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Abstract — Accurately classifying plant diseases is essential to agricultural research because it maintains
crop health and ensures food security. Because potatoes are a staple crop with global importance, this paper
focuses on the specific classification of potato illnesses, including late blight, early blight, and healthy
plants.Employing Convolutional Neural Networks (CNNs), we introduce two classification models: one,
developed iteratively through a trial-and-error approach, custom CNN model achieves a notable accuracy
of 98.04%, while the other harnesses a pre-trained DenseNet169 architecture, surpassing its predecessor
with an impressive 99.92% accuracy rate. These models leverage high-resolution images of potato leaves
to effectively distinguish between healthy and diseased plants, providing a foundation for timely disease
management strategies. The implications of this research extend to agriculture, with a potential to minimize
crop losses and promote sustainable potato cultivation practices.

Keywords — Plant disease classification, potato diseases, late blight, early blight, healthy plants, Convolutional Neural
Networks (CNNs), DenseNet169, agricultural research, image analysis, disease management.

I. INTRODUCTION

One exceptional crop is the potato (Solanum tuberous.), which has global significance, underpinning the
diets of approximately 1.5 billion people and standing as a cornerstone of modern agriculture. Originating
in the Andean highlands of South America, the potato has transcended continents and climates, becoming
a critical component of the world’s food supply. In 2009, its annual yield exceeded a staggering 329 million
metric tons, solidifying its position as the most important non grain agricultural product in the
world's food chain [1]. But the path from its Andean origins to international renown has not been without
danger.Numerous fungal infections can have a detrimental effect on potato quality, productivity, and crop
health.tubers' quality.Early blight (Alternaria solani) and late blight (Phytophthora infestans) are the two
most harmful of these adversaries. Two of these enemies are especially dangerous: early blight (Alternaria
solani) and late blight (Phytophthora infestans).The Irish Potato Famine in the 19th century was caused by
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late blight, a worldwide threat to food security that is estimated to result in yield losses of $6.7 billion an
nually [2] [3]. Just as cunning, early blight infects older potato leaves and causes significant output losses
because of its characteristic "bull's eye spot" effect on leaves [5,6]. With our growing understanding of
numerous potato ailments, the urgency to develop novel strategies for timely detection and control of crop
diseases is accelerating. Traditional visual scouting remains inconsistent, labor-demanding, and vulnerable
to observer bias. By contrast, the emergence of digital agriculture marks a decisive shift. Rapid progress in
imaging modalities—such as hyperspectral sensing, RGB camera systems, and smartphone-based
acquisition prepared with advances in machine learning and artificial intelligence, is creating powerful
opportunities to reimagine plant disease diagnostics [4][5]. Focusing on the challenges posed by early and
late blight in potato production, this study harnesses these technologies to build an effective solution. Our
goal is to deliver a dependable, efficient pipeline for sensitive and accurate early-stage detection of these
diseases. To this end, we utilize leading deep learning architectures, including VGG16, VGG19, ResNet-
50, and Mobile Net. Owing to their well-established ability to learn rich hierarchical features and capture
intricate patterns in data, these models hold strong promise for substantially improving disease
classification accuracy. [6] [7]. We employ a thorough technique that includes exacting model evaluation
and parameter adjustment in order to achieve this goal. By using this method, we hope to advance disease
categorization in relation to potato harvests. By contrasting our results with those of previous studies and
benchmark datasets, we aim to show how much more effective and efficient our suggested model is. By
doing this, our research advances the cause of sustainable agriculture in the face of these powerful enemies
while also supporting the continuing global efforts to protect potato crop harvests. [8] [9] The details of our
methodology are covered in detail in the sections that follow. By embracing the potential of advanced
technology, we aim to empower farmers and agricultural stakeholders with the tools they need to protect
this vital crop and secure global food supplies. [10] Wajiro higashietal. The purpose of thestudy was to
evaluate how well VegeCare, a tool, classified the primary leaf diseases affecting potato crops.Three distn
ct classifications were included in the dataset utilized for the investigation.The tool was trained and tested
across several epochs to gauge accuracy.According to the results, the VegeCare tool classified potato illns
ses with an accuracy rate of above 96%. The model demonstrated state-of-the-art performance on both
private and public datasets.
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Fig.1.Flow chart of the proposed methodology.

