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Abstract – Ultrashort pulse laser micromachining is a transformative technology for precision 

manufacturing, enabling intricate microchannel fabrication across diverse applications such as 

semiconductors and microfluidics. This research presents a novel Deep Neural Network (DNN)-based 

simulator designed to autonomously predict optimal laser processing parameters, enhancing energy 

efficiency and precision. Implemented in Python within a Jupyter Note- book environment, the simulator 

leverages critical inputs, including microchannel dimensions, refractive index, optical absorption 

coefficient, and propagation loss, to optimize laser settings for materials like fluorides, germanates, and 

silicates. The model achieves high predictive accuracy, with R² scores exceeding 0.98 for pulse duration, 

repetition rate, and speed, and 0.93 for pulse energy, as validated through metrics like Mean Absolute 

Error (MAE) and Mean Squared Error (MSE). This work establishes a robust framework for automated 

parameter optimization, reducing experimental trials and advancing smart manufacturing. Future 

enhancements include real-time parameter adjustment and expanded material compatibility, positioning 

the simulator as a pivotal tool for industrial and academic applications. 

 
Keywords – Ultrashort Pulse Laser Micromachining, DNN, MSE and MAE. 

 

I. INTRODUCTION 

Ultrashort pulse laser micromachining, utilizing pulses in the femtosecond to picosecond range, has 

revolutionized precision manufacturing by enabling high- quality microscale structuring with minimal 

thermal damage [1]. This technology is critical for applications in microfluidics, semiconductor devices, 

and biomedical engineering, where precise microchannel fabrication is essential. The process, particularly 

Femtosecond Laser Direct Writing (FLDW), allows for single- step, three-dimensional structuring with 

low propagation losses, making it ideal for advanced photonic systems [2]. 

However, optimizing laser parameters such as pulse duration, energy, repetition rate, and speed remains 

challenging due to material-specific optical and thermal properties. For instance, fluorides, germanates, 

and silicates exhibit dis- tinct refractive indices and absorption coefficients, necessitating tailored 

parameter adjustments [3]. Traditional optimization relies on time-intensive trial-and- error, which is 
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inefficient and resource-heavy. Deep Neural Networks (DNNs) offer a solution by modeling complex, 

non-linear relationships in laser-material interactions, enabling automated parameter prediction [4]. 

This research develops a DNN-based simulator to predict optimal laser set- tings, enhancing precision 

and energy efficiency. By integrating material properties and microchannel dimensions, the simulator 

provides a scalable, automated approach to micromachining, addressing limitations in current 

manufacturing practices [5]. 

FLDW requires the manufacturing process of ultra-short pulses which enable interaction with pre-

defined materials. The method lets operators guide both electron mobility and nuclear arrangement 

changes with precision. The stimulus for emission occurs through laser beam focusing and the machine 

generates photons using its gain medium [6]. A monochromatic beam from coherent photon emission 

creates interactions which can result in material ablation as well as melting or vaporization. 

Ultrashort pulse laser micromachining employs sub-picosecond pulses to achieve precise material 

ablation with minimal heat-affected zones [6]. Its versatility enables processing of metals, ceramics, 

polymers, and biological tissues, supporting applications in microelectronics and biomedical 

engineering [7]. However, parameter optimization remains complex due to material variability and 

high equipment costs [8]. Predictive modeling enhances laser machining by optimizing parameters 

through machine learning and physical simulations. Neural networks and regression models 

predict outcomes based on historical data, reducing experimental costs [9]. Studies like 

Shimahara et al. (2023) demonstrate energy-efficient microchannel drilling using deep learning, 

though limited to specific materials [10]. Real- time error compensation, as explored by Mills et al. 

(2021), further improves efficiency [11]. 

DNNs excel in engineering applications by modeling complex, non-linear relationships.  In laser 

machining, they predict parameters like pulse energy and speed based on material properties [4]. 

Applications span material science, energy systems, and robotics, where DNNs optimize processes 

and enable predictive maintenance [12]. Random Forest Regression, used in this study, is 

particularly effective for non-linear data due to its ensemble approach [13]. 

