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Abstract – In this study, we investigate the effectiveness of different deep learning architectures in the task 

of medical image synthesis using convolutional neural networks. Our goal is to compare the performance 

of standard ResNet architectures (ResNet-18 and ResNet-50) with their Squeeze-and-Excitation (SE) 

enhanced counterparts (SE-ResNet-18 and SE-ResNet-50). The evaluation is conducted on three publicly 

available medical datasets: CVC-ClinicDB (colorectal polyp images), Messidor2 (retinal images), and Pap 

Smear (cervical cell images). For image synthesis, we employ these architectures as generative backbones 

and assess the quality of the generated images using both pixel-level metrics Mean Squared Error (MSE) 

and perceptual similarity metrics, namely Fréchet Inception Distance (FID) and Kernel Inception Distance 

(KID). Experimental results demonstrate that SE-enhanced ResNet architectures outperform their vanilla 

counterparts in generating more realistic and perceptually coherent images. Particularly, SE-ResNet-50 

achieves the lowest FID and KID scores across all datasets, indicating superior generative quality. These 

findings highlight the impact of channel-wise attention mechanisms in enhancing feature representation 

and improving medical image synthesis tasks. Experimental results demonstrate that ResNet50 achieves 

the best performance across multiple metrics, including LPIPS, FID, KID, and MSE, confirming its 

superiority in both perceptual quality and pixel-level accuracy. 
 
Keywords – Medical Image Synthesis, Deep Learning, ResNet, Squeeze-and-Excitation. 

I. INTRODUCTION 

Medical science relies heavily on objective decision-making processes; however, the visual data used in 

these processes are often limited in both quantity and diversity. This poses a significant bottleneck in the 

training of deep learning algorithms. In the field of medical imaging in particular, the acquisition of high-

quality data is frequently constrained by ethical, financial, and temporal limitations. At this point, the 

generation of realistic synthetic images emerges as a strategic solution—not only increasing the quantity of 

data, but also enhancing its variability, thereby improving model generalization. 

This raises a critical question: Which architecture is truly more effective for synthetic image generation? 

While conventional convolutional architectures may provide a partial answer, networks that lack channel-

wise attention mechanisms often fall short in capturing high-level semantic information. This study directly 

addresses this limitation. 
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We conduct a comparative analysis of standard ResNet-18 [1] and ResNet-50 [1] architectures alongside 

their enhanced versions integrated with Squeeze-and-Excitation (SE) blocks [2]. The evaluation is 

performed on three distinct medical datasets: CVC-ClinicDB [3], Messidor2 [4], and PapSmear datasets 

[5]. For performance assessment, we employ a combination of pixel-based metrics—Mean Squared Error 

(MSE) [6] as well as perceptual similarity metrics such as Fréchet Inception Distance (FID) [7], Kernel 

Inception Distance (KID) [8], and Learned Perceptual Image Patch Similarity (LPIPS) [9]. This dual 

evaluation strategy enables not only the quantification of numerical fidelity but also the analysis of 

perceptual realism in generated medical images. 

Squeeze-and-Excitation (SE) blocks, first introduced by Hu et al., enhance the representational capacity 

of convolutional neural networks by modeling channel-wise interdependencies [2]. SE-Net significantly 

improved performance in large-scale image classification tasks, reducing the top-5 error rate to 2.25% on 

ImageNet [2]. The application of SE modules has shown promising results in various medical imaging 

tasks. For instance, Ovalle-Magallanes et al. applied SE-ResNet-18 to X-ray coronary angiography images, 

achieving superior classification accuracy while maintaining computational efficiency [10]. Similarly, 

Zhang et al. proposed DeepSEED, integrating SE modules into a 3D ResNet-18 for low-dose CT lung 

nodule detection, effectively reducing the false-positive rate [11]. In the field of segmentation, CASE-Net 

utilized SE and cross-attention mechanisms within a U-Net structure for fetal MRI segmentation, reaching 

a Dice score of 87% [12]. In brain tumor classification, Huang et al. integrated SE blocks into ResNet-

50V2, achieving an AUC of 0.999 on the Kaggle dataset, particularly improving performance in glioma 

detection [13]. 

Moreover, more complex architectures combining SE blocks with transformers have been explored. Kadri 

et al. employed a CrossViT + Wide ResNet + SE approach for Alzheimer’s diagnosis, achieving 99% 

accuracy and demonstrating the synergy between channel and spatial attention mechanisms [14]. The 

LRSE-Net model incorporated SE blocks into a ResNet-18 patch-based architecture for medical image 

analysis, preserving structural fidelity while improving parameter efficiency [15]. For diabetic retinopathy 

classification, a Swish-ResNet-18 variant achieved 93.5% accuracy, showing that minor modifications to 

classical architectures can yield significant improvements [16]. Additionally, a Frontiers (2024) study 

demonstrated that ResNet-18 outperformed deeper models in surgical need prediction from radiographs, 

emphasizing the efficiency of shallower architectures in certain clinical contexts [17]. In remote sensing, 

SERNet utilized SE-enhanced residual connections to preserve detail and channel dependencies, achieving 

state-of-the-art segmentation results [18]. 

