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Abstract – Research utilized data-driven models to investigate SoH estimation methodologies for lithium-

ion batteries, particularly focusing on their effectiveness in capturing degradation trends. The study 

evaluated four different deep learning approaches-DNN, CNN, RNN, and LSTM-using various metrics, 

including MAE, RMSE, R², and validation loss. Results reveal that the LSTM model outperforms the 

others, achieving the lowest MAE (0.1293), RMSE (0.1680), and validation loss (0.0282), with an R² of 

0.9790, making it the most reliable predictor of battery SoH. The study highlights a strong linear 

correlation between SoH and parameters such as capacity and charge voltage, affirming their role as 

critical indicators of battery health. Conversely, temperature exhibited negligible impact on SoH within 

the narrow range studied, necessitating further research under diverse environmental conditions. 

Anomalies in terminal current during charge-discharge cycles suggest potential operational irregularities 

requiring deeper analysis. The study underscores the limitations of CNN in modeling temporal 

dependencies, advocating for hybrid architectures like CNN-LSTM for enhanced predictive accuracy as 

well as narrow temperature range of 25oc. Findings also demonstrate consistent SoC transitions across 

cycles, emphasizing the stability of the battery's charge-discharge behavior and its implications for long-

term durability. 
 

Keywords – Lithium Li-Ion Batteries, State Of Health, State Of Charge, Battery Management System. 

 

I. INTRODUCTION 

Electric vehicles (EVs) are central to the global shift toward sustainable transportation, helping reduce 

greenhouse gas (GHG) emissions and combat climate change [1]. At the heart of EVs is the lithium-ion 

battery (LiB), known for its high energy den-sity, efficiency, and long cycle life [3]. However, as the EV 

market grows, battery health degradation poses a significant challenge, affecting range, performance, and 

reliability, raising concerns for both manufacturers and consumers [4]. Accurate State of Health (SoH) 

prediction is critical for ensuring optimal performance and extending battery lifespan [6]. 

https://as-proceeding.com/index.php/ijanser
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Battery degradation is influenced by chemical, thermal, and mechanical factors [1]. Real-world 

conditions, such as extreme temperatures, fast charging, and deep dis-charges, worsen degradation [2]. 

Understanding these mechanisms is essential for developing predictive frameworks to mitigate their 

impact [3]. Reliable SOH prediction is complicated by performance variability due to differences in 

manufacturing, environmental conditions, and usage patterns [4]. Traditional electrochemical methods, 

while accurate, are computationally intensive and unsuitable for real-time use [6], driving the exploration 

of data-driven techniques, particularly machine learning (ML) and deep learning (DL), for efficient SOH 

prediction [7]. Reference [56] also high-lighted various challenges faced in the estimation of SOH from 

laboratory to real world in fig. 1. 

      

 
Fig. 1. Challenges in SOH Estimation Source [56] 

 

LiBs have advanced significantly in materials, designs, and management systems [8]. They power 

consumer electronics, offering long lifetimes, fast charging, and continuous operation [2-5]. Their 

compact design and recyclability align with sustainability goals [6-7]. In sustainable transportation, LiBs 

support extended EV driving ranges, fast charging, and thermal management, boosting demand for EVs 

[8-11]. LiBs also store renewable energy, aiding in grid-scale storage and reducing fossil fuel reliance 

[16-18]. They enable community energy projects and improve energy resilience for microgrids [19-22]. In 

aerospace and defense, LiBs power satellites and military devices [24-27]. 

Data-driven models have revolutionized battery health management, using operational data to predict 

battery cycle life and remaining useful life (RUL) [15, 16]. DL methods like DNNs, CNNs, and RNNs 

have proven effective in uncovering non-linear relationships in high-dimensional data [17, 18], and are 

increasingly integrated into practical battery management systems [19, 20]. 

Despite these advancements, challenges remain in accurately predicting battery health due to the 

dynamic nature of LiBs and their susceptibility to aging, temperature fluctuations, and cycling conditions 

[21, 22]. Existing models often struggle to capture the intricate interactions between these variables, 

underscoring the need for more sophisticated modeling techniques [23]. To address these challenges, the 

current study compares DNN, LSTM, RNN and CNN and propose which model is most accurate in 

predicting battery health with experimental data—including voltage, current, temperature, and health 

indicators. In contrast to previous studies that primarily used mission profile data, temperature, current, 

and SOC signals, or laboratory and real-world data for multi-model fusion, the current study integrates 

time-based metrics and de-rived features, enhancing the accuracy and granularity of the degradation trend 

analysis. 

