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Abstract – The increasing intricacy of biomedical systems has necessitated the development of integrated 

computational models that merge predictive precision with structural clarity. This article outlines the 

creation and validation of a machine learning-based clinical decision support system for the early 

evaluation of heart attack risk, enhanced by a conceptual network architecture relevant to broader 

biological contexts, including microbiomes. A clinical dataset comprising nine cardiovascular markers 

was used to assess three supervised algorithms: K-Nearest Neighbors, Naive Bayes, and Decision Tree. 

The decision tree achieved an accuracy of 98%, validating its efficacy for structured health data. A 

Python-based interface was developed, facilitating both manual and PDF data input for real-time clinical 

use.  

 In addition to categorisation, each patient was represented as a node in a similarity network, facilitating 

the conversion of flat data into a topological structure. The outputs of machine learning were interpreted 

as node labels, serving as the foundation for subsequent applications in microbiome-host interaction 

networks and gene co-expression research. This method facilitates the application of spectral graph 

techniques, including Laplacian eigenvalue analysis and matrix functionals (e.g., exp(A), cosh(A)), to 

investigate structural disturbances in biological systems.  

 This twin contribution—an accurate clinical prediction tool and a transferable graph-based modelling 

framework—facilitates transdisciplinary applications in systems biology and computational 

epidemiology. This study advances digital health initiatives by integrating machine learning with 

topological reasoning, providing a reproducible basis for predictive modelling in biologically intricate, 

network-structured fields.   
 

Keywords – Machine Learning, Cardiovascular Risk, Decision Tree, Graph-Based Modelling, Microbiome Networks, Spectral 

Analysis, Health Informatics. 

 

I. INTRODUCTION 

The growing intricacy of biological systems necessitates sophisticated computational techniques to 

comprehend disease mechanisms, particularly in multifactorial conditions such as cardiovascular diseases 
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(CVDs) and microbiome-related disorders. Cardiovascular diseases are the predominant cause of 

mortality globally, frequently advancing asymptomatically until severe incidents, such as myocardial 

infarction, transpire [19]. Thus, early identification and risk assessment are crucial. Supervised machine 

learning (ML), including Decision Trees (DT), K-nearest neighbors (KNN), and Naïve Bayes (NB), has 

demonstrated robust efficacy in risk stratification tasks, achieving high classification accuracy on clinical 

datasets [1], [14].  

Clinicians traditionally rely on biomarkers, such as troponin levels and electrocardiograms (ECGs), for 

post-event diagnosis [15]. Conversely, ML-based predictive models analyze extensive, multidimensional 

patient data to identify early risk indicators. In addition to their predictive utility, these models provide 

interpretability by deriving decision rules that emulate characteristics of intricate network topologies.  

In systems biology, diseases are perceived as emergent phenomena resulting from disruptions in 

molecular interaction networks, such as protein-protein interactions or microbial communities. Graph 

theory and spectrum analysis provide powerful mathematical tools for examining the structural and 

functional characteristics of networks, utilizing metrics such as degree distributions, clustering 

coefficients, and eigenvalue spectra [2], [18].  

Barabási and Albert’s (1999) model specifically introduced scale-free networks, demonstrating that 

preferential attachment mechanisms provide power-law distributions of node degrees. Their foundational 

research revealed that:  

Real-world networks expand through the incremental addition of nodes.  

New nodes preferentially establish connections with existing high-degree (hub) nodes.  

This resulted in networks where the probability P(k) that a node possesses degree k scales as P(k)~k-3. 

Spectral analysis of adjacency or Laplacian matrices in biological networks, particularly microbial ones, 

has demonstrated its efficacy in identifying structural indicators of disease. Gao, Lin, and Wang (2019) 

employed spectral invariants to differentiate between healthy and dysbiotic gut microbiota, illustrating 

how eigenvalue spectra might indicate community-level changes.  

Each patient record is regarded as a node, with clinical parameters (including age, blood pressure, and 

troponin levels) serving as node attributes. The decision boundary of the ML classifier is perceived as a 

topological division inside an implicit network space, correlating health status with structural network 

characteristics. This abstraction serves as the foundation for subsequent expansion to dynamic 

microbiome networks, characterized by scale-free or small-world topology [2], [17].  

 

 
Figure 1. Conceptual network mapping 

Figure 1. A conceptual network where each node is a patient; green nodes = low-risk, red = high-risk. Edge connections 

indicate similarity in clinical feature vectors. The ML classification boundary reflects structural partitioning within the patient 

network. 

