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Abstract –In this study, the G'/G2 method, one of the methods used to find analytical solutions of nonlinear 

partial differential equations, is analysed. With the use of this method, travelling wave solutions of the 

Benjamin Ono equation have been found and various solutions have been obtained depending on arbitrary 

parameters. In this paper, the applicability and efficiency of this method on nonlinear evolution equations 

(NLEEs) are investigated. 
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I. INTRODUCTION 

    Nonlinear partial differential equations (PDEs) occupy a central position in the modelling of complex 

physical phenomena. They provide an effective means of representing dispersive, solitonic or chaotic 

behaviours that are often inadequately described by classical linear models. Especially in fields such as 

fluid dynamics, pulse propagation in optical fibres, quantum field theory and plasma physics, such 

equations form the fundamental building blocks of natural systems [1-7]. The Benjamin-Ono (BO) equation 

considered in this study is a nonlinear dispersive equation developed to model the propagation of one-

dimensional, internal gravity waves in shallow water. The general form of the equation is expressed as 

follows: 
                      𝑢𝑡 + 𝐻𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0.                                                                                                                                         (1) 

The BO equation describes the propagation of long internal waves, especially in bilayer liquid systems, and 

differs from classical models such as the Korteweg-de Vries (KdV) equation due to the fractional nature of 

dispersion. While the KdV equation models shorter-range dispersions, the BO equation includes dispersive 

effects propagating throughout the entire space. 

The equation was introduced independently by T. Brooke Benjamin and Hiroaki Ono to model the 

propagation of shallow water waves and internal waves [8, 9].  Later, the inverse scattering transform (IST) 

method was developed for this equation and multiple soliton solutions were obtained [10]. Bekir obtained 

many solutions for BO and similar equations by G′/G method [11] and obtained trigonometric and 

hyperbolic solutions. However, since some of these methods require quite complex technical analyses, G′/G 

and its derivative methods, which offer a more systematic solution path, stand out as an important 

alternative. G′/G and G′/G2 methods have been successfully applied to many nonlinear partial differential 
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equations in recent years. They were first proposed by Wang et al. [12] and then developed by researchers 

such as Yomba [13], Kudryashov [14]. These methods allow to obtain analytically tangent, hyperbolic, 

exponential or rational solutions by associating the solution search with an auxiliary quadratic linear ODE. 

In integrable systems such as the BO equation, these techniques have contributed to the systematic finding 

of soliton, periodic and rational solutions. 

The main objective of this paper is to apply the modified analytical solution technique known as the G'/G2 

method to the Benjamin-Ono equation in order to systematically obtain various types of analytical solutions 

of the equation (e.g. soliton, rational, periodic or hyperbolic solutions). The G'/G2 method is a derivative of 

the classical G′/G method for the solution of nonlinear differential equations, and it allows for a wider set 

of solutions.. The G'/G2 method is a derivative of the classical G′/G method for solving nonlinear 

differential equations and can cover a wider set of solutions.  

In this study, firstly the structure and physical interpretation of the Benjamin-Ono equation will be 

emphasised, then the G'/G2 method will be introduced in detail. Then, the analytical solutions obtained by 

using this method will be presented and the physical meanings of the obtained results will be evaluated by 

comparing them with similar studies in the literature. Thus, this study aims both to demonstrate the 

effectiveness of the method and to expand the range of solutions for the Benjamin-Ono equation. 

 

 

II. MATERIALS AND METHOD 

Analysis of G'/G2 - Expansion Method  

    Let us consider a general nonlinear partial differential equation (PDE) of the form: 

               𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑡𝑡 , 𝑢𝑥𝑡 , 𝑢𝑥𝑥, … ) = 0,                                                                                   (2) 

where u = u(x, y, …) is the unknown function, and P is a polynomial in u and its derivatives. 

Step 1: 

  We reduce Equation (1) to the following nonlinear ordinary differential equation (ODE): 

   𝜉 = 𝑘(𝑥 + 𝑦 +⋯) − 𝑉𝑡, 
where t is a positive real number, k is the wave number, and V is the velocity of the traveling wave. We 

then obtain: 

   𝑄(𝑈,−𝑉𝑈′, 𝑘𝑈′, 𝑘𝑈′′, … ) = 0,                                                                                                   (3) 

where 𝑈(𝜉)  =  𝑢(𝑥, 𝑦, 𝑡, … ) and Q is a polynomial in U and its derivatives with respect to 𝝃. 

