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Abstract – This paper presents the simulation and comparative analysis of different coil geometries used in 

wireless power transfer systems, focusing on square and spiral coil configurations. Using the Ansys 

Maxwell 3D simulation environment, key electromagnetic parameters such as self-inductance, mutual 

inductance, and coupling coefficients were calculated to evaluate the performance of each design. For the 

square coil, the simulation results demonstrated a consistent self-inductance and a varying coupling 

coefficient depending on the distance between the coils. As the separation distance increased, the mutual 

inductance and coupling coefficient values decreased, confirming the distance-sensitive nature of inductive 

coupling. The spiral coil, formed by side-by-side winding of copper tubing, showed the highest efficiency 

in magnetic field distribution and inductive characteristics. Visual representations revealed that the 

magnetic field intensity was most concentrated near the inner diameter of the spiral coil due to the denser 

turn count and reduced inter-turn spacing. These findings suggest that geometric parameters significantly 

influence coil efficiency and coupling behavior in inductive wireless power systems. The study offers 

practical insights into coil design optimization for improved power transfer efficiency and system reliability 

in real-world applications.   
 

Keywords – Wireless Energy Transfer, Inductive Coupling, Wireless Power Transfer, Ansys Maxwell 3D Simulation, Square 

Coil, Spiral Coil. 

 

I. INTRODUCTION 

Wireless energy transfer is the transfer of electrical energy without any physical conductor [1]. This 

method of energy transfer has been an area of study for many years, with research focusing on ensuring the 
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efficient transmission of energy through wireless means. Inductive coupling, first developed by Tesla, has 

been instrumental in applying wireless energy in various fields, including electronics, healthcare, and 

industry. This technology has dramatically enhanced convenience in our daily lives through high-frequency 

and semiconductor technology. The use of wireless energy transfer has reduced the complexities associated 

with physical connections, providing various advantages to the end user. The charging of modern 

technological devices, such as phones [2], electric toothbrushes, and electric vehicles [3], [4], is now 

possible through wireless energy transfer.  

Inductive coupling is a short-distance wireless energy transmission method more cost-effective and 

efficient than long-distance wireless energy transmission systems. As a result, it has a wide range of 

applications. It is commonly used in wet environments, such as electric toothbrushes and shavers, due to 

its reduced risk of shock and improved ease of use. It is also utilized in medical implants, including 

pacemakers and insulin pumps, and in charging pads for mobile devices and electric vehicles. This method 

typically involves the transfer of power between two non-contacting inductor coils, with designs focusing 

on the electromagnetic field between the coils. 

Efficiency in the power transmission method using inductive coupling can be improved by increasing the 

operating bandwidth of the inductive coil. This is achieved by adding resonance capacitors to the driver 

coil, with the resonant frequencies adjusted to the most appropriate frequency range by modifying the 

capacitor values. Optimum values are set to ensure a constant output signal at the peak reached, with the 

resonant capacitor essential in obtaining a stable power transfer coefficient and eliminating frequency 

division. 

Wireless power transfer (WPT) using inductive coupling can pose challenges in meeting output power 

and efficiency requirements for some applications due to the small coupling coefficient between the 

transmit and receiver coils. Additionally, the transmission efficiency based on inductive coupling decreases 

as the coupling factor decreases. In WPT using inductive coupling, four different topologies exist based on 

the state of the coils in the circuit: series-serial, series-parallel, parallel-serial, and parallel-parallel. Each 

has advantages and disadvantages, with the efficiency of parallel-parallel and series-parallel topologies 

higher at low frequencies and the serial-to-serial topology more efficient than others at high frequencies. 

The serial-to-serial topology is the most widely used method, both theoretically and practically, especially 

at low powers. 

This paper aims to investigate various WPT methods, followed by the design and analysis of the system 

using Maxwell 3D Design simulation program. Based on the analysis results, the circuit will be constructed, 

and data will be collected and recorded for further evaluation. 