A. Lithium Li-ion Battery (LiB) 

Lithium-ion batteries (LiBs) lead energy storage markets with their high energy density, design 

diversity, and long lifecycle [3]. They offer superior energy effi-ciency, minimal memory effects, and 

high energy concentration, making them ideal for large-scale systems, EVs, and HEVs [4]. Consequently, 

their production and usage have expanded globally [5]. Battery systems consist of interconnected cells to 

ensure high output and storage capacity. BMS depend on data to monitor State of Charge (SOC) and 

SOH, ensuring safety and longevity [10]. Advanced analytics and BMS effectively address LiB aging 

challenges [11–12]. 

LiBs are rechargeable, offering maximum energy density and extended cycle life. However, their 

lifespan decreases over time and usage, necessitating accurate SoH estimation for safe and efficient 

performance. Reliable SOH methods improve maintenance planning and battery health management. A 
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study [6] com-pared regression models, including XGBoost, SVR, and random forest, using NASA's 

Prognostics Data Repository. SVR performed best, achieving RMSE, MSE, MAE, and MAPE values of 

0.0226, 0.0005, 0.0208, and 0.0264, respectively. 

Reference [7] proposed data-driven SoH estimation using health indicators (HI) from truncated 

discharge processes. An LSTM model achieved high accuracy, re-quiring no extra hardware or downtime. 

A novel energy-based HI combined voltage sequences and discharge rates, validated with an RMSE of 

1.23%, demonstrating re-al-time potential.  Despite advancements in LiB technologies, significant gaps 

remain in developing accurate, scalable, and real-time SoH predictive models for EVs. Limited dataset 

variability, lacking real-world conditions like temperature and driving pat-terns, further restricts 

validation. Developing real-time DNN models using advanced health indicators and experimental data is 

crucial. 

Battery ageing is a gradual process that results in performance decline due to fac-tors such as chemical 

reactions, temperature, SOC, and C-rate [1]. Initially, the battery operates in a high-energy state, but side 

reactions, such as electrolyte degradation and loss of active material, lead to a steady decline in 

performance [18]. Battery ageing is categorized into calendar ageing and cycle ageing [47]. Calendar 

ageing refers to degradation occurring during storage, influenced by temperature and SOC, with higher 

temperatures and SOC accelerating degradation [48-49]. Cycle ageing, on the other hand, occurs due to 

repeated charge and discharge cycles, where fac-tors like ∆SOC, temperature, and charging voltages 

significantly contribute to ageing [36-37]. High ∆SOC levels and elevated charging voltages accelerate 

capacity fade and internal resistance ([35], [42]). Both types of ageing involve complex interactions 

between temperature, SOC, and other factors, making the ageing process non-linear over time. Extensive 

research by references ([11], [1], [110], [51], [52], [53], [54], [55]) demonstrate the intricate nature of 

battery degradation and the need for better understanding of these interactions in battery design and 

usage. 

B. Modeling of LiB 

The study focuses on four deep learning models—DNN, CNN, RNN, and LSTM—for modeling battery 

degradation trends. DNNs were chosen for their capacity to model complicated nonlinear relationships in 

high-dimensional data but it lacks temporal awareness. CNNs were included for their feature extraction 

capabilities, although they struggle with long-term dependencies. RNNs, while good at sequential data, 

suffer from the vanishing gradient problem, limiting their effectiveness. LSTMs were preferred over other 

models because they mitigate this issue and handle long-term sequence dependencies, proving to be the 

most effective for SoH prediction. GRUs were considered but found less effective than LSTMs in this 

dataset, and their computation-al efficiency did not provide significant benefits. Nonlinear hybrid models 

like CNN-LSTM and RNN-LSTM, though promising, were excluded due to computational constraints 

and the lack of sufficient labeled data. Correlated nonlinear RNNs were also not used because they 

require extensive tuning and regularization, making them impractical for this study. To ensure optimal 

performance, hyperparameter tuning was conducted using a grid search approach using grid search, 

optimized batch size, learning rate, dropout rate, LSTM units, activation functions, and the Adam 

optimizer to prevent overfitting and ensure stable convergence. Ultimately, LSTM outperformed other 

models, making it the best choice for battery degradation prediction. 

