
Uluslararası İleri Doğa 

Bilimleri ve Mühendislik 

Araştırmaları Dergisi 

Sayı 9, S. 197-208, 6, 2025 

© Telif hakkı IJANSER’e aittir  

Araştırma Makalesi 
 

 
https://as-proceeding.com/index.php/ijanser 

ISSN:2980-0811 

 International Journal of Advanced 

Natural Sciences and Engineering 

Researches 

Volume 9, pp. 197-208, 6, 2025 

Copyright © 2025 IJANSER 

Research Article 

 

 

197 

 

 

Lane Detection in Foggy Images using Generative Adversarial Networks 

Elif Filiz1, Serel Özmen Akyol 2* 

1Computer Engineering Department/ Kütahya Health Sciences University, Turkey  
2Computer Engineering Department, Eskişehir Osmangazi University, Turkey 

 

*(sozmen@ogu.edu.tr)  

 
(Received: 25 May 2025, Accepted: 18 June 2025) 

(1st International Conference on Pioneer and Academic Research ICPAR 2025, June 13-14, 2025) 

 

ATIF/REFERENCE: Filiz, E. & Akyol, S. Ö. (2025). Lane Detection in Foggy Images using Generative Adversarial Networks. 

International Journal of Advanced Natural Sciences and Engineering Researches, 9(6), 197-208. 

Abstract – Foggy weather conditions, especially when visibility is severely reduced, pose significant 

challenges for autonomous vehicles (AVs) and advanced driver assistance systems (ADAS). These adverse 

conditions compromise the reliability of critical perception tasks such as lane detection and road 

environment understanding, thereby increasing the risk to driving safety and stability. In this study, a 

Generative Adversarial Network (GAN)-based approach was developed to address these issues using one 

of the leading techniques currently employed in the literature. Using GAN models, realistic foggy road 

images with varying density levels were generated, and lane detection performance was evaluated on this 

synthetic dataset. A comparative analysis was conducted between classical image processing techniques 

and deep learning-based methods. The effectiveness of each approach was evaluated using the Intersection 

over Union (IoU) metric, which balances both accuracy and spatial coverage in region-based tasks such as 

lane detection. While classical methods achieved an IoU performance of 89%, deep learning-based 

techniques reached up to 96%. The results demonstrate that deep learning approaches significantly 

outperform classical methods in identifying complex road structures, particularly under foggy conditions. 

These findings highlight the potential of GAN-based data generation and deep learning models to enhance 

the robustness of perception systems under adverse weather conditions, thereby contributing to safer and 

more reliable autonomous driving. 
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I. INTRODUCTION 

Autonomous vehicles (AVs) are fundamentally changing modern transportation by improving safety and 

efficiency. However, the performance of AVs depends on reliable environmental perception systems, which 

can be compromised in adverse conditions such as fog. Autonomous vehicles and advanced driver 

assistance systems (ADAS), which are highly sensitive to environmental conditions, can experience 

significant performance losses, particularly under adverse weather conditions. Scenarios such as heavy rain, 

snow, fog, and night driving reduce image quality and negatively impact the reliability of systems in 

carrying out tasks such as lane detection and road perception. Harsh environmental factors, such as foggy 

weather conditions, seriously impair the performance of these systems and present substantial challenges 

for critical tasks like lane and road detection. In foggy environments, reduced visibility and decreased image 

contrast limit the effectiveness of current algorithms and increase safety risks [4]. 

https://as-proceeding.com/index.php/ijanser
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In the existing literature, various approaches based on both traditional methods and deep learning-based 

models have been proposed to solve the lane detection problem under challenging environmental conditions 

such as fog. Among the traditional methods, image enhancement, edge detection, the Hough transform [5] 

and dehazing algorithms [15] are prominent, while convolutional neural network-based segmentation 

architectures such as U-Net [32] and SegNet [3] are widely used in deep learning-based approaches. 

Traditional image processing techniques focus on emphasising specific features and reducing noise. In 

contrast, deep learning-based approaches offer more general and flexible solutions through models trained 

on large datasets. However, in order for deep learning models to function effectively, diverse and large-

scale datasets are usually required. The limited availability of datasets collected specifically for foggy 

weather conditions remains a major obstacle for research in this field [13],[24],[33]. 