 

II. METHODOLOGY 

Efficient laser parameter prediction for ultrashort pulse micromachining has been made possible by 

recent developments in machine learning. The model optimizes outputs like pulse duration, energy, 

repetition rate, and speed by using input factors like material type (fluoride, germanate, silicate), focal 

diameter, spatial dimensions, wavelength, propagation loss, refractive index, and optical absorption 

coefficient. A simplified block diagram of methodology is shown (see Figure 1). Developing the study 

project's strategy requires an effective combination of data preparation, DNN architecture design, and 

hyper parameter setting. Following are the respective steps for developing the simulator. 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

29 

 

Fig 1: Proposed block diagram for the designing of DNN simulator. 

A.  Dataset Preprocessing 

This study contains around 500 different sample examples that come from fluoride, germanate, 

and silicate materials. The research selected fifty laser micromachining examples with diverse material 

properties combined with various parameters for characterization. The system gathered various output 

results such as pulse duration together with pulse energy and repetition rate and machining speed under 

standardized experimental environments. 

To ensure data integrity, multiple mathematically grounded techniques were applied: 

1. Handling Missing Values For a feature vector  𝑥 = [𝑥1, 𝑥2, … … . . 𝑥𝑛],  if a value 𝑥𝑖 is missing, we 

replace it using: 

Mean Imputation: 

 𝑥𝑖 = 
1

𝑛
∑ 𝑥𝑖𝑗

𝑛
𝑗=1   (1) 

where 𝑁 is the number of non-missing samples. 

Median Imputation (if data is skewed): 

 𝑥𝑖 = 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑥𝑖𝑗)  (2) 

2. Outlier removal was conducted using a two-step filter: 

Z-score filter: 

 𝑧 =
𝑥𝑖− 𝜇

𝜎
  (3) 

where 𝜇 is the mean of the feature, 𝜇 is the standard deviation and Values with  |𝑧|  > 3 are 

considered outliers. 

These steps ensured that noisy experimental anomalies were handled without losing valuable 

patterns in the data. The data required conversion before machines could process it effectively for 

learning purposes. This process made the model training faster while simultaneously enhancing the clarity 

of result interpretations.  All features are normalized using Min-Max Normalization: 

  𝑥𝑖
𝑛𝑜𝑟𝑚 =  

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
  (4) 

This transformation rescales features to a 0–1 range, which helps in faster convergence of learning 

algorithms and avoids one feature dominating others due to its scale. The process of deriving significant 

parameter relationships made an essential part of feature engineering. For A combined parameter between 

maximum width and height was admitted into the model for data improvement as expressed; 

  𝐷 =  √(𝑤𝑖𝑑𝑡ℎ)2 −  (ℎ𝑒𝑖𝑔ℎ𝑡)2  (5) 

 The combined parameter represents dimensions of microchannels more accurately. Additional derived 
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features, such as Deriving energy density values from experimental data allowed the dataset to gain 

contextually applicable information. 

 𝐸𝑑 =
𝑃𝑢𝑙𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑛𝐽)

𝐹𝑜𝑐𝑢𝑠 𝐴𝑟𝑒𝑎 (𝜇𝑚2)
  (6) 

where 𝐹𝑜𝑐𝑢𝑠 𝐴𝑟𝑒𝑎 𝜋(
𝑑

2
)2, by deriving these physical quantities like 𝐷 and 𝐸𝑑, the model interpret data in 

terms that reflect true material behavior during machining. The performance assessment of the simulator 

required splitting the database into training and testing sections. Training of the DNN model involved 

approximately 80% of the evidence data which came from the training dataset. remaining 20% was 

reserved for testing. 

B. Data Preparation 

A standardization process transformed multiple input parameters which consist of focus diameter and 

depth in conjunction with wavelength as well as thermo-optic coefficient. Standardization and 

normalization techniques enabled the DNN model to work with parameters in consistent relative values 

thus avoiding dominant input features. For each input; 

 𝑧 =
𝑥𝑖− 𝜇

𝜎
  (7) 

where 𝜇 is the mean of the feature, 𝜇 is the standard deviation and Values with  |𝑧|  > 3 are considered 

outliers. 

