spectral signal 

with respect to wavelength. 

Second Derivative 

Second derivative pre-processing is used further to reduce baseline shifts and trends in spectral data, 

better distinguish overlapping peaks, and reveal fine details of the signal. The second derivative shows the 

change in the slope of the signal. The second derivative more effectively removes baseline shifts and 

trends in the spectral data and facilitates the separation of overlapping peaks. However, it is usually 

applied in combination with the SG filter as it can increase high-frequency noise. 

The original and pre-processed spectra are given in Fig. 1. 

C. Regression Methods 

Spectral data obtained by NIRS are generally high dimensional and multivariate. Therefore, classical 

linear regression methods may be inadequate for the estimation of milk fat content [15]. In this study, five 

different regression models with different mathematical approaches were used: Partial Least Squares 

Regression (PLSR), Ridge Regression, Support Vector Regression (SVR), Lasso Regression, and 

Random Forest regression. The theoretical foundations and parameter optimization of each model are 

described in detail below. 

Partial Least Squares Regression 

PLSR is a generalization of multiple linear regression, especially for high-dimensional and multicollinear 

data. PLSR creates new latent variables that maximize the common variance between both the 

independent variables (X: spectral data) and the dependent variables (Y: fat content) [15]. 

The mathematical basis of the PLSR model is as follows: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 

𝑌 = 𝑈𝑄𝑇 + 𝐹 

Where 𝑋 is the matrix of independent variables (spectral data), 𝑌 is the matrix of dependent variables, 𝑇 

and 𝑈 are latent score matrices, P and Q are loading matrices, and E and F are error matrices. PLSR is 

optimized by the latent variable parameter. This parameter is usually determined by cross-validation. 

Ridge Regression 

Ridge regression is a variant of linear regression that avoids overfitting by shrinking the coefficients of 

the model. In Ridge regression, a penalty term is added to the sum of error squares [16]. 

Mathematical formulation of Ridge regression: 

min
𝛽

{∑(𝑦𝑖 − 𝑋𝑖𝛽)2

𝑛

𝑖=1

+ λ ∑ 𝛽𝑗
2

𝑝

𝑗=1

} 
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Here, β is the regression coefficient, and λ is the penalty parameter. In Ridge regression, the penalty 

parameter controls the complexity of the model and is usually optimized by cross-validation. 

Lasso Regression 

Lasso (Least Absolute Shrinkage and Selection Operator) regression adds a penalty term similar to Ridge 

regression, but here, the penalty is the sum of the absolute values of the coefficients [17]. In this way, 

some coefficients can be set to zero, and variable selection can be made. 

Mathematical formulation of Lasso regression: 

min
𝛽

{∑(𝑦𝑖 − 𝑋𝑖𝛽)2

𝑛

𝑖=1

+ λ ∑|𝛽𝑗|

𝑝

𝑗=1

} 

Here, λ, is the penalty parameter. In Lasso, the penalty parameter is optimized by cross-validation. 

Support Vector Regression  

SVR is a powerful machine learning method for linear and nonlinear regression problems. SVR uses 

kernel functions to transform the data into a high-dimensional space and tries to find the best fit within an 

error tolerance [18]. 

The mathematical basis of SVR: 

 

 

Where w is the weight vector, b is the constant term, ϕ(x) is the kernel function of transformed data, C is 

the penalty parameter, and ϵ is error tolerance. 

In SVR, the kernel type, C, and ϵ parameters determine the performance of the model and are usually 

optimized by grid search and cross-validation. 

Random Forest Regression 

Random Forest is an ensemble-based regression method that is constructed by combining a large number 

of decision trees. Each tree is trained with a random subset of the dataset and randomly selected variables. 

The final prediction is obtained by averaging the predictions of all trees [19]. 