 

The model's principal function is clinical risk stratification, and it was integrated with a real-time 

graphical user interface (utilizing Tkinter), PDF data parsing modules, and decision interpretability, 

conforming to practical clinical procedures. Concurrently, it establishes a theoretical foundation for 
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classifiers as network nodes, which is crucial for integrating machine learning with spectral graph 

analysis in future microbiome research.  

 

II. MATERIALS AND METHOD 

The research utilized a publicly accessible dataset obtained from Mendeley Data [13], comprising 

clinical records of individuals assessed for possible myocardial infarction. The dataset consists of nine 

essential parameters related to cardiovascular health (Table 1), which serve as both predictive variables 

for machine learning models and as node properties in subsequent conceptual network modeling. 

 
Table 1. Clinical variables used in the study 

Feature Description Type 

Age Age of the patient (in years) Continuous 

Gender Binary variable (0 = female, 1 = male) Categorical 

Heart Rate Beats per minute (BPM) Continuous 

Systolic BP Systolic blood pressure (mmHg) Continuous 

Diastolic BP Diastolic blood pressure (mmHg) Continuous 

Blood Sugar Fasting blood glucose level (mg/dL) Continuous 

CK-MB Creatine kinase-MB (cardiac enzyme) Continuous 

Troponin Cardiac biomarker indicative of myocardial injury Continuous 

Result (Target) Binary outcome (0 = no heart attack, 1 = heart attack) Binary 

 

A. Data Pre-processing and Transformation 

Before model training, the dataset was subjected to typical preparation procedures utilising the Scikit-

learn framework [12]. Excluded were the missing values. Continuous variables were standardized by z-

score normalization to ensure algorithm stability and precision. The dataset was randomly divided into 

training and testing subgroups in a 75:25 ratio.  

B. Selection of Classifier 

Three supervised machine learning algorithms were executed:  

• K-Nearest Neighbours (KNN),  

• Naïve Bayes (NB),  

• Decision Tree (DT)  

These algorithms were chosen because of their complementary assumptions and clarity of 

interpretation. KNN is a non-parametric model that relies on feature similarity, NB presumes 

independence among predictors, and DT is a tree-structured model characterized by interpretable decision 

rules. The models were assessed in Python 3.11 utilising Scikit-learn 1.3.  
 

C. Model Training and Accuracy Assessment 

Each model underwent training via 10-fold cross-validation on the training set and was assessed on the 

test set, utilising the subsequent metrics:  

• Accuracy  

• Precision  

• Recall  

• F1-score  

• Confusion Matrix  

The Decision Tree classifier demonstrated higher performance with an accuracy of 98%, while KNN 

and Naïve Bayes had accuracies of 80.91% and 59.39%, respectively. 
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Figure 2. KNN prediction workflow (simplified) 

Figure 2 illustrates the rationale behind the K-Nearest Neighbours (KNN) approach. Each ellipse in the 

upper section represents a labelled training data point with a defined class, whereas the red point below 

indicates a new, unlabelled patient record. The algorithm computes the Euclidean distance from the new 

point to each existing point and classifies it according to the prevalent class among its K-Nearest 

Neighbours. This illustration demonstrates the distance-based decision-making process inherent in KNN 

classification.  

This visualisation elucidates how local neighbourhood similarity informs decision-making, which is 

crucial for evaluating patient similarity in clinical risk models.  

 

 

Figure 3. Accuracy comparison between classifiers 

This bar chart illustrates the comparative predictive efficacy of the three machine learning algorithms 

employed in the study: K-Nearest Neighbours (KNN), Naïve Bayes, and Decision Tree. The Decision 

Tree model surpassed the others, attaining an accuracy of 98%, followed by KNN at 80.91% and Naïve 

Bayes at 59.39%.  

Figure 3 illustrates the enhanced efficacy of the Decision Tree in managing non-linearity and inter-

feature correlations in biomedical data, thereby validating its choice as the primary predictive model for 

this investigation.  

D. Conceptual Network Mapping of Patients 

Each patient instance is represented as a node in a network. Edges denote similarity (determined by 

Euclidean distance) in clinical characteristics. Classification results are understood as node labels, 

facilitating abstraction in dynamic biological networks (e.g., microbiomes). This approach enables the 

expansion of predictive models to spectral graph structures, whose adjacency matrices denote essential 

biological connections [2].  
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E. Software Architecture and Graphical Interface  

The software prototype was created in Python utilizing:  

• Tkinter for graphical user interface implementation  

• Scikit-learn for machine learning model deployment  

• PyMuPDF for the extraction of clinical forms from PDFs  

The graphical interface has:  

• A manual input window (Figure 4).  