In this study, to overcome the limitations of existing datasets, synthetic foggy images were generated 

using Generative Adversarial Networks (GANs), one of the contemporary methods in the literature, and 

the lane detection problem was analysed using these images. GAN-based data augmentation techniques 

were employed both to expand the available datasets and to generate realistic foggy images at different 

levels of intensity. The proposed method was tested on both classical image processing techniques and deep 

learning-based models to evaluate the performance of different approaches under challenging conditions 

[20]. 

II. RELATED WORKS 

The safety and performance of autonomous vehicles cannot be sufficiently tested due to the inability to 

reproduce required conditions in unusual driving scenarios. Various studies have conducted detailed 

analyses of edge cases that autonomous driving systems may encounter. It is emphasised that, for these 

vehicles to operate safely, edge cases must be defined and models must be developed to address such 

conditions. These scenarios include sudden pedestrian crossings, unexpected vehicle manoeuvres, and rare 

weather conditions [36]. The artificial intelligence-based methods developed for the simulations of real-

time autonomous systems facilitate the analysis of the responses of vehicles to unusual situations in the 

creation of the aforementioned scenarios [34].  

   

Generative Adversarial Networks, introduced by Goodfellow et al., have emerged as a powerful class of 

generative models [14]. Essentially, they consist of two neural networks — a generator and a discriminator 

— that compete and are trained simultaneously. The generator aims to produce synthetic data samples that 

resemble real data, while the discriminator tries to distinguish between real and generated samples. This 

adversarial training enables both networks to improve, enhancing the generator’s ability to produce realistic 

synthetic data. GANs excel at augmenting data diversity, especially for simulating rare events such as foggy 

conditions. In studies investigating the potential of GANs to generate various simulation scenarios for the 

training of autonomous vehicles, different weather conditions and rare event simulations have been used to 

test how autonomous systems respond to such cases [1]. 

  

Due to the limited nature of real datasets for the simulation of rare weather events such as foggy scenes, 

data augmentation techniques are being increasingly adopted. He et al. (2021) generated foggy images 

using a classical statistical method, the Winters Additive Model, and trained lane detection models using 

this data [17]. Sang and Norris (2024) also showed that such data augmentation techniques provide high 

accuracy for autonomous systems [35]. In autonomous driving, GANs, which are considered a powerful 

tool for generating enriched simulation datasets, have been applied through CycleGAN-based augmentation 

for night-time autonomous driving, and successful results have been reported [28]. 

  

In studies evaluating weather conditions, which are among the important parameters to be considered in 

autonomous driving, classical methods generally perform successfully under good/clear weather 

conditions, while showing low performance under challenging conditions such as fog [45]. In the case of 

fog, which is one of the harsh weather conditions, image processing algorithms play a critical role in the 

field of lane detection. Zhang et al. (2020) leveraged polarimetric image processing to enhance dehazing 
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and contrast in foggy images [45]. Ghani et al. (2021), on the other hand, addressed the effects of image 

processing methods on lane detection under low visibility conditions and discussed the critical role of these 

techniques [11].  

  

Deep learning methods, developed after classical techniques, have introduced a new dimension to the 

lane detection problem under adverse weather conditions. Convolutional Neural Network (CNN)-based 

systems have achieved successful results in low-light and foggy conditions and, through transfer learning, 

have enabled models to adapt to different environmental conditions [44].  Horani (2019) stated that data 

sharing between the vehicle and infrastructure using V2I communication improved lane detection [18]. In 

addition, the integration of sensors such as LiDAR and radar contributes significantly to increasing 

accuracy under limited visibility conditions. Sultana and Ahmed (2021) demonstrated that the system they 

developed for lane detection and tracking under rainy weather conditions was effective [38]. 

  

Xu and Sankar (2024) emphasised the need for algorithms adaptable to adverse weather conditions in 

autonomous driving systems. Their study presents artificial intelligence-based solutions for lane detection 

under conditions such as fog and rain [42]. Sultana et al. (2023) developed a method adaptable to both 

foggy and rainy weather conditions for lane detection and tracking [39]. Innovative technologies such as 

quantum computing, augmented reality (AR), and sensor fusion have significant potential to enable better 

lane detection in foggy weather conditions [42, 11]. These technologies enable vehicles to operate more 

safely under challenging environmental conditions. 