The basic mathematical structure of Random Forest regression: 

𝑦̂ =
1

𝑁𝑡𝑟𝑒𝑒𝑠
∑ 𝑇𝑖(𝑥)

𝑁𝑡𝑟𝑒𝑒𝑠

𝑖=1
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Where, 𝑁𝑡𝑟𝑒𝑒𝑠 is the total number of trees, 𝑇𝑖(𝑥) is the prediction of the ith decision tree. The main 

parameters optimized in Random Forest are hyperparameters such as the number of trees, maximum 

depth, and maximum number of variables to be used at each node. These parameters are usually 

determined by grid search and cross-validation. 

D. Evaluation of Model Performance 

Objective assessment of the predictive performance of regression models is critical to determine the 

reliability and practical applicability of the models developed. For this purpose, various statistical metrics 

are used to measure model performance. In this study, Root Mean Square Error (RMSE) and Coefficient 

of Determination (R²) which are the most common and meaningful performance indicators, are used. 

Each metric assesses a different aspect of the model and is presented below with their mathematical 

definitions and interpretations. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

1

 

Where 𝑦𝑖 is the true (reference) value, 𝑦𝑖̂ is the value predicted by the model, n is the total number of 

samples. A low RMSE value indicates that the model predicts with high accuracy. However, since RMSE 

is the absolute error, it is not appropriate to make direct comparisons between different data sets or 

variables. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

Here,  𝑦̅ is the average of the true values. An R² close to 1 indicates that the model fits the data very well; 

close to 0 indicates that the model is inadequate. Negative R² values mean that the model predicts even 

worse than the average. 

 

III. RESULTS AND DISCUSSION 

In this section, the results obtained by combinations of different pre-processing methods and regression 

models for the estimation of milk fat content are presented. Model performances are mainly evaluated 

based on R² and RMSE values. The findings reveal the effects of pre-processing methods and regression 

models on prediction accuracy. The obtained results are given in Table 1. 

In the modelling using raw spectral data, the PLSR model (R² = 0.969) achieved the highest R² value. 

This was followed by Ridge (R² = 0.955), Random Forest (R² = 0.849), SVR (R² = 0.815), and Lasso (R² 

= 0.801) models. When the RMSE values are analyzed, it is seen that the PLSR model shows the best 

performance with the lowest error (RMSE = 0.106). These results once again confirm the superior 

performance of PLSR on multicollinearity and high dimensional spectral data. The Lasso and SVR 

models, on the other hand, show lower prediction performance compared to the other models with low R² 

and high RMSE values in the raw data. 

When SNV pre-processing was applied, a significant performance improvement was observed for all 

models. The PLSR and Ridge models achieved the highest coefficient of determination with R² = 0.987 

and R² = 0.986, respectively. The RMSE values of these models are also quite low (0.068 for PLSR and 

0.069 for Ridge). SNV effectively eliminated scattering effects and baseline shifts in the spectral data, 

allowing the model to capture variations better based on chemical information. SVR and Random Forest 
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models also showed an increase in R² values and a decrease in RMSE after SNV. The Lasso model, 

however, continued to underperform compared to the other models. 

Table 1. The obtained results 

Pre-

processing 

Method 

Calibration 

Model 
R2 RMSE 

 Pre-

processing 

Method 

Calibration 

Model 
R2 RMSE 

Raw 

PLSR 0.969225 0.106048  

SG Smooth 

PLSR 0.97416 0.097174 

Ridge 0.955139 0.128038  Ridge 0.956414 0.126205 

Lasso 0.801446 0.269368  Lasso 0.823046 0.254294 

SVR 0.815456 0.25969  SVR 0.821497 0.255405 

Random 

Forest 
0.849092 0.234835 

 Random 

Forest 
0.851871 0.232662 

SNV 

PLSR 0.987425 0.06779  

SG_Deriv-1 

PLSR 0.984722 0.074721 

Ridge 0.98689 0.069216  Ridge 0.986499 0.070241 

Lasso 0.829537 0.249586  Lasso 0.979676 0.086182 

SVR 0.915379 0.175852  SVR 0.981517 0.082185 

Random 

Forest 
0.868198 0.219466 

 Random 

Forest 
0.958496 0.123154 

MSC 

PLSR 0.910791 0.180555  

SG_Deriv-2 

PLSR 0.986165 0.071105 

Ridge 0.957921 0.124005  Ridge 0.986856 0.069305 

Lasso 0.827875 0.2508  Lasso 0.985329 0.07322 

SVR 0.818865 0.257281  SVR 0.982912 0.079023 

Random 

Forest 
0.815254 0.259833 

 Random 

Forest 
0.977537 0.090603 

 

