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Abstract – Accurately classifying plant diseases is essential to agricultural research because it maintains 

crop health and ensures food security. Because potatoes are a staple crop with global importance, this paper 

focuses on the specific classification of potato illnesses, including late blight, early blight, and healthy 

plants.Employing Convolutional Neural Networks (CNNs), we introduce two classification models: one, 

developed iteratively through a trial-and-error approach, custom CNN model achieves a notable accuracy 

of 98.04%, while the other harnesses a pre-trained DenseNet169 architecture, surpassing its predecessor 

with an impressive 99.92% accuracy rate. These models leverage high-resolution images of potato leaves 

to effectively distinguish between healthy and diseased plants, providing a foundation for timely disease 

management strategies.The implications of  this research extend to agriculture, with a potential to minimize 

crop losses and promote sustainable potato cultivation practices. 
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I. INTRODUCTION 

One exceptional crop is the potato (Solanum tuberous.), which has global significance, underpinning the 

diets of approximately 1.5 billion people and standing as a cornerstone of modern agriculture. Originating 

in the Andean highlands of South America, the potato has transcended continents and climates, becoming 

a critical component of the world’s food supply. In 2009, its annual yield exceeded a staggering 329 million 

metric tons, solidifying its position as the most important non grain agricultural product in the 

world's food chain [1]. But the path from its Andean origins to international renown has not been without 

danger.Numerous fungal infections can have a detrimental effect on potato quality, productivity, and crop  

health.tubers' quality.Early blight (Alternaria solani) and late blight (Phytophthora infestans) are the two 

most harmful of these adversaries.Two of these enemies are especially dangerous: early blight (Alternaria

solani) and late blight (Phytophthora infestans).The Irish Potato Famine in the 19th century was caused by 
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late blight, a worldwide threat to food security that is estimated to result in yield losses of $6.7 billion  an

nually [2] [3]. Just as cunning, early blight infects older potato leaves and causes significant output losses 

because of its characteristic "bull's eye spot" effect on leaves [5,6]. With our growing understanding of 

numerous potato ailments, the urgency to develop novel strategies for timely detection and control of crop 

diseases is accelerating. Traditional visual scouting remains inconsistent, labor-demanding, and vulnerable 

to observer bias. By contrast, the emergence of digital agriculture marks a decisive shift. Rapid progress in 

imaging modalities—such as hyperspectral sensing, RGB camera systems, and smartphone-based 

acquisition prepared with advances in machine learning and artificial intelligence, is creating powerful 

opportunities to reimagine plant disease diagnostics [4][5]. Focusing on the challenges posed by early and 

late blight in potato production, this study harnesses these technologies to build an effective solution. Our 

goal is to deliver a dependable, efficient pipeline for sensitive and accurate early-stage detection of these 

diseases. To this end, we utilize leading deep learning architectures, including VGG16, VGG19, ResNet-

50, and Mobile Net. Owing to their well-established ability to learn rich hierarchical features and capture 

intricate patterns in data, these models hold strong promise for substantially improving disease 

classification accuracy. [6] [7]. We employ a thorough technique that includes exacting model evaluation 

and parameter adjustment in   order to achieve this goal. By using this method, we hope to advance disease 

categorization in relation to potato harvests. By contrasting our results with those of previous studies and 

benchmark datasets, we aim to show how much more effective and efficient our suggested model is. By 

doing this, our research advances the cause of sustainable agriculture in the face of these powerful enemies 

while also supporting the continuing global efforts to protect potato crop harvests. [8] [9] The details of our 

methodology are covered in detail in the sections that follow. By embracing the potential of advanced 

technology, we aim to empower farmers and agricultural stakeholders with the tools they need to protect 

this vital crop and secure global food supplies. [10] Wajiro higashietal.The purpose of thestudy was to 

evaluate how well VegeCare, a tool, classified the primary leaf diseases affecting potato crops.Three distn

ct classifications were included in the dataset utilized for the investigation.The tool was trained and tested

across several epochs to gauge accuracy.According to the results, the VegeCare tool classified potato illns

ses with an accuracy rate of above 96%. The model demonstrated state-of-the-art performance on both 

private and public datasets.  