In 2022, Kolenda Kashyap Chakraborty et al. [11] applied deep learning to automatically identify early
and late blight in potato foliage from optical imagery. They trained four convolutional networks—VGG16,
VGG19, MobileNet, and ResNet50—on the Plant Village dataset, with VGG16 achieving the top baseline
accuracy of 92.69%. After fine-tuning VGGI16 (via parameter adjustments), performance improved
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markedly, reaching 97.89% accuracy in distinguishing healthy leaves from early and late blight. The study
presents the optimized VGG16 architecture with accompanying loss and validation accuracy curves, and
comparative benchmarks indicate the method’s superiority over existing approaches for potato disease
classification.

II. METHODOLOGY

Our research project's classification of potato leaf diseases is organized into six separate stages. figure
1 provides a graphic representation of these consecutive steps.

Step A: Gathering the dataset.
Step B: Preparing the data.

Step C: Augmenting the data.
Step D: Data splitting is step.
Step E: Model Training.

Step F: The models are evaluated.

A. Gathering datasets

Our suggested approach to treating plant diseases makes use of deep learning methods. The main obj
active is to use a variety of deep learning models to classify multiple plant diseases with the maximum
possible accuracy. For this reason, Plant village offers publicly accessible datasets of potato leaves. Figure
2

B. Preparing the data

The first stage of computer vision and image analysis is picture pre-processing, in which unprocessed
image data is carefully transformed to improve the visual input's quality and optimize it for further
computational processes. This preliminary processing

Potato__ Early_blight  Potato__Late_blight  Potato__Late_blight Potato__ Early_blight

Figure 2: Three typical Plant Village Dataset photos of potato leaves.

phase is essential to data improvement and refinement since it provides a variety of advanced methods
designed to tackle certain issues with digital images. An essential component of image pre-processing,
image scaling plays a fundamental function in computer vision. This process entails resizing images—
adjusting their width and height—to optimize them for downstream model training. By converting raw
inputs into a standardized, more tractable representation, training can be accelerated. In general, models
train more efficiently on smaller images than on very large ones because computational cost scales with the
number of pixels (approximately with the square of the linear dimension), so larger inputs substantially
increase training time. This emphasizes how crucial it is to skillfully resize photos as a tactical tool to speed
up the machine learning process. Our approach to image scaling involves transforming the original images
into a standard 256 x 256-pixel size, with both the width and height set to 256 pixels throughout the Keras-

272



International Journal of Advanced Natural Sciences and Engineering Researches

implemented Deep Learning architecture pipeline's picture loading phase. We use DenseNet-169 as the
backbone, which expects input tensors of size 256x256x3. Accordingly, all images are resized to 256 pixels
in height and width and kept as three-channel (RGB) inputs to meet the network’s specifications and ensure
compatibility during training and inference. Pictures are complex pixel-value compositions. Black-and-
white, or monochromatic, pictures can be contained in single pixel matrices, while their color counterparts
require different arrays for each of the three-color channels (red, green, and blue). Pixel values that fall
between 0 and 255 are commonly represented as unsigned integers that describe color depth or pixel
intensity. Although it is possible to feed raw photos straight into our models, doing so can provide
difficulties in the modeling stage, thereby reducing training effectiveness and adding complications. A
popular tactic to lessen these difficulties is to scale the pixel values to a range between 0 and 1 in order to
normalize them before model input. Dividing each pixel value by 255 is a useful method that produces a
matrix with all pixel values falling between 0 and 1. This ideal normalizing procedure improves training
and overall performance while guaranteeing that the model can handle picture input well.