  

Foggy weather conditions significantly degrade image quality in critical tasks such as lane detection in 

autonomous vehicles and limit the effectiveness of traditional methods. Therefore, deep learning-based 

specialized approaches have been developed to address these challenges. Liu et al. (2024) proposed the 

Masked Frequency-Color Fusion Network (MFCF-Net) to enhance lane detection performance in video-

based foggy scenes. The proposed method integrates frequency and color information through a masking 

mechanism, allowing more accurate extraction of lane structures in low-contrast and blurry images. Their 

study focuses on instance-level segmentation in video frames under foggy conditions and achieves higher 

accuracy rates compared to conventional techniques. Such advanced network architectures enable the 

learning of deep features while considering the impact of fog on the image and thus present strong potential 

for use in conjunction with GAN-based data generation or augmentation methods [25]. 

  

Kim and Park (2022) proposed a GAN-enhanced image processing approach for vision-based lane 

detection under low visibility conditions. Their method improves lane detection accuracy in foggy and 

blurred images by enhancing the input images with GANs [23]. 

  

Wang et al. (2024) presented a multi-scale feature fusion technique for robust lane detection in foggy 

conditions. Although not GAN-based, their approach significantly improves image quality and feature 

integration for better lane detection performance under adverse weather[40]. 

III. MATERIALS AND METHOD 

In this study, a specialised GAN architecture was designed to eliminate the difficulty of lane detection 

in foggy road images and to improve the accuracy of lane detection by realistically and controllably 

adding a fog effect to clear road images. The model was implemented in Python 3.10[30], taking 

advantage of its extensive libraries for autonomous vehicle and image processing tasks. 

A. Creation of a Data Set 

In this study, while preparing training data for the lane detection model, the diversity and realism of the 

data were considered an important factor to ensure successful operation under foggy weather conditions, 

and three main datasets were utilised. Foggy images were obtained from the NuScenes Fog Dataset, which 

was developed to evaluate the performance of autonomous vehicle systems under real-world conditions 
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[27]. The NuScenes Fog Dataset stands out with its various foggy scenarios captured both in open areas 

and urban roads. This dataset, containing images that realistically simulate foggy weather conditions, has 

been enriched with fog effects of different intensities. These visuals were used to test and validate the 

performance of the lane detection algorithm in foggy environments. 

 

Clear and sharp road images, on the other hand, were taken from the BDD100K [6] and Roads 

Segmentation Dataset [31]. These datasets include high-resolution road images with various lane structures. 

In particular, they consist of images covering a range of situations such as different road types (urban roads, 

highways, multi-lane roads) and lighting conditions (daytime, night, shaded areas). These clean and clear 

images were used as the base data source for the simulation of foggy images. 

  

The BDD100K dataset is a large-scale dataset designed for research and development in autonomous 

driving and computer vision. This dataset contains over 100,000 images representing various scenarios 

captured under different weather conditions and at different times of day. These images represent diverse 

environments such as urban, highway, and rural areas. Each image includes detailed annotations covering 

various classes such as vehicles, pedestrians, traffic signs, and lane markings for object detection and 

semantic segmentation tasks. 

  

The Roads Segmentation Dataset facilitates road segmentation in autonomous driving and computer 

vision applications. This dataset includes images captured under different road and weather conditions and 

provides the necessary annotations to ensure accurate segmentation of the road surface. It contains a large 

number of images taken in various urban and rural locations. The dataset is enriched with images including 

different road types (asphalt, stone, etc.) and road markings. Each image is annotated at pixel level to enable 

accurate segmentation of the road surface. 

B. Generative Adversarial Networks 

The GAN (Generative Adversarial Networks) architecture consists of two core components—the 

Generator and the Discriminator—which operate in an adversarial yet cooperative manner. The competitive 

learning process between these two components enables the generation of realistic and high-quality images 

[14]. The Generator aims to produce realistic data from a random input vector. Its objective is to deceive 

the Discriminator by generating data that appears to originate from the true data distribution. The 

Discriminator, on the other hand, receives both real and generated data and attempts to distinguish whether 

the input is real or synthetic. Its goal is to correctly identify the data produced by the Generator as fake. 