 
 

 
Fig.1.Flow chart of the proposed methodology.  

 

In 2022, Kolenda Kashyap Chakraborty et al. [11] applied deep learning to automatically identify early 

and late blight in potato foliage from optical imagery. They trained four convolutional networks—VGG16, 

VGG19, MobileNet, and ResNet50—on the Plant Village dataset, with VGG16 achieving the top baseline 

accuracy of 92.69%. After fine-tuning VGG16 (via parameter adjustments), performance improved 
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markedly, reaching 97.89% accuracy in distinguishing healthy leaves from early and late blight. The study 

presents the optimized VGG16 architecture with accompanying loss and validation accuracy curves, and 

comparative benchmarks indicate the method’s superiority over existing approaches for potato disease 

classification. 

 

II. METHODOLOGY 

 

   Our research project's classification of potato leaf diseases is organized into six separate    stages. figure 

1 provides a graphic representation of these consecutive steps.  

 

Step A: Gathering the dataset.  

Step B: Preparing the data.  

Step C: Augmenting the data.  

Step D: Data splitting is step.  

Step E: Model Training.  

Step F: The models are evaluated.  

 

A. Gathering datasets  

 

    Our suggested approach to treating plant diseases makes use of deep learning methods. The main obj 

active is to use a variety of deep learning models to classify multiple plant diseases with the maximum 

possible accuracy. For this reason, Plant village offers publicly accessible datasets of potato leaves. Figure 

2  

 

B. Preparing the data 

 

    The first stage of computer vision and image analysis is picture pre-processing, in which unprocessed 

image data is carefully transformed to improve the visual input's quality and optimize it for further 

computational processes. This preliminary processing  
 

 
Figure 2: Three typical Plant Village Dataset photos of potato leaves. 

 

phase is essential to data improvement and refinement since it provides a variety of advanced methods 

designed to tackle certain issues with digital images. An essential component of image pre-processing, 

image scaling plays a fundamental function in computer vision. This process entails resizing images—

adjusting their width and height—to optimize them for downstream model training. By converting raw 

inputs into a standardized, more tractable representation, training can be accelerated. In general, models 

train more efficiently on smaller images than on very large ones because computational cost scales with the 

number of pixels (approximately with the square of the linear dimension), so larger inputs substantially 

increase training time. This emphasizes how crucial it is to skillfully resize photos as a tactical tool to speed 

up the machine learning process. Our approach to image scaling involves transforming the original images 

into a standard 256 x 256-pixel size, with both the width and height set to 256 pixels throughout the Keras-
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implemented Deep Learning architecture pipeline's picture loading phase. We use DenseNet‑169 as the 

backbone, which expects input tensors of size 256×256×3. Accordingly, all images are resized to 256 pixels 

in height and width and kept as three-channel (RGB) inputs to meet the network’s specifications and ensure 

compatibility during training and inference. Pictures are complex pixel-value compositions. Black-and-

white, or monochromatic, pictures can be contained in single pixel matrices, while their color counterparts 

require different arrays for each of the three-color channels (red, green, and blue). Pixel values that fall 

between 0 and 255 are commonly represented as unsigned integers that describe color depth or pixel 

intensity. Although it is possible to feed raw photos straight into our models, doing so can provide 

difficulties in the modeling stage, thereby reducing training effectiveness and adding complications. A 

popular tactic to lessen these difficulties is to scale the pixel values to a range between 0 and 1 in order to 

normalize them before model input. Dividing each pixel value by 255 is a useful method that produces a 

matrix with all pixel values falling between 0 and 1. This ideal normalizing procedure improves training 

and overall performance while guaranteeing that the model can handle picture input well.  

 

C. Data augmentation: 

 

    By applying various changes to preexisting images, image augmentation creates more training instances. 