Step 2: 

Assume that the traveling wave solution of Equation (3) can be expressed as a polynomial of the 

following form: 

   𝑈(𝜉) = ∑𝑁𝑖=0 𝑎𝑖 (
𝐺′

𝐺
)
𝑖

+ ∑𝑁𝑖=1 𝑏𝑖 (
𝐺′

𝐺
)
−𝑖

,                                                                                    (4) 

where 𝑎ᵢ (𝑖 =  0, 1, 2, … ,𝑁) and 𝑏ᵢ (𝑖 =  1, 2, … , 𝑁) are constants to be determined, and 𝐺 =  𝐺(𝜉) 

satisfies the Riccati equation: 

                   (
𝐺′

𝐺
) = 𝜌 (

𝐺′

𝐺
)
2

+ 𝜇 (
𝐺′

𝐺
) + 𝜎,                                                                                          (5) 

where ρ, μ, and σ are arbitrary constants. 
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Step 3: 

Determine the positive integer N by balancing the highest-order nonlinear terms with the highest 

derivatives in Equation (3). 

Step 4: 

The general solution of Equation (5) corresponds to one of the following five cases: 

𝐺′

𝐺2
=

{
 
 
 
 
 

 
 
 
 
 −

𝜇

2𝜌
−
√Δ

2𝜌
(
𝐴sinh(

1

2
√Δ𝜉)+𝐵cosh(

1

2
√Δ𝜉)

𝐴cosh(
1

2
√Δ𝜉)+𝐵sinh(

1

2
√Δ𝜉)

) , if    𝜇 ≠ 0, Δ ≥ 0,

−
𝜇

2𝜌
−
√−Δ

2𝜌
(
−𝐴sin(

1

2
√−Δ𝜉)+𝐵cos(

1

2
√−Δ𝜉)

𝐴cos(
1

2
√−Δ𝜉)+𝐵sin(

1

2
√−Δ𝜉)

) , if   𝜇 ≠ 0, Δ < 0,

√
𝜎

𝜌
(
𝐴cos(√𝜎𝜌𝜉)+𝐵sin(√𝜎𝜌𝜉)

−𝐴sin(√𝜎𝜌𝜉)+𝐵cos(√𝜎𝜌𝜉)
) , if    𝜎𝜌 > 0, 𝜇 = 0,

−
√|𝜎𝜌|

𝜌
(
𝐴sinh(2√|𝜎𝜌|𝜉)+𝐴cosh(2√|𝜎𝜌|𝜉)+𝐵

𝐴sinh(2√|𝜎𝜌|𝜉)+𝐴cosh(2√|𝜎𝜌|𝜉)−𝐵
) if    𝜎𝜌 < 0, 𝜇 = 0,

−𝐴

𝜌(𝐴𝜉+𝐵)2
, if    𝜎 = 0, 𝜇 = 0, 𝜌 ≠ 0.

                                          (6)  

Here, 𝐴 and 𝐵 are constants, and Δ = 𝜇2 − 4𝜌𝜎. 

Step5: 

 Use Equation (5) to compute the derivatives, then substitute them along with Equation (4) into Equation 

(3). By collecting all terms with the same powers, form a system of algebraic equations. Solve this system 

using a software tool such as Maple. Finally, use Equation (6) to obtain the exact solutions of Equation (2). 

   Application of the G'/G2 Expansion Method   

 

   In this section, the Benjamin–Ono equation, which exhibits various properties in soliton theory, is 

considered using the effective and practical G'/G2 expansion method to generate traveling wave solutions. 

Let us consider the BO equation given by (1). 

Assume the transformation: 

  𝑈(𝑥, 𝑡)  =  𝑢(𝜉),  𝜉 =  𝑥 −  𝑉𝑡, 

Then we find the following derivatives: 

  uₜ = −V u′, uₓ = u′, uₓₓ = u″. 

Substituting these into Equation (1), we obtain the following ordinary differential equation (ODE):     

−𝑉 𝑢′ +  𝑢 𝑢′ +  𝐻 𝑢″ =  0 

or equivalently: 

 𝑢′(𝑢 −  𝑉)  +  𝐻 𝑢″ =  0. 

The highest derivative term is u″ and the highest nonlinear term is u², hence at most the square of (G′/G²) 

is taken. This implies N = 1. 