• PDF-centric upload and analysis interface (Figure 5)  

• Result display screen with risk analysis (Figure 6) 

 

 

Figure 4. GUI for manual entry (the tabs are in the Albanian language) 

Figure 4 illustrates the graphical interface that enables users to manually enter patient health parameters 

(e.g., age, blood pressure, heart rate, biomarker levels). The input fields are distinctly labelled and 

organized into two columns for enhanced usability. A submit button titled “Analizo të dhënat manuale” 

activates the classifier to produce a forecast. Note: The interface elements are presented in the Albanian 

language because the application was designed specifically for implementation in Albania as part of a 

local clinical informatics initiative. The software serves a consultative function and is not intended to 

provide standalone clinical diagnoses or decision-making. All outputs should be interpreted in 

conjunction with professional medical oversight. 

The design enables real-time risk assessment and facilitates practical application by medical 

professionals or researchers without requiring programming expertise. This enhances the model's 

translational relevance in clinical environments.  
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Figure 5. PDF upload screen (the tabs are in the Albanian language) 

Figure 5 illustrates the interface for uploading clinical analysis documents in PDF format. Clicking the 

button "Ngarko dhe analizo dokument" activates a file dialogue, enabling users to choose standardised lab 

reports. The system utilises OCR and NLP processes to extract pertinent data before executing the 

prediction. Note: The interface elements are presented in the Albanian language because the application 

was designed specifically for implementation in Albania as part of a local clinical informatics initiative. 

The software serves a consultative function and is not intended to provide standalone clinical diagnoses or 

decision-making. All outputs should be interpreted in conjunction with professional medical oversight.  

Automated PDF processing improves the scalability and interoperability of the software application, 

ensuring compatibility with current electronic medical record (EMR) systems and traditional paper-based 

workflows.  

 

Figure 6. Output screen with classification result (the tabs are in the Albanian language) 

Figure 6 displays the outcome screen after executing a prediction. The output appears in a pop-up 

window, showing the patient's risk level for a heart attack, as determined by the classifier's assessment. 

The interface includes a loading animation to offer user feedback during processing. Note: The interface 

elements are presented in the Albanian language because the application was designed specifically for 

implementation in Albania as part of a local clinical informatics initiative. The software serves a 

consultative function and is not intended to provide standalone clinical diagnoses or decision-making. All 

outputs should be interpreted in conjunction with professional medical oversight.  

This function delivers comprehensible output with negligible latency, facilitating prompt intervention 

in clinical decision-making. It also illustrates the amalgamation of backend machine learning models with 

frontend visual communication.  
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III. RESULTS 

The assessment of the Heart Attack Prediction Software is used to examine three supervised machine 

learning algorithms: K-Nearest Neighbours (KNN), Naïve Bayes (NB), and Decision Tree (DT), utilizing 

a clinical dataset. The Decision Tree model had the highest classification accuracy at 98.00%, whereas 

KNN and Naïve Bayes attained 80.91% and 59.39%, respectively. The results are encapsulated in Figure 

3.  

The Decision Tree model's exceptional performance aligns with prior research indicating that tree-based 

classifiers excel in biomedical applications characterised by feature interdependence and non-linearity 

[1], [9]. Table 2 presents a comprehensive comparison of evaluation criteria, encompassing accuracy, 

precision, recall, and F1-score.  

 
Table 2. Model Evaluation Metrics 

CLASSIFIER ACCURACY (%) PRECISION RECALL F1-SCORE 

KNN 80.91 0.81 0.79 0.80 

NAÏVE BAYES 59.39 0.61 0.57 0.59 

DECISION TREE 98.00 0.98 0.97 0.98 

 

Upon analysing patient data, the model conveys its choice to the user via a clear and intuitive graphical 

interface. Figure 6 demonstrates that the system produces a pop-up window displaying the expected risk 

level, categorised as either high or low, promptly following data submission. This immediate feedback 

mechanism is a crucial characteristic of clinical decision support technologies, as it converts backend 

statistics into actionable information.  

The graphical user interface (GUI) was evaluated using both manual and automated data entry methods. 