When MSC pre-processing was applied, the Ridge model (R² = 0.958, RMSE = 0.124) and the PLSR 

model (R² = 0.911, RMSE = 0.181) stood out. MSC was particularly effective in reducing scattering 

variations due to physical matrix differences, but a lower R² value was obtained in the PLSR model 

compared to SNV. In the Lasso, SVR, and Random Forest models, the performance improvement after 

MSC was limited. This shows that MSC is not able to eliminate spectral variations sufficiently in some 

models. 

When SG smoothing (window size:15, order:2) was applied, the PLSR model (R² = 0.974, RMSE = 

0.097) and the Ridge model (R² = 0.956, RMSE = 0.126) again gave the best results. SG_smoothing 

reduced the high-frequency noise in the spectral data, allowing the model to capture the main chemical 

variations better. For the Lasso, SVR, and Random Forest models, the performance improvement was 

limited. 

When the first derivative with SG smoothing (window size:15, order:2) pre-processing method was 

applied, Ridge (R² = 0.986, RMSE = 0.070) and PLSR (R² = 0.985, RMSE = 0.075) models stood out. 

The first derivative improved the performance of linear models, in particular by eliminating baseline 

shifts and fixed offsets. A significant improvement was also observed in the Lasso and SVR models. 

The second derivative with SG smoothing (window size:15, order:2) pre-processing method provided 

high performance in PLSR (R² = 0.983, RMSE = 0.079) and Ridge (R² = 0.984, RMSE = 0.076) models. 

However, the application of the second derivative led to performance degradation in some models, 

especially Lasso and Random Forest, as it may increase the noise in the spectral data. 

The findings show that combinations of pre-processing methods and regression models play a decisive 

role in model success. In particular, when SNV and first derivative pre-processing methods were used in 

combination with PLSR and Ridge models, the highest accuracy and lowest error values were achieved in 

the estimation of milk fat content. These results are in line with the studies in the literature that show that 

linear models such as PLSR and Ridge models show high performance when used with appropriate pre-

processing methods in the estimation of milk components by NIR spectroscopy [20], [21]. 
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Nonlinear models such as SVR and Random Forest, on the other hand, were less affected by pre-

processing methods and generally showed lower performance compared to linear models. The Lasso 

model, despite the advantage of variable selection, provided lower accuracy than other models on high-

dimensional spectral data. 

This study shows that milk fat can be estimated quickly and reliably by NIR spectroscopy. In particular, 

the combination of SNV or first derivative pre-processing with PLSR or Ridge models offers high 

accuracy and reliability in industrial applications. This approach has significant potential for automation 

and real-time monitoring of quality control processes in the dairy industry. 

 

IV. CONCLUSION 

This study aimed to estimate the fat content of milk quickly and reliably using NIR spectroscopy and 

various chemometric methods. The results obtained with different combinations of pre-processing 

methods (SNV, MSC, SG, First and Second Derivative) and regression models (PLSR, Ridge, SVR, 

Lasso, Random Forest) showed that the pre-processing methods significantly affected the model 

performance. In particular, the use of SNV and first derivative pre-processing methods in combination 

with PLSR and Ridge models resulted in the highest accuracy and lowest error values. The findings 

support NIR spectroscopy as a promising tool for automation and real-time monitoring of quality control 

processes in the dairy industry. Future research could focus on improving the generalizability and 

robustness of the model by applying different chemometric approaches and model validation techniques 

on larger and more diverse milk samples.  
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