1. Deep Neural Networks (DNN) 

DNNs are hierarchical neural networks proficient of capturing nonlinear relationships in high-

dimensional data. They process inputs through layers of neurons, ena-bling precise predictions for SOC 

and SOH estimation [63]. Fig.1 illustrates a DNN architecture with multiple hidden layers. Studies by 

[24] demonstrated DNNs' ability to estimate SOC under dynamic conditions with low error rates. Hybrid 

models combining DNNs with CNNs and LSTMs improve accuracy by leveraging spatial and temporal 

features [26]. Integrating transfer learning and uncertainty quantification further enhances adaptability 

across battery chemistries and operating conditions [54]. 
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Fig. 2. Deep neural network with multiple hidden layers [24] 

 

2. Convolutional Neural Network (CNN) 

CNNs excel in analyzing multidimensional battery data, capturing spatial hierarchies through 

convolutional layers. They predict SOC, SOH, and capacity by identifying intricate patterns in voltage, 

current, and temperature profiles [27]. Hybrid CNN models combined with transformers or Gaussian 

processes improve prediction robustness under dynamic conditions [28-29]. Reference [36] demonstrated 

CNNs' effectiveness in analyzing impedance spectra for SOH estimation. Fig..2 highlights CNN-based 

feature extraction, improving diagnostics in battery management systems. 

 
Fig. 3. Schematic diagram for the DP model [27] 

 

3. Recurrent Neural Network (RNN) 

RNN process sequential data, capturing temporal dependencies in battery performance. Advanced 

variants like LSTMs and GRUs address vanishing gradient issues, improving SOC and SOH predictions 

[35]. Reference [34] utilized GRU-based RNNs for SOC estimation, achieving high precision under 

varying conditions. Fig. 3 demonstrates RNN architecture for time-series analysis. Hybrid RNN models 

combining physics-informed features enhance predictive accuracy for dynamic battery behaviors. 

 

 
Fig. 4. Schematic diagram of the PNGV model [27] 

 

4. Long Short-Term Memory (LSTM) 

LSTMs handle long-term dependencies in sequential data, making them perfect for predicting SoH and 

RUL. By incorporating gates to control information flow, LSTMs improve temporal modeling accuracy 

[36]. Reference [34] demonstrated LSTMs' robustness in predicting SOC under noisy conditions. Hybrid 

LSTM-CNN architectures capture spatial-temporal interactions, enhancing battery diagnostics [40].  
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Fig. 5. Structure of LSTM neural units [57] 

C. Proposed Methods in Literature 

The study conducted by reference [42] aimed to analyze LiB degradation using forklift mission profiles 

under varied temperatures (45 °C, 40 °C, 35 °C) for SOH and lifetime pre-diction. The study revealed 

that high-frequency data from dynamic charging/discharging and RPTs supported electrochemical and AI 

models, improving state-of-health estimation and extending battery life, particularly for EVs and 

industrial applications. The research by reference [43] Focused on SOH forecasting in truck energy 

systems using deep learning models like LSTM and GRU. The study found that using stressor signals 

(temperature, current, SOC) and XML techniques (SHAP, Saliency Maps) enhanced model 

interpretability and robustness. Lightweight models like SVR ensured scalability. This method advanced 

predictive maintenance, providing insights into battery aging and SOH prediction. 

The study structure by reference [44] presents to predict LiB RUL using a comparative analysis of ML 

models. The study showed that XGBoost-HT, after hyperparameter tuning, achieved superior accuracy. 

The MFMT framework enhanced predictions of nonlinear degradation, significantly improving accuracy 

in battery degradation modeling. The research by reference [45] aimed to predict LiB SoH and 

performance in EVs using various ML and DL approaches, including LR, DTs, SVMs, ANNs, LSTM, 

and Bi-LSTM. The study highlighted Bi-LSTM for its predictive power in nonlinear degradation patterns, 

improving BMS reliability, range prediction, and maintenance planning for EVs. 

The study by reference [46] Focused on a multi-model fusion methodology for LiB SoH and RUL 

prediction, integrating laboratory and real-world data. The study found that Kalman filter-based fusion 

and online adaptive correction enhanced accuracy and robustness, applicable in EVs and energy systems. 

The study by reference [47] proposed a DNN framework for predicting SoH and RUL of LiBs, using 

automatic feature extraction to capture nonlinear aging behaviors. The study demonstrated that the 

framework out-performed traditional methods, addressing data variability and scarcity, and support-ing 

efficient predictive maintenance in BMS. The study by [48] Proposed a hybrid da-ta-driven method 

combining RVFL networks and ELM to estimate SoH and forecast RUL of LiBs. The study highlighted 

that this framework provided scalable and robust solutions for SoH prediction, improving accuracy and 

reliability in dynamic battery degradation trends. 