Therefore, the solution is written as: 

⋃(𝜉) = 𝑎0 +∑[𝑎𝑛 (
𝐺′

𝐺2
)

𝑛

+𝑏𝑛 (
𝐺′

𝐺2
)

−𝑛

]

𝑁

1=1
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Here, the function 𝐺 =  𝐺(𝜉) satisfies the following relation: 

  (
𝐺′

𝐺2
)
′

= 𝜎+ 𝜇 (
𝐺′

𝐺2
) + 𝑝(

𝐺´

𝐺2
)
2

 

where μ, σ, p are free parameters. The constants a₀, aₙ, bₙ must be determined in the solution. 

Assume; 

⋃(𝜉) = 𝑎0 +𝑎1 ⋅ (
𝐺′

𝐺2
)+ 𝑏1 (

𝐺′

𝐺2
)

−1

 

Now compute the necessary derivatives: 

𝑢′ = 𝑎1 (
𝐺′

𝐺2
)

′

+ 𝑏1(−1) ⋅ (
𝐺′

𝐺2
)

−2

(
𝐺′

𝐺2
)

′

 

        =𝑎1 [𝜎 + 𝜇 (
𝐺′

𝐺2
) + 𝑝(

𝐺′

𝐺2
)
2

] − 𝑏1 (
𝐺′

𝐺2
)
−2

[𝜎 + 𝜇 (
𝐺′

𝐺2
) + 𝑃(

𝐺′

𝐺2
)
2

] 

       =𝑎1𝜎 + 𝑎1𝜇 (
𝐺′

𝐺2
) + 𝑎1𝑝(

𝐺′

𝐺2
)
2

−𝑏1 (
𝐺′

𝐺2
)
−2

𝜎 − 𝑏1 (
𝐺′

𝐺2
)
−2

𝜇 (
𝐺′

𝐺2
)− 𝑏1 (

𝐺′

𝐺2
)
−2

𝑝(
𝐺′

𝐺2
)
2

 

 𝑢′=𝑎1𝜎 + 𝑎1𝜇 (
𝐺′

𝐺2
) + 𝑎1𝑝(

𝐺′

𝐺2
)
2

−𝑏1𝜎 (
𝐺′

𝐺2
)
−2

−𝑏1𝜇 (
𝐺′

𝐺2
)
−1

−𝑏1𝑝 

𝑢′′ = 𝑎1𝜇(
𝐺′

𝐺2
)

′

+ 2𝑎1𝑝(
𝐺′

𝐺2
)(

𝐺′

𝐺2
)

′

+2𝑏1𝜎(
𝐺′

𝐺2
)

−3

(
𝐺′

𝐺2
)

′

+𝑏1𝜇(
𝐺′

𝐺2
)

−2

(
𝐺′

𝐺2
)

′

 

Substituting (G′/G²)′ from earlier; 

=𝑎1𝜇 [𝜎 + 𝜇 (
𝐺′

𝐺2
)+ 𝑝(

𝐺′

𝐺2
)
2

] + 2𝑎1𝑝(
𝐺′

𝐺2
) [𝜎 + 𝜇 (

𝐺′

𝐺2
) + 𝑝(

𝐺′

𝐺2
)
2

] + 2𝑏1𝜎 (
𝐺′

𝐺2
)
−3

[𝜎 + 𝜇 (
𝐺′

𝐺2
)+ 𝑝(

𝐺′

𝐺2
)
2

] +

𝑏1𝜇 (
𝐺′

𝐺2
)
−2

[𝜎 + 𝜇 (
𝐺′

𝐺2
) + 𝑝(

𝐺′

𝐺2
)
2

] 

This simplifies to: 

𝑢′′=𝑎1𝜇𝜎 + 𝑎1𝜇
2 (

𝐺′

𝐺2
) + 𝑎1μp(

𝐺′

𝐺2
)
2

+2𝑎1𝑝𝜎 (
𝐺′

𝐺2
) + 2𝑎1𝑝𝜇 (

𝐺′

𝐺2
)
2

+2𝑎1𝑝
2 (

𝐺′

𝐺2
)
3

+2𝑏1𝜎
2 (

𝐺′

𝐺2
)
−3

+

2𝑏1𝜎𝜇 (
𝐺′

𝐺2
)
−2

+2𝑏1𝜎𝑝(
𝐺′

𝐺2
)
−1

+𝑏1𝜇𝜎 (
𝐺′

𝐺2
)
−2

+𝑏1𝜇
2 (

𝐺′

𝐺2
)
−1

+𝑏1𝜇𝑝    

Substitute these expressions into the equation: 