This calculated tactic is used to increase the training dataset's heterogeneity and diversity, which eventually 

improves the model's ability to generalize and navigate a variety of situations. We use the "Image Data 

Generator" function from Kera’s package to do picture augmentation, a crucial preprocessing method, in 

the context of our study. This procedure methodically adding controlled modifications to the photos in our 

training dataset, so enhancing the data's diversity and resilience. In computer vision research, this 

augmentation is an essential phase where the caliber and variety of the training dataset have a big influence 

on how well the model generalizes. To introduce variations of up to 30 degrees, we randomly apply 

rotations to the photos. This enables the model to identify things from various angles, which is an essential 

ability for practical uses. The model can accommodate changes in object size and position thanks to the use 

of random zooming. Pictures are enlarged by 20% or more. 3) Horizontal and Vertical Flipping: By flipping 

photos both horizontally and vertically, we create mirroring effects. This helps handle orientation variances 

by adding mirror images to the dataset. In machine learning and data analysis, data splitting is an essential 

step, especially when working with datasets for tasks like model evaluation and training. It entails splitting  

a dataset into discrete   subsets   forces.  

 

D. Data Splitting 

 

    Data splitting's main objective is to guarantee that machine learning models are successfully trained, 

verified, and tested while avoiding problems like overfitting and data leakage. Using the Image Data 

Generator and validation split parameter, we are configuring data splitting for testing, validation, and 

training. An effective tool for preprocessing and data augmentation in computer vision tasks is the 

ImageDataGenerator. As previously indicated, the machine learning model is trained using 80% of the 

dataset. Here, the data is used to teach the model new features and patterns. During training, a lower 

percentage (10%) is set aside for validation. Without being utilized for training, this validation set aids in 

fine-tuning hyperparameters and tracking the model's performance. Ten percent of the data are set aside for 

testing. To determine how effectively the model generalizes to new data, you can test its performance on 

this designated subset after training is finished.  

 

E. Training Models  

 

   A pre-trained DenseNet169 design serves as the foundation for the model architecture, which is the next 

step. To improve and categorize photos, layers are applied on top of the underlying model. These extra 

layers have a number of uses. To lower the chance of overfitting, dropout layers are incorporated for 

regularization. By normalizing the activations of the preceding layers, batch normalization layers stabilize 
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the training procedure. The model can learn complex features thanks to its tightly connected layers.  

Lastly, there are three units in the output layer, each of which represents one of the three classes. SoftMax 

activation is used to classify several classes. Model compilation is the following stage once the model 

architecture has been established. Important configurations are made during this stage. Choosing the 

objective function is critical; for this multi-class task we adopt categorical cross-entropy, which penalizes 

the divergence between the ground-truth label distribution and the model’s predicted class probabilities. 

Model discrimination is monitored using the Area Under the ROC Curve (AUC), a threshold-independent 

metric that summarizes how well the classifier separates classes. To efficiently minimize the loss and 

promote stable convergence, we optimize with Adam. To control the step size during gradient descent, a 

learning rate of 0.001 is set. The training phase starts as soon as the model is put together. Over 50 epochs, 

the model is trained using the fit approach. The model uses the computed loss and AUC values to determine 

and update its weights at each epoch. After every epoch, the verbose training process offers progress 

updates. The model's weights are adjusted during training to improve image classification; improvements 

are indicated by variations in loss and AUC values. 

The model architecture is defined using TensorFlow and Keras It includes a preprocessing pipeline that 

resizes and rescales input photos to a uniform size and range in order to standardize them. In order to add 

diversity and lessen overfitting, data augmentation is also used. Max-pooling layers come after 

convolutional layers, which make up the model's core. The purpose of these layers is to extract patterns and 

significant information from the input photos. Max-pooling layers minimize spatial dimensions for 

computational efficiency, while convolutional layers use filters to search images for pertinent features.. 

Multiple layers are stacked to create a deep network. Following the convolutional layers, fully connected 

(dense) layers are employed to classify the extracted features. These layers learn to make predictions based 

on the    features detected in the earlier layers. The output layer, using the softmax activation function, 

comprises three units, each corresponding toone of the three potato classes, enabling multi-class 

classification. The model is then compiled, specifying the optimizer (in this case, Adam) to adjust model 

weights during training to minimize the loss function (categorical cross-entropy). The goal of training is to 

reduce the loss and enhance accuracy.During training,which spansmultiple epochs (in this instance , 50 

epochs), the model is exposed to the training data, computes predictions, and updates weights based on the 

loss function.Shuffling the training data set helps prevent the model from learning data order.Additionally, 

validation data is utilizedduring training to monitor performance on previously unseen data and detect 

overfitting.  