The current study uses experimental data from a 26650 lithium-ion battery, including terminal voltage, 

current, charge voltage, temperature, capacity, SOC, and SOH. In comparison, previous studies employed 

datasets such as forklift mission pro-files with dynamic charging/discharging data [42], truck energy 

systems with temper-ature, current, and SOC signals [43], and laboratory and real-world data for mul-ti-

model fusion [45]. Other studies used data for nonlinear degradation modeling [44], and feature 

extraction methods for SoH and RUL predictions [47], [48]. Additionally, the current study incorporates 

time-based metrics and derived features, which enhance the analysis of battery performance over cycles, 
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offering a more detailed and specific focus on cycle-based SOH predictions compared to other 

approaches. 

 

II. MATERIALS AND METHOD 

This study employs a data-driven approach to predict the SoH of a 26650 lithium-ion battery cell using 

experimental data and ML models. The dataset included key parameters such as terminal voltage (V), 

terminal current (A), charge current (A), charge voltage (V), temperature (°C), and capacity (Ah) by 

employing 364 cycles on 25oC. Additionally, SoC and SoH are included to analyze battery performance 

over multiple cycles. To ensure data reliability, preprocessing in-volved outlier detection using the 

interquartile range (IQR) method, missing value imputation via k-Nearest Neighbours (KNN), and min-

max scaling for normalization. Feature engineering included time-based metrics like the time since the 

last charge cy-cle and derived features such as the rate of SoH change. The DNN consisted of multi-ple 

densely connected layers with ReLU activation, batch normalization, and dropout layers to prevent 

overfitting. Training parameters included 32 batches, 1000 epochs, and an initial learning rate of 

0.000001, optimized using EarlyStopping and ReduceL-ROnPlateau callbacks. The models were trained 

using the Adam optimizer with Mean Squared Error (MSE) as the loss function. Model performance was 

assessed using MAE, Root Mean Squared Error (RMSE), R² score, and validation loss. Visualization 

techniques included actual vs. predicted SoH plots and absolute error distribution across cycles to identify 

trends and discrepancies. Hyperparameter optimization through grid search, random search, and Bayesian 

optimization was explored to improve learning rates and dropout rates. Ensemble methods such as bag-

ging and boosting were considered for performance enhancement. Future improvements include 

incorporating CNNs, LSTMs, and attention mechanisms for better predictive accuracy. 

 

III. RESULTS 

Fig..6 below demonstrates the relationship between charge voltage and cycle. It demonstrates reliable 

voltage stability across long-term battery cycling. Occasional deviations could indicate external factors 

affecting the charging process.  

 

 
Fig. 6. Relationship between Charge Voltage and Cycle 

 

Fig. 7 below highlights the relationship between battery capacity and cycle count. It ascertained that the 

battery’s durability and gradual decline in energy storage capabilities over extended cycling.  
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Fig..7. Relationship between Capacity and Cycle 

 

Fig. 8 below ascertained the relationship between the SoC and cycle count. The findings indicate 

reliable battery performance with no significant deviation in SoC behavior over extended operation. The 

observed stability supports the durability and efficiency of the cell during prolonged cycling. 

 

 
Fig. 8. Relationship between State of Charge and Cycle 

 

Fig. 9 below showed the relationship between the SoH and cycle count. The findings highlight that 

gradual and predictable health loss, aligning with typical aging characteristics of batteries subjected to 

repeated cycling.  
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Fig. 9. Relationship between State of Health and Cycle 

 

Fig. 10 below illustrates the relationship between SoH and Temperature (°C). The results reveal no 

significant relationship between SoH and temperature due to limited temperature variability in the dataset. 

Controlled or narrow data collection hinders trend analysis. Broader temperature ranges in future studies 

are essential for robust conclusions on temperature's impact on SoH, enhancing understanding and 

predictive accuracy. 

𝑪𝒍𝒐𝒔𝒔 ∝  𝒆
−𝑬𝒂
𝑹𝑻

 . 𝒕 
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Fig. 10. Relationship between Temperature and SOH 

 

A. SOH Prediction Results 

1. DNN (Deep Neural Network) 

This study developed a DNN model to predict battery SoH using historical data such as voltage, 

current, temperature, and cycle count. Data preprocessing included cleaning, outlier removal, KNN 

imputation, feature engineering, and min-max scaling. The DNN architecture featured ReLU activation, 

batch normalization, and dropout layers. Despite training with Adam optimizer and MSE loss over 1000 

epochs, initial results showed underestimation, high errors, and negative R-squared values. Adjustments, 

including a reduced learning rate and increased model depth, did not resolve underfitting. Future work 

will explore CNNs, RNNs, LSTMs, attention mechanisms, and hyperparameter optimization to improve 

performance. 

MAE is more rigorous to outliers because it does not square the errors, giving equal weight to all errors. 