C. Data augmentation:

By applying various changes to preexisting images, image augmentation creates more training instances.
This calculated tactic is used to increase the training dataset's heterogeneity and diversity, which eventually
improves the model's ability to generalize and navigate a variety of situations. We use the "Image Data
Generator" function from Kera’s package to do picture augmentation, a crucial preprocessing method, in
the context of our study. This procedure methodically adding controlled modifications to the photos in our
training dataset, so enhancing the data's diversity and resilience. In computer vision research, this
augmentation is an essential phase where the caliber and variety of the training dataset have a big influence
on how well the model generalizes. To introduce variations of up to 30 degrees, we randomly apply
rotations to the photos. This enables the model to identify things from various angles, which is an essential
ability for practical uses. The model can accommodate changes in object size and position thanks to the use
of random zooming. Pictures are enlarged by 20% or more. 3) Horizontal and Vertical Flipping: By flipping
photos both horizontally and vertically, we create mirroring effects. This helps handle orientation variances
by adding mirror images to the dataset. In machine learning and data analysis, data splitting is an essential
step, especially when working with datasets for tasks like model evaluation and training. It entails splitting
a dataset into discrete subsets forces.

D. Data Splitting

Data splitting's main objective is to guarantee that machine learning models are successfully trained,
verified, and tested while avoiding problems like overfitting and data leakage. Using the Image Data
Generator and validation split parameter, we are configuring data splitting for testing, validation, and
training. An effective tool for preprocessing and data augmentation in computer vision tasks is the
ImageDataGenerator. As previously indicated, the machine learning model is trained using 80% of the
dataset. Here, the data is used to teach the model new features and patterns. During training, a lower
percentage (10%) is set aside for validation. Without being utilized for training, this validation set aids in
fine-tuning hyperparameters and tracking the model's performance. Ten percent of the data are set aside for
testing. To determine how effectively the model generalizes to new data, you can test its performance on
this designated subset after training is finished.

E. Training Models

A pre-trained DenseNet169 design serves as the foundation for the model architecture, which is the next
step. To improve and categorize photos, layers are applied on top of the underlying model. These extra
layers have a number of uses. To lower the chance of overfitting, dropout layers are incorporated for
regularization. By normalizing the activations of the preceding layers, batch normalization layers stabilize
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the training procedure. The model can learn complex features thanks to its tightly connected layers.
Lastly, there are three units in the output layer, each of which represents one of the three classes. SoftMax
activation is used to classify several classes. Model compilation is the following stage once the model
architecture has been established. Important configurations are made during this stage. Choosing the
objective function is critical; for this multi-class task we adopt categorical cross-entropy, which penalizes
the divergence between the ground-truth label distribution and the model’s predicted class probabilities.
Model discrimination is monitored using the Area Under the ROC Curve (AUC), a threshold-independent
metric that summarizes how well the classifier separates classes. To efficiently minimize the loss and
promote stable convergence, we optimize with Adam. To control the step size during gradient descent, a
learning rate of 0.001 is set. The training phase starts as soon as the model is put together. Over 50 epochs,
the model is trained using the fit approach. The model uses the computed loss and AUC values to determine
and update its weights at each epoch. After every epoch, the verbose training process offers progress
updates. The model's weights are adjusted during training to improve image classification; improvements
are indicated by variations in loss and AUC values.