  𝑢′(𝑢 −  𝑉)  +  𝐻 𝑢″ =  0, 

[𝑎1𝜎 + 𝑎1𝜇 (
𝐺′

𝐺2
) + 𝑎1𝑝(

𝐺′

𝐺2
)
2

− 𝑏1𝜎 (
𝐺′

𝐺2
)
−2

− 𝑏1𝜇 (
𝐺′

𝐺2
)
−1

−𝑏1𝑝] [𝑎0 +𝑎1 ⋅ (
𝐺′

𝐺2
) + 𝑏1 (

𝐺′

𝐺2
)
−1

−𝑉] +

𝐻 [𝑎1𝜇𝜎 + 𝑎1𝜇
2 (

𝐺′

𝐺2
) + 𝑎1μp(

𝐺′

𝐺2
)
2

+2𝑎1𝑝𝜎 (
𝐺′

𝐺2
) + 2𝑎1𝑝𝜇 (

𝐺′

𝐺2
)
2

+2𝑎1𝑝
2 (

𝐺′

𝐺2
)
3

+2𝑏1𝜎
2 (

𝐺′

𝐺2
)
−3

+

2𝑏1𝜎𝜇 (
𝐺′

𝐺2
)
−2

+2𝑏1𝜎𝑝(
𝐺′

𝐺2
)
−1

+𝑏1𝜇𝜎 (
𝐺′

𝐺2
)
−2

+𝑏1𝜇
2 (

𝐺′

𝐺2
)
−1

+𝑏1𝜇𝑝] = 0  
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𝑎0𝑎1𝜎 + 𝑎1
2𝜎(

𝐺′

𝐺2
)+ 𝑎1𝑏1𝜎(

𝐺′

𝐺2
)

−1

− 𝑎1𝜎𝑉 + 𝑎0𝑎1𝜇(
𝐺′

𝐺2
)+ 𝑎1

2𝜇(
𝐺′

𝐺2
)

2

+𝑎1𝑏1𝜇 − 𝑎1𝜇𝑉 (
𝐺′

𝐺2
)

+ 𝑎0𝑎1𝑝(
𝐺′

𝐺2
)

2

+𝑎1
2𝑝(

𝐺′

𝐺2
)

3

+𝑎1𝑏1𝑝(
𝐺′

𝐺2
)− 𝑎1𝑝𝑉 (

𝐺′

𝐺2
)

2

−𝑎0𝑏1𝜎(
𝐺′

𝐺2
)

−2

−𝑎1𝑏1𝜎(
𝐺′

𝐺2
)

−1

−𝑏1
2𝜎(

𝐺′

𝐺2
)

−3

+𝑏1𝜎𝑉 (
𝐺′

𝐺2
)

−2

−𝑎0𝑏1𝜇(
𝐺′

𝐺2
)

−1

− 𝑎1𝑏1𝜇 − 𝑏1
2𝜇(

𝐺′

𝐺2
)

−2

+𝑏1𝜇𝑉 (
𝐺′

𝐺2
)

−1

−𝑎0𝑏1𝑝 − 𝑎1𝑏1𝑝(
𝐺′

𝐺2
)− 𝑏1

2𝑝(
𝐺′

𝐺2
)

−1

+ 𝑏1𝑉𝑝 +𝐻𝑎1𝜇𝜎 +𝐻𝑎1𝜇
2 (
𝐺′

𝐺2
)

+𝐻𝑎1𝜇𝑝(
𝐺′

𝐺2
)

2

+2𝐻𝑎1𝑝𝜎(
𝐺′

𝐺2
)+ 2𝐻𝑎1𝑝𝜇 (

𝐺′

𝐺2
)

2

+2𝐻𝑎1𝑝
2 (
𝐺′

𝐺2
)

3

+ 2𝐻𝑏1𝜎
2 (
𝐺′

𝐺2
)

−3

+2𝐻𝑏1𝜎𝜇 (
𝐺′

𝐺2
)

−2

+2𝐻𝑏1𝜎𝑝(
𝐺′

𝐺2
)

−1

+𝐻𝑏1𝜇𝜎(
𝐺′

𝐺2
)

−2

+𝐻𝑏1𝜇
2 (
𝐺′

𝐺2
)

−1

+𝐻𝑏1𝜇𝑝 = 0 

The following system of equations can be constructed by taking the necessary derivatives, 𝑎0 , 𝑎1 ,𝑏1, 𝜎, 

,𝜎, 𝑝 are arbitrary constants, making the necessary adjustments and setting the coefficients of like powers 

of (G′/G²) and set them equal to zero, leading to the following algebraic system: 