In medical image segmentation and classification, publicly available datasets such as CVC-ClinicDB, 

Messidor2, and Pap Smear are widely used benchmarks. Yeung et al. (2021) proposed Focus U-Net, which 

combines spatial and channel attention, achieving a Dice score of 0.941 in polyp segmentation using CVC-

ClinicDB [19]. Similarly, Fitzgerald and Matuszewski (2023) introduced FCB-SwinV2, a hybrid CNN and 

Transformer model, significantly improving mDice scores on the same dataset [20]. For retinal image 

analysis, a 2022 study reported an F1 score of approximately 0.9629 on Messidor2 using CNN-based 

models with enhanced preprocessing, confirming the reliability of deep learning in diabetic retinopathy 

detection [21]. In cytology, Merlina et al. (2024) applied transfer learning with ResNet152V2 for Pap Smear 

classification, achieving around 90% accuracy across multiple pathological classes [22]. Furthermore, Liu 

et al. (2022) developed CVM-Cervix, a CNN-Transformer-MLP hybrid, which achieved high accuracy on 

liquid-based Pap Smear images without requiring transfer learning, advancing beyond traditional CNN 

approaches [23]. 

Building upon these studies, our work systematically compares standard and SE-enhanced ResNet-18/50 

architectures in the context of medical image synthesis, focusing on both pixel-level accuracy and 

perceptual similarity. By integrating MSE, FID, KID, and LPIPS, we provide a comprehensive evaluation 

framework that bridges numerical reconstruction fidelity with human perceptual realism. 

The results indicate that channel attention mechanisms, as introduced by SE blocks, significantly enhance 

not only the visual realism but also the structural fidelity of synthesized medical images. Consequently, this 

study offers a novel perspective on the relationship between architectural choices and the quality of 

synthetic medical data. 
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II. MATERIALS AND METHOD 

The proposed framework aims to investigate the effects of deep residual architectures and channel 

attention mechanisms on medical image synthesis. For this purpose, standard ResNet-18[1] and ResNet-50 

[1] models were compared with their Squeeze-and-Excitation (SE) enhanced counterparts. The 

experimental setup was designed to evaluate how architectural complexity influences both the structural 

and perceptual fidelity of generated medical images across diverse clinical datasets. 

A. Baseline Models: ResNet-18 and ResNet-50 

The baseline models consist of ResNet-18[1] and ResNet-50[1], which are widely used residual 

convolutional neural networks. These models leverage skip connections to prevent vanishing gradient 

problems and allow efficient training of deep architectures. In this study, ResNet backbones were adapted 

for image-to-image translation tasks, where the network learns to map input noise or low-dimensional 

representations to realistic medical images.  

B. Squeeze-and-Excitation Integration  
To analyze the impact of channel attention, Squeeze-and-Excitation (SE) blocks were integrated into the 

ResNet-18 [1] and ResNet-50[1] architectures. SE blocks recalibrate channel-wise feature responses by 

explicitly modeling inter-channel dependencies. This mechanism emphasizes informative features while 

suppressing less relevant ones, potentially improving the generation of fine-grained details in medical 

images. The SE block operations consist of three stages: squeeze (global average pooling), excitation (fully 

connected bottleneck), and recalibration (channel-wise multiplication).  

C. Training Setup 
All models were trained under identical conditions to ensure a fair comparison. The training process 

employed the Adam optimizer with a learning rate of 0.0002 and β parameters of (0.5, 0.999). A batch size 

of 16 was used, and training was performed for 200 epochs with early stopping based on validation loss. 

To enhance generalization and prevent overfitting, data augmentation techniques such as random rotations, 

horizontal and vertical flips, and intensity scaling were applied. The loss function combined Mean Squared 

Error (MSE) with perceptual loss to balance pixel-level accuracy and feature-level realism. 