This architecture is formulated as an optimisation problem based on a minimax game-theoretic framework. 

 

The fundamental mathematical model of GANs is expressed as follows: 

 

𝑀𝐺𝑀𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝data(𝑥)[log𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]       (1) 

 

Where;   

  

 G: Generator model, 

  

 D: Discriminator model, 

  

 x: Real data sample, 

  

 z: Random noise vector, 

  

𝑝data(𝑥): Distribution of real data, 
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𝑝𝑧(𝑧): Represents the distribution of noise vectors.  

  

Thanks to this adversarial structure, the Generator continuously tries to make the data it produces more 

and more realistic, while the Discriminator constantly improves itself to better distinguish fake data [14]. 

Figure 1 shows the GAN architecture used in the study.  

 

 
Fig. 1 Used GAN Model Structure 

 

During the data preparation phase, fog effects of varying intensities were added to clean road images 

obtained from the BDD100K and Roads Segmentation Dataset, inspired by the foggy environment 

characteristics provided by the NuScenes Fog Dataset. For this purpose, a Generative Adversarial Network 

(GAN) architecture, which has proven highly effective in challenging tasks such as generating foggy 

images, was employed. A U-Net-based Generator and a Discriminator component were used. The U-Net 

architecture enables the preservation of low-resolution details while generating fog effects in a manner that 

is both aesthetically pleasing and physically realistic [32]. The Generator applies fog effects of different 

intensities onto clean road images. To simulate various foggy conditions and improve the generalisation 

capacity of the model by increasing the diversity of foggy images, artificial fog layers were added to the 

data. Different levels of fog intensity were adjusted (e.g., $\beta$ = 0.005, $\beta$ = 0.01, $\beta$ = 0.02) 

to model different scenarios: light fog for near-clear weather conditions, moderate fog for typical foggy 

weather, and heavy fog to simulate challenging low-visibility environments. Each foggy image was 

incorporated into the training process of the lane detection model to enhance its robustness and accuracy 

by imitating diverse weather conditions. 

 

The Discriminator component of the GAN was trained to distinguish between real foggy images and the 

generated ones, thereby guiding the Generator to produce more realistic fog effects. This dynamic 

interaction between components in the adversarial training process contributed to improved realism and 

visual quality in the generated images, resulting in fog effects that were natural, high-quality, and consistent 

with real foggy images. 

To enhance the foggy road images generated using the GAN-based method, several preprocessing steps 

were applied, including grayscaling, dehazing, CLAHE, and Gaussian blurring (Figure 2). 

 

By applying grayscaling, colour information was removed from the images, converting them to a format 

that retains only brightness information. This step facilitated visual enhancement and simplified subsequent 

processing stages [12]. Dehazing techniques were applied to reduce visual degradation in foggy images. 

These techniques improved contrast and sharpness in the images, thereby positively affecting the accuracy 

of lane detection [16]. The CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm was 

used to enhance image contrast, making lane markings more discernible in foggy conditions [29]. Gaussian 

blurring was applied to reduce high-frequency noise in the images. This method improved the accuracy of 

edge detection and the lane detection process [22]. The processed foggy images obtained through these 

steps formed the dataset used for training the lane detection model. 
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As a result, a comprehensive dataset containing both clean and foggy road images was prepared, providing 

an effective training infrastructure for lane detection under foggy weather conditions. The final dataset 

comprises a total of 35,000 images encompassing light, moderate, and heavy fog levels. 

 
Fig. 2 Grayscale conversion 

 

 

Fig. 3 Dehazing 

 

Fig. 4 CLAHE enhancement 
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Fig. 5 Gaussian blur filtering 

 

C. Lane Detection 

In this study, lane detection was carried out using both classical and deep learning methods such as Canny 

edge detection, ROI (Region of Interest), Hough transform, and linear line detection. 

The Canny Edge Detection algorithm, a classical image processing technique, was employed to detect 

edges in the images during lane detection. This method identifies edges by detecting abrupt changes in 

intensity and produces thin, distinct edge structures that are resistant to noise [5]. After detecting lane edges 

in foggy images using this method, linear lane lines were identified using the Hough transform. 