                                         (
𝐺′

𝐺2
)
3

= 𝑎1
2𝑝 + 2𝐻𝑎1𝑝

2 = 0 

                                        (
𝐺′

𝐺2
)
2

= 𝑎1
2𝜇 + 𝑎1𝑝𝑎0 − 𝑎1𝑝𝑉 + 3𝐻𝑎1𝑝𝜇 = 0 

 (
𝐺′

𝐺2
) = 𝑎1

2𝜎 + 𝑎0𝑎1𝜇 − 𝑎1𝜇𝑉 +𝐻𝑎1𝜇
2 +2𝐻𝑎1𝑝𝜎 = 0 

(
𝐺′

𝐺2
)

−1

= −𝑎0𝑏1𝜇 + 𝑏1𝜇𝑉 − 𝑏1
2𝑝 + 2𝐻𝑏1𝜎𝑝 +𝐻𝑏1𝜇

2 = 0 

 (
𝐺′

𝐺2
)
−2

= −𝑎0𝑏1𝜎 + 𝑏1𝑉𝜎 − 𝑏1
2𝜇 + 3𝐻𝑏1𝜎𝜇 = 0 

 (
𝐺′

𝐺2
)
−3

= −𝑏1
2𝜎 + 2𝐻𝑏1𝜎

2 = 0 

This algebraic system can be solved using symbolic computation software, we obtain: 

 a₀ = − 
𝑉+𝑝𝜇2+3𝑝𝜎

2𝐻
, a₁ = − 

𝑝𝜇 

𝐻
, b₁ = − 

2𝑝

𝐻
,    

Consequently, we have the following different cases for the exact solutions of Benjamin Ono equation: 

Case 1: When Δ = 𝜇2 − 4𝑝𝜎 > 0, 𝜇 ≠ 0, 

     𝑢1(𝑥, 𝑡) = − 
𝑉+𝑝𝜇2+3𝑝𝜎

2𝐻
+

2𝑝𝜇

𝐻(√𝜇2−4𝑝𝜎 
 

1

tanh(
√𝜇2−4𝑝𝜎 

2
𝜉)

+ 𝜇 −
8𝑝

𝐻(√𝜇2−4𝜌𝜎 

1

tanh(
√𝜇2−4𝑝𝜎 

2
𝜉)

+ 𝜇 

Case 2: When Δ = 𝜇2 − 4𝑝𝜎 < 0, 𝜇 ≠ 0, 

   𝑢2(𝑥, 𝑡) =  − 
V+𝑝𝜇2+3𝑝𝜎

2H
+

2𝑝𝜇

𝐻(−√4𝑝𝜎−𝜇2)
  

1

tan(
√4𝑝𝜎−𝜇2 

2
𝜉)

+ 𝜇 −
8𝑝

𝐻(√𝜇2−4𝜌𝜎 )
 

1

tan(
√4𝑝𝜎−𝜇2 

2
𝜉)

+ 𝜇.  
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 III. RESULTS 

    In this study, the Benjamin–Ono equation was analyzed using the (G′/G²) expansion method to obtain 

analytical traveling wave solutions. By transforming the equation into an ordinary differential form and 

applying the method systematically, two distinct sets of parameter values were identified that yield exact 

solutions. These solutions were expressed in terms of hyperbolic and trigonometric functions such as tanh, 

tan, and sec, depending on the case. The coefficients were calculated by solving the resulting algebraic 

system, and the corresponding wave solutions were explicitly derived. 

 

 

IV.DISCUSSION 

   The obtained solutions describe solitary and periodic wave structures, which are consistent with the 

known physical behavior of internal waves in deep fluids, modeled by the Benjamin–Ono equation. The 

two cases explored in the study correspond to different types of wave motion:The first solution involving 

tanh represents a solitary wave (soliton), characterized by a localized, non-periodic waveform that 

maintains its shape while traveling.The second solution involving tan and sec corresponds to periodic wave 

behavior, suggesting wave trains or repeating patterns.The results are in agreement with similar analytical 

methods reported in the literature, such as the tanh-method or the extended Riccati equation approach.  

 

V. CONCLUSION 

 This study successfully applied the (G′/G²) expansion method to the Benjamin–Ono equation, providing 

new exact solutions that reveal important wave characteristics. The method proved to be effective, 

systematic, and flexible, highlighting its potential in solving nonlinear evolution equations with physical 

significance. By offering analytical insight into wave behavior, the study not only confirms existing 

findings but also contributes to expanding the known solution space of the Benjamin–Ono equation. Future 

research may apply the same method to other integrable and non-integrable equations to further explore 

nonlinear wave dynamics. 
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