 𝑥𝑖
𝑛𝑜𝑟𝑚 =  

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
  (8) 

Standardization sets feature mean = 0 and variance = 1, making optimization gradients stable. Min-max 

normalization keeps the features within the [0,1] range. The researchers solved missing or incomplete 

data by implementing imputation techniques for all variables. Numerical parameters received mean or 

median substitutions during imputation but the mode served as the substitution value for categorical 

parameters. Identification of experimental outliers required the combination of interquartile range (IQR) 

with Z-scores statistical methods to process pulse energy and machining speed parameters. 

Z-score filter: 

 𝑧 =
𝑥𝑖− 𝜇

𝜎
  (9) 

where 𝜇 is the mean of the feature, 𝜇 is the standard deviation and Values with  |𝑧|  > 3 are considered 

outliers. 

Interquartile Range (IQR): 

 𝐼𝑄𝑅 = 𝑄3 − 𝑄1𝐼  (10) 
𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠: 𝑥𝑖 < 𝑄1 − 1.5 × 𝐼𝑄𝑅 𝑜𝑟 𝑥𝑖 > 𝑄3 + 1.5 × 𝐼𝑄𝑅 

These techniques identify extreme values that can distort learning. For example, a propagation 

loss of 1000 dB is unrealistic and will skew model weights if not removed. 

This work contains mainly numerical parameters while converting any existing categorical features (such 

as material type) into machine-readable format. One-hot or label encoding methods enabled the 

preservation of data information before integrating models into the DNN framework. Categorical features 

like "Material Type" (fluoride, germanate, silicate) are converted to binary vectors so that the DNN can 

process them. 

 𝑥𝑖 =  {
1     𝑖𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑖
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (11) 

Fluoride= [1,0,0], Germanate= [0,1,0] and Silicate= [0,0,1] 

The model training benefited from scaling all input variable les to establish standardization across 

different parameter ranges. The dataset received min-max scaling as a normalization technique to 

harmonize the parameters of focus diameter (measured in micrometers) and propagation loss (measured 

in decibels). Smooth operations removed measurement noise and environmental noise detected in the 

collected dataset. 

The model received evaluation through unbiased testing of training and validation and test subsets. 
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The data was separated into training (80%) and testing (20%) components that preserved data diversity 

within each segment. The methodology performed these preprocessing steps to develop a dataset which 

enabled effective training of the DNN-based simulator. 

C. Simulator Development 

Simulator development stands as the essential driver for improving ultrashort pulse laser 

micromachining methodology. Prediction and optimization of different laser machining procedures 

becomes possible through the processes of micromachining. parameters. In the context of your research, 

the development of a Deep Neural Network A DNN-based system acts as a reliable answer to the 

problems encountered during micromachining operations. The system combines both predictive and 

optimization functions through micromachining technology. The DNN design intentionally contains the 

following parameters shown in Table 1: 

Table 1: Input and Output Parameters for Laser Micromachining 

 Input Parameters Output Parameters 

1 Material Pulse Duration (fs) 

2 Focus Diameter(µm) Pulse Energy (nJ) 

3 Depth(µm) Repetition Rate (kHz) 

4 Max Width(µm) x Max Height(µm) Speed (µm/s) 

5 Wavelength(ns)  

6 Propagation Loss(dB)  

7 Refractive Index  

8 Thermo-Optic Coefficient  

   

The two fundamental optical characteristics of material-laser interaction determine propagation and light 

absorption through the refractive index (𝜂) and optical absorption coefficient (α). The laser light needs to 

bend by a certain amount when entering into a substance which is quantified through the refractive index 

(η). It is calculated as; 

 𝜂 = √∈𝓇 𝜇𝓇  (12) 

Where ∈𝓇 is the relative permittivity the amount of material polarization within the field that how 

strongly the substance responds to electric field variations. and 𝜇𝓇 is the relative permeability by which a 

substance shows its reaction to the magnetic aspect within light. The minimum material spot size 

originates from the focus diameter (𝑑𝑓 ) that relates beam waist (𝑤𝑜) to laser wavelength (𝜆). It is given 

by: 

 𝑑𝑓 =
4𝜆

𝜋𝑤𝑜
   (13) 

 The specific measurement unit for laser wavelength is micrometers or nanometers where 𝜆 denotes 

the wavelength value. The narrowest point of the beam has a beam waist radius value designated as 𝑤𝑜. 