Thev Hough Transform is a technique used to detect linear lane lines based on the results of edge 

detection. Each pixel is mapped to a parameter space (e.g., slope-intercept or polar coordinates for lines), 

allowing pixels located on the same line to intersect at the same parameter combination [8]. 

  

Another classical technique, ROI (Region of Interest), defines a restricted area within the image where 

processing is to be applied. This reduces processing time, lowers computational cost, and allows for more 

accurate detection of target objects, such as lane markings. In the context of lane detection, ROI regions 

were selected to analyse only the relevant parts of the road. In particular, the lower portion of the image—

corresponding to the area in front of the vehicle—was chosen as the ROI to minimise the influence of 

irrelevant elements such as sky, buildings, or trees [4]. This not only accelerated the image processing 

pipeline but also improved detection accuracy. The use of ROI helps exclude unnecessary data from 

processing, thus reducing runtime and enhancing detection performance [46]. 

  

In deep learning methods, the U-Net neural network architecture was adopted during training to perform 

image segmentation and lane detection, with the aim of identifying the most suitable hyperparameters for 

the task. Originally developed for image segmentation tasks, this architecture is widely used in applications 

requiring pixel-level localisation, such as lane detection. 

The model's encoder extracts semantic features from the input image via convolutional layers with 64, 

128, and 256 filters, respectively. The decoder then progressively restores low-resolution representations 

back to their original resolution using transpose convolution (up-convolution) layers, as in the standard U-

Net design. Thanks to U-Net’s symmetric structure and skip connections, both high-level semantic and 

low-level spatial information are preserved, enabling precise segmentation [32]. 

During training, hyperparameters were optimised: the learning rate was set to 0.001, batch size to 16, and 

the number of epochs to 200, with adjustments made depending on specific conditions. 

  

In both the encoder and decoder blocks shown in Figure 3, traditional 3×3 convolutional layers were used. 

Furthermore, dilated convolutions were employed to extract broader contextual and detailed features. This 

approach was observed to yield high accuracy in accurately modelling foggy environments. 
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Dilated convolution increases the spacing between filter elements, allowing a larger receptive field and 

thereby capturing more contextual information. This is particularly effective for identifying small details 

and long-range features in images. Additionally, dilated convolution enables the network to analyse a wider 

context without the need for a deeper architecture, thereby reducing computational load [43]. This property 

is beneficial for tasks such as lane detection, where fine details are critical. 

 

 
Fig. 6 3x3 Convolutional Layers 

 

IV. RESULTS 

Thanks to the GAN structure developed in the study, a large dataset with varying fog densities was 

obtained. This dataset was used to train a detection model specifically optimised for lane detection under 

foggy weather conditions. Additionally, the generated dataset was systematically tested to enhance the 

model's generalisation ability and to assess the robustness of the algorithm under different fog scenarios. In 

the field of image processing, the literature includes many different metrics used during the evaluation 

phase. The metric known as Accuracy, which expresses the overall accuracy rate of the lane detection 

process, is defined as the ratio of correctly classified pixels to the total number of pixels, and is used to 

assess the overall performance of the model. In this study, Classical methods achieved 59.36%, accuracy, 

while the deep learning approach improved performance to 96.76%. In the literature, accuracy rates above 

85% are generally considered acceptable for image segmentation tasks such as lane detection [26]. 

However, in critical driving scenarios, an accuracy rate above 90% is targeted. 

 

To evaluate the model's overall performance more precisely, the F1 Score—which balances precision and 

recall—was also employed. As the harmonic mean of Precision and Recall, the F1 score is particularly 

suitable for evaluating model performance on imbalanced datasets [37]. Using the classical method, the 

values Precision = 0.4482 and Recall = 0.9056 yielded an F1 score of 0.5996. With the deep learning-based 

approach, Precision = 0.6512 and Recall = 0.8077 resulted in an F1 score of 0.7290. Generally, an F1 score 

above 70% is regarded as a satisfactory level of success, while scores exceeding 80% indicate high 

performance. 