Figure 4 illustrates the manual entry interface, which enables users to input patient information, such as 

age, blood pressure, and troponin levels, directly. This mode is especially beneficial in clinical settings 

devoid of electronic health records.  

Figure 5 depicts the automated input mechanism that accommodates PDF uploads of standardised 

laboratory reports. The software utilises optical character recognition (OCR) and natural language 

processing (NLP) techniques to extract structured data from these documents. This functionality improves 

usability in hospital settings characterised by unstructured data.  

The study proposed a conceptual framework for evaluating model decisions within a network-based 

paradigm, extending beyond mere classification. Each patient instance was represented as a node in a 

similarity graph, with the Euclidean distance between clinical characteristic vectors constituting the 

edges. This abstraction facilitates the mapping of classification results as node labels inside a complicated 

network framework.  

The graph-theoretic depiction of patient data in Figure 2 establishes a fundamental framework for 

extrapolating to other biomedical applications, such as microbiome-host interaction networks or gene co-

expression networks. In these circumstances, nodes may represent microbiological taxa or genes, and the 

classifier's output can be interpreted as health-state indicators situated within topological space. This 

strategy aligns with ongoing initiatives in computational biology to utilize graph-based reasoning and 

spectral learning techniques for predictive modelling in high-dimensional biological systems.  

 

IV. DISCUSSION 

The creation and assessment of the Heart Attack Prediction Software validate the efficacy of machine 

learning (ML) models in medical risk evaluation, particularly in the context of cardiovascular diseases. 

Among the implemented algorithms, K-Nearest Neighbours (KNN), Naïve Bayes (NB), and Decision 

Tree (DT), the Decision Tree classifier exhibited superior performance, with an accuracy of 98%. This 

finding aligns with prior studies, emphasising the Decision Tree's efficacy in modelling structured clinical 

data, owing to its ability to capture nonlinear relationships and feature interactions with minimal 

processing demands [1], [9]. 
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The software offers both manual and automated (PDF-based) data entry methods, enabling real-time, 

user-friendly risk estimates. Its intuitive user interface guarantees accessibility for non-expert users in 

healthcare environments. Upon submission of patient data, the backend machine learning engine produces 

an interpretable and prompt forecast concerning the individual's risk of a heart attack, which is presented 

through a pop-up notification. This enables swift, informed decision-making by physicians and 

corresponds with ongoing initiatives to develop actionable clinical decision support systems.  

This work possesses significant scientific value due to its potential for generalisation and theoretical 

modelling, in addition to its predictive function. Each patient is seen as a node in a similarity network, 

with relationships between patients determined by Euclidean distances in the clinical feature space. This 

study links the machine learning task with network medicine by conceptualising classification as a node 

labelling process within the graph. This expanding discipline conceptualises disease phenotypes as 

disturbances in network connection and modularity [2].  

Figure 2 illustrates this conceptual bridge, depicting a simplified network architecture in which a new, 

unclassified patient node (in red) is connected to previously observed, labelled nodes (in blue). The 

ultimate categorization arises from the predominant class of the nearest neighbours, embodying the 

rationale behind the KNN algorithm within a network context. The graphic also serves as a visual bridge 

between flat feature-based learning and topological pattern recognition.  

This abstraction facilitates the possible utilisation of the system in microbiome analysis, wherein 

network architectures depict microbial communities and their correlations with health or disease 

conditions. Recent research validates that both supervised and unsupervised machine learning algorithms 

can proficiently categorise microbiome profiles and reveal biological patterns in high-dimensional 

taxonomic data [6].  

This abstraction facilitates the prospective use of the system in microbiome and genetic network 

analysis, where graph structures denote microbial taxa or gene modules and their relationships with health 

conditions. In these instances, nodes signify biological entities, while edges denote co-expression or co-

occurrence patterns. Recent research employing IT-enabled WGCNA to uncover regulatory gene modules 

in leukaemia [7] illustrates the significance of graph-based modelling for clinical interpretation and 

therapeutic design. Utilising spectrum analysis on the adjacency matrix 𝐴 or the Laplacian 𝐿 enables 

researchers to get insights from eigenvalue distributions, spectral gaps, and network modularity 

techniques frequently employed in systems biology [4], [5].  

The application of matrix functional, such as exp(A) and cosh(A), along with associated numerical 

approximations, facilitates the modelling of dynamic biological systems comprising millions of nodes and 

linkages.  