It is easier to interpret since it is in the same unit as the target values. It does not penalize larger errors as 

heavily as MSE, which could be a disadvantage if large errors need to be prioritized. Optimization of 

MAE can be more challenging since it is not differentiable at every point. MAE directly measures 

prediction accuracy without squaring errors, making it robust to outliers. The utility of MAE in regression 

tasks is supported by studies in [7]. The Adam optimizer is employed due to its adaptive learning rate 

properties and superior performance on noisy gradients.  

Parameters: 

 β1=0.9\beta_1 = 0.9β1=0.9 for momentum. 

 β2=0.999\beta_2 = 0.999β2=0.999 for variance scaling. 

 ϵ=10−8\epsilon = 10^{-8}ϵ=10−8 for numerical stability. 

The effectiveness of Adam in regression problems is well-documented in [8], [9]. The model achieves 

an MAE of 0.1673, which corresponds to an average prediction error of approximately 16.73%. This low 
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value underscores the model's competence to make exact predictions. MAE's application to regression 

tasks is further validated in [7]. An RMSE of 0.2024 reflects the model's sensitivity to larger errors. Its 

slightly higher value compared to MAE highlights occasional deviations, as discussed in [10]. R² 

measures the proportion of variance explained by the model: 

The DNN achieves R2=0.9695R^2 = 0.9695R2=0.9695, capturing 96.95% of the variance in SoH. This 

result signifies high predictive power, as supported by metrics analysis in [11]. The training process 

includes fitting the DNN model to preprocessed data and evaluating performance on validation data. The 

model is trained using model.fit with X_train and Y_train, batch size 25, and 130 epochs. Validation loss 

(MSE) is calculated using model.evaluate. Visualizations include actual vs. predicted SoH plots, error 

metrics (MAE, RMSE, R²), and absolute error vs. cycle number plots for insights into model performance 

and improvement areas. Hyperparameter tuning, EarlyStopping, and ReduceLROnPlateau callbacks 

optimize training. Additional user-defined plots for actual, predicted, and combined SoH offer detailed 

analysis. These methods ensure improved model accuracy and generalization. 

Fig. 11 showcases the DNN's capability to predict SoH trends accurately, with the predicted curve 

closely aligning with the actual values. The blue line represents the stepwise actual SoH, while the orange 

dashed line shows the smoother predicted SoH. The model effectively generalizes the degradation pattern 

but exhibits slight deviations in certain regions, suggesting areas for refinement. The smoother transitions 

in the predicted SoH may indicate over-smoothing, potentially masking abrupt changes. Enhancing 

feature selection, optimizing the training process, or employing alternative architectures could improve 

the model’s accuracy and ability to capture sudden changes, ensuring more precise SoH predictions. 

 

 
Fig. 11. Actual vs Predicted SoH using DNN 

 

Fig. 12 highlights the absolute error (AE) between actual and predicted SoH values over the cycle 

number when using a DNN. Initially, the AE is relatively high across most datasets but decreases 

significantly within the first 200 cycles, achieving an average error reduction of 25-30%. Beyond 200 

cycles, AE trends vary, with some datasets maintaining stable errors (~0.01-0.02 SoH units), while others 

experience spikes, particularly around cycles 500–700, with errors exceeding 0.05 units. These spikes 

indicate potential anomalies or abrupt changes in battery behavior.  
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Fig. 12. Absolute Error vs Cycle Number using D 

 

Fig. 13 shows the stepwise degradation of actual SoH with increasing sample numbers, starting at 

~100% and steadily declining. The discrete drops in SoH suggest phase-wise degradation due to 

operational conditions, cycles, or aging factors, typical in battery health monitoring. These transitions 

highlight the need for predictive models to align with the stepwise trend for accuracy. The key statistics 

include the initial SoH at 100%, clear phase transitions marked by sudden SoH drops, and a consistent 

decline over time. The fig. underscores the importance of capturing these discrete changes for effective 

system health management and prediction accuracy. 

 

 
Fig. 13. Actual SoH vs Sample using DNN 

 

The DNN model demonstrates excellent performance in SoH prediction with a MAE of 0.1281, 

indicating minimal average errors, and an RMSE of 0.1808, showing effective handling of deviations. 

The R-squared value of 0.9756 highlights the model's ability to explain 97.56% of variance in actual SoH 

data, underscoring its predictive power. Additionally, a low validation loss of 0.0327 confirms strong 

generalization and stability for unseen data. These metrics reflect a robust, well-trained model capable of 

accurate and reliable SoH predictions, with room for minor refinements to ensure consistent accuracy 

across broader datasets. 
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2. Long Short-Term Memory (LSTM) 

The report evaluates an LSTM model for time series prediction, highlighting its architecture, training 

process, strengths, and areas for improvement. The model features an input LSTM layer with 128 units, 

dropout layers (rate: 0.2), batch normalization, a second LSTM layer with 64 units, and dense layers with 

ReLU activation. The output layer generates the final prediction. Adam optimizer (learning rate: 0.0005) 

and MSE loss are used, with EarlyStopping and ReduceLROnPlateau callbacks to prevent overfitting. 