One pass of laser penetration or material removal is defined by the depth of ablation (𝑑). Material ablation 

depth (𝑑) depends on incident laser energy (𝐸) and absorption coefficient (𝛼) through the following 

calculation:  

 𝑑 =
1

𝛼
𝑙𝑛

Ε

Ε𝑡ℎ
     (14) 

Where the laser pulse energy 𝐸 serves as a measure in Joules to determine the applied quantity. Ablation 

beginning requires Ε𝑡ℎ threshold energy which stands for the minimum necessary energy. The optical 

absorption coefficient 𝛼 measured in 𝑐𝑚−1 determines light absorption strength of materials in terms of 
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𝑐𝑚−1 . The cross-sectional area of the microchannel (𝐴) depends on its maximum properties of width (𝑤) 

and height or depth (ℎ) as measured during laser ablation. 

 𝐴 = 𝑤. ℎ (15) 

According to research the wavelength of light has a significant impact on the minimal energy required to 

produce ablation. The threshold energy shows an inverse relationship with the square of wavelength 

values. 

 𝐸𝑡ℎ ∝
1

𝜆2  (16) 

This mean lower wavelengths reduce the power needed to start material removal which enables exact 

micromachining operations. Thermo-optic coefficient (𝛽) measures the alteration of material refractive 

index when temperature shifts (Δ𝑇). The calculation for refractive index modification depends on the 

following equation: 

 ∆𝑛 =  𝛽∆𝑇 (17) 

Where the thermo-optic coefficient 𝛽 exists as a measurement unit per °C. The temperature variation 

expressed in degrees Celsius takes the symbol Δ𝑇. The capability of a material to predict laser heating 

effects during machining makes this property essential. The pulse duration (𝜏) refers to the time over 

which the laser emits energy in a single pulse. The formula connects pulse energy quantity (𝐸) with peak 

power value (𝑃𝑜). 

 𝜏 =
𝐸

𝑃𝑜
  (18) 

Where the pulse energy 𝐸 has units of Joules and the peak power of the pulse equals 𝑃𝑜. while 

measurement unit remains in Watts. The pulse energy (𝐸) calculates using average power output (𝑃𝑎𝑣𝑔) 

and repetition rate (𝑓) according to the following equation:  

 𝐸 =  
𝑃𝑎𝑣𝑔

𝑓
  (19) 

where 𝑃𝑎𝑣𝑔 is average power and 𝑓 is repetition rate. The repetition rate (𝑓) affects the degree of pulse 

overlap during laser scanning. The overlap ratio (𝑂) is expressed as: 

 𝑂 =  
𝑣

𝑓.𝑑𝑓
  (20) 

where 𝑣 is the scanning speed (µm/s or mm/s) and 𝑑𝑓 is the focus diameter (µm). Higher overlap means 

that consecutive laser pulses hit closer areas, affecting the smoothness and depth of the machined channel. 

Material removal rate (𝑅) is affected by multiplying scanning speed (𝑣) with the channel cross-sectional 

area (𝐴); 

 𝑅 = 𝑣. 𝐴  (21) 

where the material removal rate (𝑅) in µm3 /s results from multiplication of the scanning speed (𝑣) by the 

microchannel cross-sectional area (𝐴). 

 

III. RESULTS 

The research investigates evaluation results obtained from using a DNN-based simulator to forecast 

laser micromachining parameters. The predictor evaluated its forecasting ability through measurements 

across all material types combined with different microchannel configurations. The simulator needed to 
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identify its capability for accurate representation of experimental laser processing results including pulse 

duration, pulse energy, repetition rate and machining speed values. Different sample cases provided input 

for both experimental and simulated data comparison to evaluate prediction accuracy.  

One of the fluoride samples was evaluated and compared our predicted simulator's performance to the 

actual experimental results. Variations between real and anticipated values were modest (see Figure 2). 