  

For lane detection, the Intersection over Union (IoU) metric was used to measure the degree of overlap 

between the detected lanes and the ground truth lanes. IoU represents the ratio of the intersection to the 

union of the predicted and actual regions, and is widely used to assess segmentation accuracy [9]. IoU 

scores were calculated according to Equation 2, considering the rates of false positives and false negatives 
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to evaluate detection errors. In a quantitative comparison, The classical method yielded an IoU of 0.89, 

surpassed by the U-Net model (IoU = 0.96), clearly demonstrating the superiority of deep learning-based 

approaches under challenging weather conditions. Although acceptable thresholds vary by application area, 

IoU values above 50% (0.5) are generally considered adequate, while values above 70% (0.7) are 

interpreted as indicative of high performance. 

 

 

𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
              (2) 

: Predicted area (predicted mask), 

: Ground truth area (ground truth mask), 

|𝐴 ∩ 𝐵|: Intersection area (correctly predicted pixels), 

|𝐴 ∪ 𝐵|: Union area (total relevant pixels), 

𝑝data(𝑥): Represents the distribution of real data. 

In addition, the Peak Signal-to-Noise Ratio (PSNR) metric—commonly used to measure structural 

integrity and quantitatively assess image quality—was also employed. PSNR is used to evaluate how close 

the noise level is to the reference image. In the literature, PSNR values above 30 dB are considered 

indicative of acceptable quality, while values above 40 dB represent high quality. In this study, a PSNR 

value of approximately 12.6 dB was obtained between the foggy images generated by the GAN and the 

corresponding clear images. This low value indicates that the images are highly degraded, demonstrating 

that the model has successfully simulated foggy conditions [19]. 

𝑃𝑆𝑁𝑅 = 10 ⋅ log
10

(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)   (3) 

𝑀𝐴𝑋𝐼: Maximum pixel value in the image (typically 255), 

𝑀𝑆𝐸: Mean Squared Error. 

The results obtained in this study propose a Generative Adversarial Networks (GAN)-based approach to 

address the challenges faced by autonomous vehicles in critical tasks such as lane detection under foggy 

weather conditions. Through the use of the GAN architecture, a broad and diverse dataset representing real-

world foggy conditions was created using synthetically generated foggy road images (Figure 4). By 

simulating varying intensities of fog, these images enhance lane detection capabilities under adverse 

environmental conditions, enabling the developed models to align more closely with real-world scenarios. 

Consequently, the proposed method provides a robust data preprocessing and training framework that 

enables effective lane detection even under foggy conditions. The model is designed to exhibit adaptive 

performance depending on both fog density and road type. 

Moreover, this study enabled a comparative evaluation of lane detection performance using classical 

image processing techniques and deep learning-based approaches on GAN-generated foggy road images. 

The results demonstrated that deep learning-based models significantly outperformed classical methods 

under low-visibility conditions, offering higher accuracy and reliability (Figure 5). The model's high 

performance in foggy weather is of critical importance for autonomous vehicle systems and traffic safety 

applications. 

 

 

 

A

B
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Fig. 7 Original Image 

 

Fig. 8 Image Generated with GAN 

 

Fig. 9 Lane Detection with Classical Method 

 

Fig. 10 Lane Detection with Deep Learning Method 
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V. CONCLUSION 

This study proposes a novel data augmentation and modeling approach to improve AV safety under foggy 

conditions. The aim is to enhance the generalisability of the method by focusing on more extensive datasets 

covering diverse weather scenarios and on more complex GAN architectures. To this end, the development 

of a multi-task deep learning architecture is planned, which targets the simultaneous detection of both traffic 

signs and road lanes under foggy conditions. Existing systems typically focus on detecting a single object 

type (e.g., lane detection or sign recognition), which can compromise the reliability of autonomous driving 

systems. Therefore, the proposed model aims to provide an artificial intelligence solution capable of 

accurately detecting both traffic signs and road lanes simultaneously, even in low-visibility and challenging 

environmental conditions. 

  

In the current study, deep learning methods were observed to yield significantly higher accuracy in lane 

detection under foggy weather when compared to classical techniques. Based on this finding, future work 

will continue to develop the lane detection module using a deep learning-based architecture. However, the 

task of traffic sign detection in foggy environments remains a significant research challenge due to complex 

visual distortions. For this reason, the relevant literature will be thoroughly reviewed to identify the most 

effective method or combination of methods for accurate traffic sign detection under foggy conditions. 
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