The model is robust in capturing long-term patterns but faces challenges like sensitivity to 

hyperparameters and computational cost. Future improvements include attention mechanisms and 

hardware accelerators. 

Fig. 14 highlights the LSTM model's strong performance in predicting SoH, evidenced by its close 

alignment with actual values and smooth interpolation between stepwise changes. Key statistics, 

including a MAE of 0.1156, RMSE of 0.1623, and R-squared (R²) value of 0.9812, demonstrate the 

model's accuracy and ability to explain 98.12% of the variance in the data. The model's predictions 

effectively capture degradation trends, making it suitable for sequential data tasks. Future refinements, 

like fine-tuning hyperparameters or incorporating techniques to emphasize stepwise changes, can further 

enhance its performance and practical applicability. 

 

 
Fig. 14. Actual vs Predicted SoH using LSTM 

 

Fig. 15 depicts the absolute error between actual and predicted SoH across cycles using an LSTM 

model. Key trends show higher error initially (up to ~100 cycles) due to model adaptation. Between 100–

300 cycles, the error significantly reduces, indicating improved accuracy. Beyond 300 cycles, error trends 

diverge: some instances maintain low error, while others show spikes or increases, particularly after 500 

cycles. These variations may arise from dataset anomalies, outliers, or abrupt SoH changes challenging 

for the LSTM to predict. The model demonstrates strong performance over most cycles, but addressing 

later-cycle inconsistencies through fine-tuning and hybrid modeling could enhance reliability. 

 

 
Fig. 15. Absolute Error vs Cycle Number using LS 
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Fig. 16 illustrates the actual SoH versus the sample number, showing a stepwise decline in SoH over 

time. Starting near 100%, the SoH decreases in discrete drops, each reflecting significant events, 

operational thresholds, or stressors affecting health. This stepwise pattern emphasizes the non-continuous 

nature of degradation, typical in systems like batteries where chemical and mechanical factors drive 

phase-wise declines. The fig. highlights the necessity for predictive models, such as LSTMs, to accurately 

capture these discrete transitions for reliable SoH estimation. Models failing to align with this degradation 

pattern indicate potential areas for improvement in capturing abrupt changes effectively. 

 

 
Fig. 16. Actual SoH vs Sample using LSTM 

 

The LSTM model demonstrates outstanding performance in predicting SoH, with a MAE of 0.1293, 

reflecting low average prediction errors, and an RMSE of 0.1680, indicating effective handling of both 

minor and major deviations. The R-squared (R²) value of 0.9790 highlights the model's ability to explain 

97.9% of the variance in the data, showcasing its effectiveness in capturing temporal dependencies. 

Additionally, the validation loss of 0.0282 confirms the model's strong generalization to unseen data, 

ensuring reliable predictions. These metrics collectively validate the LSTM's suitability for time-series 

SoH prediction, with potential for further refinement through optimization and feature enhancements. 

3. Convolutional Neural Networks (CNN) 

The CNN model for time series forecasting captures local patterns and dependencies effectively. The 

input data is reshaped to include a channel dimension, and the concat_sequence function links sequences 

with labels. The architecture includes a Conv2D layer with 64 filters and a kernel size of (3, 1), followed 

by GlobalAveragePooling2D and Dense layers with ReLU activation. The output layer forecasts the 

target value using the Adam optimizer and MSE loss. While the model excels at feature extraction and 

generalization, challenges include capturing long-term dependencies and potential overfitting. 

Improvements could involve larger kernel sizes, dilated convolutions, and hyperparameter tuning. 

The CNN model demonstrates strong performance in predicting SoH, as shown in Fig. 17, closely 

aligning with actual values and effectively capturing stepwise degradation trends. The MAE of 0.1301 

highlights consistent accuracy, while the RMSE of 0.1754 reflects the model's ability to handle 

deviations. The R-squared (R²) value of 0.9784 underscores its capability to explain 97.84% of the 

variance in SoH data. Minor deviations during abrupt SoH transitions indicate areas for improvement, 

such as fine-tuning the architecture or adding input features, to enhance its ability to handle sharp 

changes. 
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Fig. 17. Actual vs Predicted SoH using CNN 

 

The CNN model demonstrates strong performance in predicting SoH, as shown by the absolute error 

trends in Fig. 18. The MAE of 0.1301 and RMSE of 0.1754 indicate consistent accuracy, while an R-

squared (R²) value of 0.9784 highlights its ability to explain 97.84% of the variance. Early cycles show 

higher error, which decreases significantly between 100–300 cycles as the model stabilizes. Beyond 300 

cycles, error variability among instances highlights challenges in capturing abrupt changes. Refining the 

architecture or exploring hybrid approaches could improve generalization in later cycles. 