The error margin was remarkably modest, with pulse duration deviating by only 0.32%, pulse energy by 

0.94%, repetition rate by 0.17%, and speed by 0.16%. This precision highlights the efficiency of our 

simulator in forecasting the best laser processing parameters. 

 

Figure 2: Prediction error % for fluoride sample based on actual and predicted output. 

To better evaluate our DNN based simulator, we tested another sample of fluoride material with a 

different set of parameters. Our simulator estimated a pulse duration of 4.749fs, energy of 7.566nJ, 

repetition rate of 121.968kHz, and speed of 13.941µm/sec. Predicted numbers were nearly identical to the 

actual ones, proving our model's remarkable accuracy (see Figure 3). The error margin was exceedingly 

small, with Pulse Duration deviating by only 0.06%, Pulse Energy by 0.01%, Repetition Rate nearly 

identical and Speed by 2.52%. 

 

Figure 3: Prediction error % for fluoride sample based on actual and predicted output. 

As part of ongoing effort to validate the versatility and precision of DNN-based simulator, a 

representative sample of germanate material was analyzed, focusing on its unique optical properties and 

machining requirements. A good correlation between expected and actual results, with slight variances 

(see Figure 3). The Pulse Duration estimate exhibited an error margin of around 1.03%, while the Pulse 
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Energy prediction differed by about 1.10%. The Repetition Rate was predicted with a tiny variation of 

0.01%, whereas Speed had a little variance of 0.06%. These findings demonstrate the simulator's ability 

to accurately forecast laser processing parameters for germanateing materials, making it a useful tool for 

optimizing micromachining procedures. 

 

Figure 4: Prediction error % based on actual and predicted output for germanate. 

Aiming to further assess the reliability of simulator, another example involving silica material was 

examined, highlighting its intricate machining characteristics. The study found a difference of around 

1.82% in pulse duration and 0.52% in pulse energy (see Figure 5). 

 

Figure 5: Prediction error % based on actual and predicted output for silicate. 

The Repetition Rate prediction varied by 0.81%, but the Speed prediction differed by only 0.15%. 

These results show that the simulator is highly accurate in forecasting laser micromachining outcomes for 

silica material, with just slight differences found. This level of precision demonstrates the simulator's 

efficiency in real-world applications.The simulator created seeks to predict key system performance 

measurements, how the system performs under various conditions. Simulator's accuracy of 86.61% is 

remarkable, demonstrating its capacity to accurately forecast laser processing parameters in a variety of 

difficult situations. The simulator's high degree of precision makes it a priceless tool for streamlining 

intricate micromachining procedures, opening the door to increased productivity and creativity in 

industrial settings. 
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Figure 6: Scatter plots with random forest lines comparing actual vs predicted values for Pulse Duration, illustrating the 

performance of the model across different parameters 

The Random Forest regression model performs exceptionally well in predicting Pulse Duration 

(fs), as indicated by the R² Score of 0.9855. This suggests that the model explains 98.55% of the variance 

in the actual values, demonstrating a high level of accuracy. The Mean Absolute Error (MAE) of 0.1238 

fs and Mean Squared Error (MSE) of 0.0276 indicate minimal deviation between the predicted and actual 

values (see Figure 6). 

 

Figure 7: Scatter plots with random forest lines comparing actual vs predicted values for Pulse Energy, illustrating the 

performance of the model across different parameters. 

The Random Forest regression model's performance on predicting Pulse Energy (nJ) appears to be 

suboptimal. The R² Score of 0.9395 suggests that the model explains only about 93.95% of the variance 

in the actual values, indicating a moderate correlation but significant room for improvement. 

Additionally, the Mean Absolute Error and Mean Squared Error highlight noticeable deviations between 

predicted and actual values (see Figure 7). 

From the scatter plot, we observe a substantial spread of data points around the red trendline, with 

many points deviating widely. This suggests that the model struggles with capturing the underlying 

patterns in the data, leading to inconsistent predictions. The shaded region around the regression line 

further reflects high variability in the predictions. This performance indicates that Random Forest may not 
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be the best choice for modeling Pulse Energy (nJ), and other regression techniques such as Gradient 

Boosting or Support Vector Regression should be explored to improve accuracy. 