 

II. MATERIALS AND METHOD 

Wireless power transmission with the inductive coupling technique encompasses four distinct topologies 

determined by the coil arrangement inside the circuit: series-series, series-parallel, parallel-series, and 

parallel-parallel.  Every topology has distinct benefits and drawbacks.  The parallel-parallel and series-

parallel configurations exhibit greater efficiency at low frequencies, whereas at high frequencies, the series-

series configuration demonstrates much superior efficiency compared to the alternatives.  The series-series 

topology is the most prevalent approach conceptually and practically in low-power applications [3]. 

Fig. 1 Series-series inductive coupling circuit diagram 
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Research was done to analyze inductively coupled wireless power transfer systems, focusing on the 

computation of self-inductance, mutual inductance, and the coupling coefficient.  The self-inductance may 

be determined via Wheeler's formula: 

 

𝐿 = 31.33 𝜇𝑜 (
𝑁2𝑟2

8𝑟 + 11𝑤
) 

(1) 

 

Where, N signifies the number of turns, r indicates the average radius, and w represents the width of the 

coil.  𝜇𝑜 The Biot–Savart Law and Stokes' Theorem may determine the mutual inductance and coupling 

coefficient.  The coupling coefficient (k) is determined as follows: 

 

𝑘 =
𝑀

√𝐿1𝐿2

 
(2) 

where, M denotes the mutual inductance.  The coupling coefficient is inversely related to axial 

misalignment and the distance separating the coils.  As axial misalignment escalates, the coupling 

coefficient diminishes swiftly, decreasing efficiency [5]. 

A. Coil Simulations 

The present research involved simulating various coil shapes using the Ansys Electronics simulation 

program, specifically Maxwell 3D, and comparing the results to determine the optimal coil shape. In 

particular, the study examined the inductance values (L), mutual inductance between two coils (M), 

coupling coefficient (k), magnetic fields (B), and their respective changes as a function of distance for two 

different coil types: square and spiral [6-10]. 

B. Square Coil 

The design of the square coil can be implemented in Maxwell 3D by defining a set of key parameters as 

outlined below in Table 1. Figure 2 explains the design of receiver and transmitter square coils and their 

view from the -Z axis. 

 
Table 1. Key parameters of the square coil 

Parameter Description Value Remarks 

Xpos 
Displacement along the x-

axis from the origin 
0 Starting point of the square coil 

Ypos 
Displacement along the y-

axis from the origin 
0 Matches the X position 

Dist 
Distance between adjacent 

windings 
3.41 mm 

Based on total diameter of 30 cm and 

wire diameter of 1 cm 

Turns Number of full coils turns 44 88 wires total, 44 per side 

Width 
Width of square copper 

conductor 
0.71 mm 

Derived from equivalence with circular 

cross-section 

Thickness 
Thickness of the square 

wire 
0.71 mm Equal to width due to square profile 
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Fig 2. Design of receiver and transmitter square coils and their view from the -Z axis 

 

C. Spiral Coil 

To design a spiral coil, like the process used for the helical coil, the only primary difference from the 

helical coil lies in the pitch value, which is set to 0 for the spiral coil. The parameters used for the spiral 

coil design are given in Figure 3. 

 

 

Fig 3. Parameters used for spiral coil design 

 

Figure 4 shows the design of receiver and transmitter spiral coils and their view from the -Z axis. 
 

Fig 4. Design of receiver and transmitter spiral coils and their view from the -Z axis 
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III. RESULTS & DISCUSSION 

An inverter circuit was used in the transmitter circuit to convert the provided DC voltage into AC, 

facilitating power transmission between the coils [11-20]. The circuit featured IRF640 MOSFETs with their 

source terminals interconnected [21-28]. This layout reduces power loss in the transmitter circuit, elevates 

both current and voltage levels, and improves the system's overall efficiency [29-35]. Additionally, since 

the current is necessary to augment the magnetic field inside the circuit, one coil was connected in series to 

each of the two positive terminals of the power supply [36-47]. Figure 5 illustrates the oscilloscope used to 

exhibit the output signal of the transmitter coil. 