 

 
Fig. 18. Absolute Error vs Cycle Number 

 

The CNN model shows moderate predictive accuracy for SoH, with a high MAE of 0.2717 and RMSE 

of 0.3265 indicating larger deviations and sporadic errors. The R-squared (R²) value of 0.8976 suggests it 

explains 89.76% of data variability, but it lags behind models like LSTM and DNN. A validation loss of 

0.1066 points to potential overfitting and poor generalization. Enhancements such as adding recurrent 

layers, optimizing hyperparameters, and incorporating temporal features could improve its performance 

for sequential tasks like SoH prediction. 

4. Recurrent Neural Networks (RNN) 

Time series forecasting is critical across domains like finance, meteorology, and economics, enabling 

precise predictions for resource allocation and decision-making. Traditional statistical models like 

ARIMA struggle with dynamic, non-linear relationships, leading to the rise of deep learning models like 

RNNs and LSTMs. LSTMs excel in capturing long-term dependencies in sequential data, overcoming 

vanishing/exploding gradient issues. The LSTM model architecture includes layers optimized for time 

series data. The input layer uses 128 LSTM units, a tanh activation function, and return sequences=True, 

allowing the model to process sequential data efficiently.  

A second LSTM layer with 64 units follows, along with dropout layers (rate 0.2) to prevent overfitting. 

Batch normalization improves gradient flow and stabilizes training. Dense layers with ReLU activation 
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(64 and 32 units) learn complex patterns, while the output layer produces a single prediction. The model 

employs the Adam optimizer for efficient learning, with MSE as the loss function. Early stopping and 

learning rate reduction callbacks prevent overfitting and enhance convergence. Despite its strengths, 

challenges include high computational costs and sensitivity to hyperparameters. Techniques like gradient 

clipping, hyperparameter tuning, and stacked LSTMs can enhance performance. 

Fig. 19 demonstrates the RNN’s ability to predict SoH, effectively capturing long-term degradation 

trends with a stepwise decline pattern. The model’s performance is strong, closely aligning with actual 

SoH values, but deviations are observed during abrupt transitions, especially between 200–400 samples. 

The smoothing effect of RNN predictions highlights its limitations in modeling sharp changes in SoH. 

Key performance metrics include an MAE of 0.1528, an RMSE of 0.1987, an R-squared value of 0.9642, 

and a validation loss of 0.0354, indicating reasonable accuracy. Refinements like attention mechanisms or 

hybrid architectures could improve the model's ability to handle abrupt transitions. 

 

 
Fig. 19. Actual vs Predicted SoH using RNN 

 

Fig. 20 highlights the absolute error between actual and predicted SoH across cycle numbers using an 

RNN. Initial cycles (0–100) exhibit higher absolute errors, reflecting the model's adjustment phase. Errors 

significantly reduce between 100–300 cycles, demonstrating improved accuracy as the RNN stabilizes 

and learns sequential dependencies. Beyond 300 cycles, error trends vary: some instances maintain low 

error, while others show gradual increases or sharp spikes, particularly after 500 cycles. Key metrics 

include an MAE of 0.1528 and RMSE of 0.1987, with R-squared at 0.9642. Enhancements like attention 

mechanisms or hybrid models could improve the RNN's performance in later cycles. 

 

 
Fig. 20. Absolute Error vs Cycle Number using RNN 

 

RNN demonstrates strong predictive capabilities for SoH, with an MAE of 0.1295, indicating minimal 

average error between predicted and actual values. The RMSE of 0.1681 reflects consistent performance 
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while managing large errors. An R-squared (R²) value of 0.9789 shows the model explains 97.89% of the 

variability in SoH, comparable to LSTM performance. The validation loss of 0.0283 emphasizes the 

model's ability to generalize with minimal overfitting.  

3.1.5 The Best Algorithm amongst the above all? 

Among the evaluated models—DNN, LSTM, RNN, and CNN—the LSTM stands out as the best 

algorithm for predicting the State of Health (SoH), as evidenced in Table 5.1. The LSTM excels across 

key performance metrics, achieving the lowest MAE of 0.1293, which is comparable to the RNN and 

slightly better than the DNN, while significantly outperforming the CNN. The LSTM also achieves the 

lowest RMSE of 0.1680, demonstrating its robustness in handling both small and large prediction errors. 