 

F. Evaluation: 

 

   Evaluation of the models Finally, after the model is trained and validated, it undergoes testing on a 

separate test dataset that it has not encountered during training or validation. This evaluation phase assesses 

themodel’ sability to generalizeand classify previously unseen data , providing valuable information about 

its real-world performance.  
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Fig.3. CustomCNNmodelaccuracyandloss. 

 

 
 Fig.4. Training and validation accuracy of Densnet169 model.  
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Fig.5. DenseNet-169 training–validation loss profile. 

 

TABLE III Performance summary and training configuration 

SI. NO Architecture 
Optimization 

algorithm 

Objective 

function 

Number of 

Epochs 

Classification 

Accuracy (%) 

Loss value 

1 
Custom 

CNN Model 
Adam 

Categorical CE 50 98 0.039 

2 DensNet169 Adam Categorical CE 50 99.92 0.056 

 
 

TABLE IV COMPARISON WITH EXISTING WORK 

 

SI. NO Reference Methodology used 
Bench Dataset used Accuracy 

achieved 

Outcomes 

1 [11] 

Deep learning with VGG16, 

VGG19,resNet50, MobileNet and 

VGG16finetuned 

PlantVillagedataset 97.89% 3 Class 

problem 

2 [12] 
Conventional MLmethods including 

GraphCut,SVM,k-NN,ANNandRF 

AI Challenger 

Global 

AIContestdataset 

97.40% 5 Class 

problem 

3 [13] 
Conventionalmachinelearningsuchas 

RandomForest 

Owngenerateddataset 

of450images 

97% 2 Class 

problem 

4 [14] 

MaskRegion-basedconvolutionalneu 

ral network (MaskR–CNN) architec 

ture,withresidualnetworkastheback 

bone 

Owngenerateddataset 81.40% 2 Class 

problem 

5 [15] GoogleNet,VGGNet,andEfficientNet 
Owngenerateddataset - 2,4 and 6 

class 

6 [16] VGG16andVGG19 
PlantVillagedataset 91% 3 class 

problem 

7 [17] 

Conventionalmachinelearningsuchas 

K-Mean,Graylevelco-occurrencema 

trix 

PlantVillagedataset 95.99% - 

8 Proposed DensNet169andCustomCNNmodel 
PlantVillagedataset 99.92% 3 class 

problem 
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III. DISCUSSION 

 

    A thorough summary of all the works that are currently available in this particular domain is given in 

table iv. A number of issues make comparing with current models difficult, including the inaccessibility of 

the generated datasets that researchers use and the lack of replication model parameters. Our comparative 

evaluation is predicated on their approaches and results using their own datasets, albeit these challenges. 

The plant village dataset was the subject of three noteworthy research, and our suggested strategy 

outperforms them all. The remaining pieces made use of their own created datasets, which are regrettably 

private. 

IV. CONCLUSION 

 

In order to distinguish between normal, early, and late blights on potato leaves, this study presents a three-

class classification system.Data augmentation for the class with a restricted number of photos 

(healthypotato) is the first stage.Following that, two CNN models—DensNet169 and Custom CNNmodel—

are trained using the combined enhanced data. With a test accuracy of 92.69%, DensNet169 performs better 

than other models, according to performance evaluation. After then, the model is improved through fine 

tweaking, yielding an astounding 99.92% test accuracy.The automated system's ability to successfully 

identify and categorize potato leaves afflicted by various diseases makes it useful for farmers and greatly 

increases crop production in the agricultural industry. It is important to remember that all of the tests in this 

study were carried out on a benchmark dataset, even though it offers insightful information about the 

automatic identification of potato leaves with early and late blight. In order to evaluate the model's 

consistency in real-world applications, future research will concentrate on testing it on live images.  
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