The model architecture is defined using TensorFlow and Keras It includes a preprocessing pipeline that
resizes and rescales input photos to a uniform size and range in order to standardize them. In order to add
diversity and lessen overfitting, data augmentation is also used. Max-pooling layers come after
convolutional layers, which make up the model's core. The purpose of these layers is to extract patterns and
significant information from the input photos. Max-pooling layers minimize spatial dimensions for
computational efficiency, while convolutional layers use filters to search images for pertinent features..
Multiple layers are stacked to create a deep network. Following the convolutional layers, fully connected
(dense) layers are employed to classify the extracted features. These layers learn to make predictions based
on the features detected in the earlier layers. The output layer, using the softmax activation function,
comprises three units, each corresponding toone of the three potato classes, enabling multi-class
classification. The model is then compiled, specifying the optimizer (in this case, Adam) to adjust model
weights during training to minimize the loss function (categorical cross-entropy). The goal of training is to
reduce the loss and enhance accuracy.During training,which spansmultiple epochs (in this instance , 50
epochs), the model is exposed to the training data, computes predictions, and updates weights based on the
loss function.Shuffling the training data set helps prevent the model from learning data order.Additionally,
validation data is utilizedduring training to monitor performance on previously unseen data and detect
overfitting.

F. Evaluation:
Evaluation of the models Finally, after the model is trained and validated, it undergoes testing on a
separate test dataset that it has not encountered during training or validation. This evaluation phase assesses

themodel’ sability to generalizeand classify previously unseen data , providing valuable information about
its real-world performance.
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TABLE III Performance summary and training configuration
. Optimization Objective Number of Classification Loss value
SI.NO Architecture algorithm function Epochs Accuracy (%)
1 Custom Adam Categorical CE 50 98 0.039
CNN Model
2 DensNet169 Adam Categorical CE 50 99.92 0.056
TABLE IV COMPARISON WITH EXISTING WORK
SL.NO | Reference Methodology used Bench Dataset used AccElracy Outcomes
achieved
Deep learning with VGG16, PlantVillagedataset 97.89% 3 Class
1 [11] VGG19,resNet50, MobileNet and problem
VGGl 6finetuned
0,
) [12] Conventional MLmethods including Al %ﬁiﬂi{lger 97.40% ;rgfl: Iil
GraphCut,SVM,k-NN,ANNandRF AlContestdataset
3 [13] Conventionalmachinelearningsuchas | Owngenerateddataset 97% 2 Class
RandomForest of450images problem
MaskRegion-basedconvolutionalneu | Owngenerateddataset 81.40% 2 Class
4 [14] ral network (MaskR—CNN) architec problem
ture,withresidualnetworkastheback
bone
5 [15] GoogleNet,VGGNet,andEfficientNet Owngenerateddataset ) 2’11222 6
] 0,
6 [16] VGG16andVGG19 PlantVillagedataset 91% 3 class
problem
Conventionalmachinelearningsuchas | PlantVillagedataset 95.99% -
7 [17] K-Mean,Graylevelco-occurrencema
trix
1 0,
8 Proposed DensNet169andCustomCNNmodel PlantVillagedataset 99.92% piocti?srsn
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III. DISCUSSION

A thorough summary of all the works that are currently available in this particular domain is given in
table iv. A number of issues make comparing with current models difficult, including the inaccessibility of
the generated datasets that researchers use and the lack of replication model parameters. Our comparative
evaluation is predicated on their approaches and results using their own datasets, albeit these challenges.
The plant village dataset was the subject of three noteworthy research, and our suggested strategy
outperforms them all. The remaining pieces made use of their own created datasets, which are regrettably
private.

1Iv.CONCLUSION

In order to distinguish between normal, early, and late blights on potato leaves, this study presents a three-
class classification system.Data augmentation for the class with a restricted number of photos
(healthypotato) is the first stage.Following that, two CNN models—DensNet169 and Custom CNNmodel—
are trained using the combined enhanced data. With a test accuracy of 92.69%, DensNet169 performs better
than other models, according to performance evaluation. After then, the model is improved through fine
tweaking, yielding an astounding 99.92% test accuracy.The automated system's ability to successfully
identify and categorize potato leaves afflicted by various diseases makes it useful for farmers and greatly
increases crop production in the agricultural industry. It is important to remember that all of the tests in this
study were carried out on a benchmark dataset, even though it offers insightful information about the
automatic identification of potato leaves with early and late blight. In order to evaluate the model's
consistency in real-world applications, future research will concentrate on testing it on live images.
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