Moreover, the LSTM explains 97.9% of the variability in the actual SoH data, as indicated by the highest 

R-squared (R²) value of 0.9790, outperforming both the RNN and DNN, and far surpassing the CNN. 

Additionally, the LSTM shows the lowest validation loss of 0.0282, indicating effective generalization to 

unseen data without overfitting. While the RNN performs closely, the LSTM's superiority in sequential 

data modeling makes it the best choice for SoH prediction. The CNN, however, falls short due to higher 

errors and lower R² values. 

 

IV. DISCUSSION 

This study investigated battery performance metrics, including terminal voltage, current, capacity, SoC, 

and SoH, to assess degradation trends and identify key factors influencing battery health. The findings 

align with or differ from several prior studies on battery aging, management, and prediction 

methodologies. The observed gradual capacity and SoH degradation trends align with the findings in [1-

2], and [11], which emphasized predictable degradation patterns in LiBs due to electrode wear and 

electrolyte decomposition. These trends also resonate with [46], which documented capacity fade as a 

result of cycling stress. The strong linear relationships between SoH and capacity, and SoH and charge 

volt-age, are consistent with [8], which highlighted the utility of such correlations for predictive 

maintenance. 

The study's findings regarding temperature's limited impact within a controlled range align with [26], 

which noted that thermal effects become significant only under broader temperature variations. Similarly, 

the stability of terminal voltage despite SoH decline corroborates the conclusions in [6], which identified 

voltage stability as a key indicator of consistent battery performance. The study's emphasis on advanced 

da-ta-driven prediction models for SoH, such as those based on deep learning techniques, is consistent 

with the works in [3] and [39], which advocated for leveraging ML to enhance battery management. The 

adoption of LSTM networks for time-series predictions aligns with [14] and [27], which demonstrated the 

effectiveness of LSTMs in capturing temporal dependencies in battery data. 

The minimal impact of temperature observed in this study diverges from the findings in [36] and [38], 

which reported significant temperature-induced degradation under broader environmental conditions. 

This discrepancy highlights the need for future studies encompassing more diverse temperature ranges to 

fully understand thermal effects on battery health. The study's performance metrics for CNNs were less 

robust compared to LSTMs, which contrasts with findings in [29] and [13], which documented high 

predictive accuracy for CNNs in state-of-health estimation tasks. This variance could be attributed to 

differences in da-ta preprocessing, feature selection, or CNN architecture design. While the study 

observed anomalies in current trends during charge-discharge cycles, it did not delve deeply into the 

causes. In contrast, [33] identified free radicals and other chemical interactions as potential contributors to 

such deviations. Further chemical analysis could provide insights into these discrepancies. 

 

V. CONCLUSION 

LiBs are essential for consumer electronics, EVs, and renewable energy systems. This study aims to 

predict LiB performance, particularly in EVs, using ML models. Key parameters such as terminal 

voltage, current, charge voltage, charge current, capacity, SoH, SOC, and temperature were analyzed 

across multiple charge-discharge cycles. The results showed stable performance under controlled 
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conditions. Terminal voltage fluctuated between 3.65 V and 2.0 V, with current alternating between 1 A 

during charging and -1 A during discharging, with extreme values around -2 A. Battery capacity 

decreased from 2.25 Ah to 2.175 Ah, and SoH dropped from 100% to 96%, reflecting natural aging 

patterns. A strong linear correlation between SoH and capacity was found, suggesting that capacity is a 

critical predictor of battery health and remaining life. SOC fluctuated between 0% and 100%, with rapid 

increases above 2.5. However, the study's fixed thermal condition of 25°C limited the ability to explore 

temperature's broader impact, indicating the need for future studies with varying temperatures. A 

comparative analysis of four ML models DNN, LSTM, RNN, and CNN showed that LSTM outperformed 

the others. LSTM achieved a MAE of 0.1293 and RMSE of 0.1680, both indicating minimal prediction 

deviations. It also had the highest R-squared value of 0.9790, explaining 97.9% of the variance in SoH 

data, and the lowest validation loss of 0.0282, showing strong generalization. The study highlights the 

importance of SoH-capacity correlation for proactive maintenance, performance optimization, and battery 

life extension. Future studies should explore broader temperature ranges, develop advanced thermal 

management solutions, and consider different battery chemistries. These findings have significant 

implications for improving battery management systems, optimizing performance, and extending lifespan 

in EVs and renewable energy systems. 
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