 

Figure 8: Scatter plots with random forest lines comparing actual vs predicted values for Repetition Rate, illustrating the 

performance of the model across different parameters. 

The performance of the Random Forest regression model for predicting Repetition Rate (kHz) 

appears to be significantly better compared to its performance on Pulse Energy. The R² Score of 0.9977 

indicates that the model explains approximately 99.77% of the variance in the actual values, suggesting a 

strong correlation between predicted and actual values. However, the Mean Absolute Error and the Mean 

Squared Error indicate that there are still some deviations between the predictions and actual values (see 

Figure 8). The scatter plot shows that most data points align well with the regression line, although there 

are some visible outliers, particularly at higher values of Repetition Rate. The shaded confidence interval 

suggests a relatively low level of uncertainty around the predictions, except at the upper range where 

variability increases. 

 

Figure 9: Scatter plots with random forest lines comparing actual vs predicted values for Speed, illustrating the performance of 

the model across different parameters. 

The Random Forest regression model demonstrates exceptional performance in predicting Speed 

(µm/s). The R² Score of 0.9999 indicates an almost perfect fit, meaning that the model explains nearly 

100% of the variance in the actual values. Additionally, the Mean Absolute Error (MAE) of 0.2131 µm/s 
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and the Mean Squared Error (MSE) of 0.0774 suggest that the deviations between predicted and actual 

values are extremely minimal (see Figure 9). 

Visually, the scatter plot confirms this outstanding accuracy, as the predicted values align almost 

perfectly with the actual values along the red regression line. There are no visible outliers or significant 

deviations, and the confidence interval is nearly nonexistent, indicating a high level of certainty in 

predictions. Such near-perfect performance suggests that the relationship between input parameters and 

Speed is highly deterministic, making Random Forest an excellent choice for this particular parameter. 

However, it is important to ensure that the model is not overfitting by validating its performance on 

unseen test data. 

 

IV. DISCUSSION 

The simulation platform enhances its capabilities by implementing DNN-based research about 

ultrashort pulse laser micromachining which serves both for parameter optimization during laser 

processing and simulation functionality. The future development will concentrate on improving the 

simulator by enhancing simulation capabilities as well as precision levels and extending material 

applicability and production parameter scope. Researchers need to develop complex modeling approaches 

with real-time parameter management systems to make the simulator suitable for various processing 

materials and conditions.Simulation of cumulative pulse interactions stands out as the essential 

improvement. Continuous development of the DNN-based simulation model indicates the path toward 

becoming an effective dependable accessible instrument for ultrashort pulse laser micromachining 

systems. Real-time control enhancement combined with expanded databases makes the simulator 

accomplish laser machining optimization advancement alongside integrated ensemble learning methods 

and usability functions. Such developments will create a sophisticated tool which researchers and 

engineering professionals can use to improve both laser micromachining operations and produce 

adaptable and precise laser-based manufacturing processes. 

 

V. CONCLUSION 

The main purpose of this research was to create a simulator that uses Deep Neural Networks (DNNs) 

for ultrashort pulse laser micromachining optimization to enhance precision and minimize energy usage. 

The simulator uses material properties and microchannel dimensions as input variables to predict 

important parameters including pulse length and repetition rate as well as pulse energy and speed. The 

application of DNN models enhances laser machining precision and flexibility to an extent which makes 

them essential for microelectronic and medical equipment industrial applications. The statistical measures 

selected for model evaluation consisted of MAE, MSE, and R2 which showed the model could effectively 

predict pulse speed and length. The testing requires further development to expand material variations 

that include complex substrates including polymers and composites and additional models for cumulative 

pulse impact analysis. The simulator could be used by a broader range of users through a friendly 

interface but additional real-time optimizers alongside ensemble learners would elevate its capabilities. 

Laser micromachining obtains benefits from DNN-based simulators that enhance accuracy together with 

adaptability and operational efficiency. The enhanced development of this simulator points towards 

becoming a vital operational instrument for industry-wide laser machining enhancement. 
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