Furthermore, analogous modelling techniques employing logistic equations and numerical integration 

approaches have demonstrated efficacy in domains such as economic forecasting, especially in 

elucidating inflation dynamics [8].  

Despite its success, the current program implementation has its limitations. The dataset is limited in size 

and static; further validation on bigger, more diverse cohorts is necessary to confirm scalability and 

generalisability. The feature set employed was chosen empirically. Subsequent iterations of the system 

ought to integrate feature ranking methodologies or centrality-based metrics to enhance the predictive 

inputs. The model, however, utilises cross-sectional data, although cardiovascular risk is a temporally 

dynamic occurrence. Integrating longitudinal health records would improve the temporal resolution and 

precision of predictions.  

This study presents a reliable and effective instrument for predicting heart attacks and establishes a 

basis for extending machine learning classification to network-structured biomedical challenges. The 

system's conceptual expansion into graph-based representations facilitates future investigations into 

microbiome networks, gene regulation networks, and other topologically complex topics. This study 

makes a significant contribution to the multidisciplinary integration of predictive analytics and systems 

biology by aligning machine learning outputs with graph theory and spectral analysis.  
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V. CONCLUSION AND FUTURE WORK 

This paper details the creation and validation of a clinical decision support system, Heart Attack 

Prediction Software, utilising supervised machine learning models for the early identification of 

cardiovascular risk. The Decision Tree model demonstrated exceptional predictive performance among 

the evaluated classifiers, achieving 98% accuracy, thereby affirming its practical utility in primary care 

and emergency triage processes [1]. The software's dual-mode data input (manual and PDF-based) makes 

it highly adaptable to diverse health information systems, while its straightforward interface ensures 

accessibility for non-specialist medical staff.  

This research transcends technical implementation by presenting a graph-based interpretation of 

machine learning predictions. Patients are represented as nodes in a similarity network, with clinical 

features determining the interactions between edges. This method aligns with modern trends in network 

medicine, where disease states are viewed as topological disturbances within biological networks [2]. The 

technique facilitates node-level risk classification and structural pattern detection, thus connecting 

machine learning with graph theory.  

The report outlines numerous critical directions for advancing this effort. One entity augments the 

system with real-time learning capabilities, including reinforcement learning, to provide dynamic 

feedback and risk modification as new data is assimilated. Another approach involves incorporating 

patient monitoring using wearable devices (e.g., smartwatches, heart rate monitors), which would convert 

static risk models into dynamic health graphs by revising adjacency and attribute matrices at each 

temporal interval. An especially promising application is the use of this architecture to analyze 

microbiome data, where microbial taxa, genes, and patient samples serve as nodes within multi-layered 

networks. In these applications, disease prediction is based on the spectral properties of the networks, 

including eigenvalue distribution, centrality-weighted labelling, and spectral entropy [4], [5]. Recent 

toolkits combining ML and microbiome pipelines further reinforce the relevance of such approaches [11], 

[19].  

Figure 7 exemplifies this interdisciplinary trajectory by depicting a conceptual network that 

amalgamates human, microbial, and genetic nodes. Each node is colour-coded according to risk or 

category (e.g., red for high-risk patients, green for low-risk, sky blue for microorganisms, orange for 

genes). At the same time, the edges represent diverse biological or clinical relationships.  

 

 

Figure 7. Vision for future graph-based integration 

Nodes represent patients, microbes, or genes. Edges represent clinical similarity or biological interactions. Classifier output is 

embedded as node states. 

Figure 7 illustrates the shift from individual classification models to topologically informed learning 

systems. In these systems, predictions rely not just on individual data vectors but also on the structural 

position and interaction context of each node within the biological network. This transition facilitates the 

spectral grouping of functional sub networks, temporal modelling of illness progression, and the 
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utilization of graph neural networks or matrix functional, such as exp(𝐴) and cosh(𝐴), for learning on 

extensive biological graphs.  

This study presents a comprehensive implementation of a cardiovascular risk prediction system and a 

conceptual framework for analysing complex networks. It positions machine learning not just as a 

classification tool but also as a means to clarify biomedical complexities through network structures. This 

system's dual functionality, combining clinical informatics and complex systems modelling, promotes 

future progress in bioinformatics, network biology, and computational epidemiology. Moreover, 

analogous machine learning methodologies have demonstrated a favourable influence in energy 

management systems, facilitating intelligent control, optimisation, and sustainability using AI-driven 

decision frameworks [16].  
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