D. Datasets 
In this study, three publicly available medical imaging datasets with different clinical focuses were 

utilized to comprehensively evaluate the proposed models. The Messidor2 [4] dataset consists of high-

resolution retinal fundus images, primarily used for diabetic retinopathy detection and grading. This dataset 

presents challenges in capturing fine-grained vascular structures and lesions, making it a benchmark for 

retinal image synthesis. The PapSmear[5] dataset includes cytological images of cervical cells, used for 

screening and classifying pre-cancerous and cancerous lesions. These images contain significant 

morphological variability at the cellular level, requiring models to synthesize accurate nuclear and 

cytoplasmic textures. Lastly, the CVC-ClinicDB [3] dataset contains colonoscopy images with pixel-level 

annotations for polyp segmentation. This dataset is widely used in gastrointestinal image analysis, as polyps 

vary greatly in shape, size, and texture. By including datasets from ophthalmology, pathology, and 

endoscopy domains, the experimental setup ensures that the models are tested across diverse imaging 

modalities and medical synthesis challenges. Representative examples from the datasets are provided in 

Figure 1. 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

250 

 

Fig. 1. Datasets. (a) Messidors2 [4] (b) CVC-ClinicDB [3] (c) PapSmear [5] 

E. Evaluation Metrics 
For quantitative evaluation, both pixel-level and perceptual similarity metrics were employed. Mean 

Squared Error (MSE) [6] measures the average squared difference between the generated and ground truth 

images, focusing on pixel-wise accuracy. To assess perceptual realism, Learned Perceptual Image Patch 

Similarity (LPIPS) [9] compares deep feature representations extracted from pre-trained networks, 

providing a measure closer to human visual perception. Furthermore, Fréchet Inception Distance (FID) [7] 

and Kernel Inception Distance (KID) [8] evaluate the distribution similarity between real and generated 

images using features from the Inception network; both metrics capture high-level structural and textural 

fidelity, where lower scores indicate better performance. 

 

III. EXPERIMANTAL RESULTS 

 

 

Fig. 2. Messidor2 dataset ResNet-18, SE-ResNet-18, ResNet-50, SE-ResNet-50 image results  

 

When analyzing the Messidor2 dataset, it is observed that ResNet-18 produced the poorest visual results, 

whereas SE-ResNet-50 yielded the best visual outcomes. 
 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

251 

 

Fig. 3. CVC-ClinicDB dataset ResNet-18, SE-ResNet-18, ResNet-50, SE-ResNet-50 image results 

When analyzing the CVC-ClinicDB dataset, it is observed that ResNet-18 produced the poorest visual 

results, whereas SE-ResNet-50 yielded the best visual outcomes. 

 

 

Fig. 4. PapSmear ResNet-18, SE-ResNet-18, ResNet-50, SE-ResNet-50 image results  

When examining the visual outputs of the Pap Smear dataset at Figure 4, it is observed that ResNet-18 

produced the poorest results, while SE-ResNet-50 achieved the best visual outcomes. Additionally, ResNet-

50 was observed to generate white pixel artifacts on gray-scale images, whereas SE-ResNet-50 

demonstrated superior performance in mitigating this issue. 

 

Table 1.  Quantitative Results on the Messidor2 

 LPIPS [9] ↓ FID [7] ↓ KID [8] ↓ MSE [6] ↓    

SE-ResNet-8 0.447 217.29 0.332 0.018    

SE-ResNet-50 0.224 162.87 0.242 0.001    

ResNet-18 [1] 0.249 197.83 0.314 0.002    

ResNet-50 [1] 0.175 137.68 0.190 0.001    
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In the evaluation performed on the Table 1 Messidor2 dataset, ResNet50 achieved the best results across 

all metrics. It particularly stands out with values of LPIPS (0.1750), FID (137.68), KID (0.1909) and MSE 

(0.001222). SE-ResNet50 demonstrated the second-best performance in all metrics. In contrast, SE-

ResNet18 exhibited the lowest performance, especially with significant degradation in LPIPS and FID 

values. These results indicate that while SE blocks provide improvements in larger models, they do not 

always enhance performance in smaller architectures. 

 

Table 2. Quantitative Results on the CVC-ClinicDB 

 LPIPS [9] ↓ FID [7] ↓ KID [8] ↓ MSE [6] ↓ 

SE-ResNet-18 0.370 306.80 0.363 0.017 

SE-ResNet-50 0.414 351.45 0.425 0.003 

ResNet-18 [1] 0.430 380.97 0.470 0.005 

ResNet-50 [1] 0.390 340.69 0.405 0.003 
 

According to the CVC-ClinicDB results at Table 2, ResNet50 achieved the best performance in most 

metrics. It is particularly notable with FID (340.69) and MSE (0.003075) values. Interestingly, the best 

results in LPIPS and KID metrics were obtained by SE-ResNet18 (LPIPS = 0.3701, KID = 0.3635). This 

suggests that channel attention mechanisms can provide benefits in terms of perceptual similarity (LPIPS) 

and statistical distribution similarity (KID) in certain cases.  

These results indicate that in challenging tasks like polyp segmentation, deeper models (such as 

ResNet50) offer better structural and pixel-level synthesis quality, while SE blocks can enhance perceptual 

quality under specific conditions. 