 

 
Fig 5. Transmitter circuit diagram 

The circuit simulation shown in Figure 6 illustrates the components and design of the receiver part of the 

WPT circuit. The element designated L1 signifies the reception coil. A capacitor linked in parallel to the 

receiver coil is included in the circuit to improve the power transfer efficiency of the coil. A full-wave diode 

rectifier is included after the capacitor to convert the alternating current signals obtained from the 

transmitter coil into direct current. Subsequently, a capacitor and a resistor are connected in parallel after 

the full-wave rectifier to enhance the signals and diminish the generation of noise signals. 

 
Fig 6. Receiver circuit diagram 

A. Square Coil 

As a result of the simulations conducted for the coil with a square design, the self-inductance and mutual 

inductance values were obtained. Table 2 provides the inductance values of the square coil with respect to 

distance. Table 3 shows the variation of the coupling coefficient of the square coil with respect to distance. 

Figure 7 depicts the coupling coefficient graph of the square coil. 
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Table 2. Inductance values of the square coil with respect to distance 

Dist 

[mm] 

Matrix1.L(Rx_in,Rx_in) 

[uH] 

Matrix1.L(Tx_in,Rx_in) 

[nH] 

Matrix1.L(Rx_in,Tx_in) 

[nH] 

Matrix1.L(Tx_in,Tx_in) 

[uH] 

50 253,480 109,968 109,968 252,907 

100 253,905 565,751 565,751 253,03 

150 253,905 313,597 313,597 253,018 

Table 3. Variation of the coupling coefficient of the square coil with respect to distance 

Dist 

[mm] 

Matrix1.CplCoef 

(Rx_i,Rx_in) 

Matrix1.CplCoef 

(Tx_in,Rx_in) 

Matrix1.CplCoef 

(Rx_in,Tx_in) 

Matrix1.CplCoef 

(Tx_in,Tx_in) 

50 1 0,353512 0,353512 1 

100 1 0,194471 0,194471 1 

150 1 0,046385 0,046385 1 

200 1 0,030148 0,030148 1 

B. Spiral Coil 

Another coil simulation performed using the Ansys Maxwell program is the spiral coil, which is formed 

by winding copper tubing side by side. The spiral coil exhibits the highest efficiency regarding the magnetic 

field it generates and its inductance values. Efficiency can be increased up to a certain point by increasing 

the number of turns and the coil diameter as given in Figure 8, which show the spiral coil design from 

different angles. 

 

 

 

 

 

 

Fig 7. Coupling coefficient graph of the square coil 

Fig 8. The magnetic field intensity of the spiral coil as displayed on the plate 

The magnetic field intensity per unit area of the copper wire-wound spiral coil is represented on the plate 

using a color scale. The intensity of the magnetic field decreases from the inner diameter of the spiral coil 

toward its outer diameter. This phenomenon occurs because the number of turns at the inner diameter is 

greater than at the outer diameter, and the spacing between the turns increases toward the outer diameter. 
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IV. CONCLUSION 

The simulation-based investigation of square and spiral coil designs has provided valuable insights into 

the inductive wireless power transfer mechanism. The square coil demonstrated stable self-inductance 

values but a noticeable decline in mutual inductance and coupling coefficient with increasing separation 

distance. These characteristics highlight the inherent limitations of square coils in maintaining high 

efficiency over extended distances. Conversely, the spiral coil exhibited superior magnetic field intensity 

and inductance performance, especially at the inner turns, where winding density is higher. The field 

distribution analysis confirmed that magnetic field concentration and turn geometry affect the system's 

efficiency. Notably, the spiral coil's design enables enhanced coupling by minimizing air gaps and 

maximizing the effective interaction area, making it a strong candidate for practical WPT implementations. 

However, both designs emphasize the importance of precise geometric configuration and spatial alignment 

in achieving optimal energy transfer. Future studies should explore additional parameters such as frequency 

variation, thermal effects, and material properties to enhance system performance. 
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