 

Table 3. Quantitative Results on the PapSmear Dataset 

 LPIPS [9]↓ FID [7] ↓ KID [8] ↓ MSE [6]↓ 

SE-ResNet-18 0.360 439.95 0.668 0.003 

SE-ResNet-50 0.296 396.21 0.585 0.001 

ResNet-18 [1] 0.344 472.97 0.716 0.002 

ResNet-50 [1] 0.268 387.10 0.561 0.001 
 

 

According to the PapSmear dataset results at Table 3, ResNet50 demonstrated superior overall 

performance across all metrics. It achieved the best results in LPIPS (0.2687), FID (387.10), KID (0.5618) 

and MSE (0.001716).  The smaller model, SE-ResNet18, showed the lowest performance across all metrics. 

These results indicate that SE blocks provide partial benefits in deeper architectures, but models like 

ResNet50 already offer high performance even without attention mechanisms. 

In this comparison, ResNet50 consistently achieved the best results in most metrics, particularly in 

LPIPS, FID, KID and MSE. The smaller model, SE-ResNet18, generally exhibited lower performance. 

This outcome shows that deeper models provide more stable results in medical image synthesis, and that 

SE blocks offer limited improvements when integrated into deeper networks. 
 

IV. RESULTS AND DISCUSSION 

In this study, different deep learning architectures used for medical image synthesis were compared. The 

experiments were conducted on three different datasets: Messidor2, PapSmear, and CVC-ClinicDB. The 

evaluations were based on both pixel-based and perceptual quality metrics. The numerical results show that 

deep architectures (especially ResNet50) are more successful in medical image synthesis. In the Messidor2 

dataset, ResNet50 achieved the best performance in all metrics. It achieved the lowest LPIPS (0.1750), the 

lowest FID (137.68), and KID (0.1909), proving that the generated images are closest to the real data in 

terms of both pixel-level and perceptual quality. Additionally, with MSE (0.001222), it has the lowest error 
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rate. SE-ResNet50 provided the second-best results in this dataset, and it was observed that integrating SE 

blocks into deep architectures provided a partial contribution. On the other hand, SE-ResNet18 showed the 

lowest performance in both LPIPS and FID values. This indicates that SE blocks in small architectures 

excessively fill the model capacity and reduce synthesis quality. 

A similar situation was observed in the PapSmear dataset. ResNet50 again achieved the best overall 

results and obtained the highest success in LPIPS (0.2687), FID (387.10), KID (0.5618), and MSE 

(0.001716). This shows that SE blocks provide some local improvements but do not create a significant 

difference in overall performance. Additionally, in visual comparisons, it was observed that the images 

generated with ResNet50 preserved cell details more clearly, while mosaicking and artificial artifacts were 

less noticeable. In other models, detail loss, blurring, and artificial patterns were clearly observed. 

In the CVC-ClinicDB dataset, the results showed some differences. SE-ResNet18 achieved the lowest 

LPIPS (0.3701) and KID (0.3635) scores, standing out in terms of perceptual similarity. However, despite 

this, in terms of structural accuracy and error rate, ResNet50 achieved the lowest MSE (0.003075) providing 

the best performance. SE-ResNet50 again took second place in some metrics, and it was observed that SE 

blocks provided partial contributions in deep architectures. However, similar improvement was not seen in 

the small model SE-ResNet18. 

In general, the findings of this study show that deep architectures are more successful in medical image 

synthesis. Especially ResNet50 has shown superior performance in both perceptual and pixel-based metrics. 

SE blocks provide improvement in some metrics when added to deep architectures, but SE integration may 

negatively affect performance in small models (ResNet18). This indicates that channel-based attention 

mechanisms are sensitive to architectural depth. Furthermore, visual quality evaluations are consistent with 

numerical metrics; in the images generated with ResNet50, cellular details were preserved more 

successfully, while in other models, detail loss, blurring, and distortions were observed. These findings 

show that architectural choice is critical in medical image synthesis, and that both structural and perceptual 

metrics should be evaluated together. 

 

V. CONCLUSION 

In conclusion, this study demonstrates that deep convolutional neural network architectures, particularly 

ResNet50, yield superior performance in medical image synthesis tasks across different datasets. The 

experiments conducted on Messidor2, PapSmear, and CVC-ClinicDB datasets reveal that ResNet50 

consistently achieves better results in both pixel-based metrics (MSE) and perceptual quality measures 

(LPIPS, FID, KID). The integration of Squeeze-and-Excitation (SE) blocks provides partial improvements 

in some cases, especially when combined with deeper networks; however, their use in shallow models such 

as ResNet18 can lead to performance degradation. Visual assessments align with numerical findings, 

confirming that ResNet50 better preserves structural details and achieves more realistic image generation. 

These results highlight the importance of architectural choice in medical image synthesis and emphasize 

the need to evaluate models comprehensively using both perceptual and structural quality metrics. 
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