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Abstract – Studies have shown that only about 2% of the genome encodes proteins, while the remaining 

98% consists of non-coding RNAs (ncRNAs). Based on length, ncRNAs are classified as small (<200 nt) 

or long (>200 nt) and play key roles in biological processes. Experimentally verified associations between 

ncRNAs (miRNAs, lncRNAs, circRNAs) and diseases remain limited, since laboratory studies are costly 

and time-consuming. Thus, computational approaches have become essential for predicting disease-

related ncRNAs. 

Similarly, drug-target interactions are vital for drug discovery, as drugs act by binding to and inhibiting 

target molecules. Yet, experimental identification of these interactions is expensive, driving the 

development of computational prediction methods. 

Microbes also influence human health, with microbiomes playing essential physiological roles. 

Identifying disease-related microbes is crucial, but experimental approaches are limited by cost and time. 

Hence, computational methods are widely employed. 

Overall, computational strategies can be grouped into score functions, network-based algorithms, multi-

source biological integration, and machine learning. This review highlights machine learning approaches 

for predicting ncRNA-disease associations, drug-target interactions, and disease-related microbes. It also 

summarizes key databases and successful methodologies, serving as a guide for future research in this 

field. 
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Associations, Drug, Drug-Target Interaction, Drug Repurposing, Drug Design, Microbe-Disease Association, Machine 

Learning 

 

I. INTRODUCTION 

Machine learning, can emulate human intelligence, is a computational algorithm that uses input data 

to perform a desired task. Machine learning generally has four subgroups as unsupervised learning, semi-

supervised learning, supervised learning, and reinforcement learning. Machine learning is widely used in 
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many fields today. It is widely used in prediction of miRNA-disease relationship [1-4], lncRNA-disease 

relationship [5], circRNA-disease relationship [6], microbe-disease relationships [7], and drug-target 

interaction [8] especially in Bioinformatics. 

With the completion of the human genome, it was revealed that about <2% of the genome consists of 

protein-coding RNAs, and the remaining approximately 98% consists of non-protein-coding RNA [9, 10]. 

As the complexity of organisms increases, the proportion of non-protein-coding RNA also increases. 

Until now, this large part of DNA that did not encode was thought to be “junk DNA”, meaning garbage 

with no use and no function. Studies have revealed that these non-coding parts actually take on great tasks 

and functions in cell and living life. 

Until recently, the vast majority of the genetic information was thought to be processed by proteins, 

but it is now known that the majority of the mammalian genome is transcribed into ncRNAs [11]. The 

assumption that creates the simple formula of the transfer of biological information from DNA to protein 

is called “Central dogma” [12] and the steps of the process are as follows, as can be seen in Figure 1. It is 

the DNA replication, the copying of DNA information into RNA (transcription), and the synthesis of 

proteins (translation) using the information in RNA. 
 

 
Figure 1. Schematic representation of DNA, RNA, Protein, and genetic transfer 

 

non-coding RNA (ncRNA) refers to RNA molecules that are transcribed from DNA but do not code 

for proteins. However, just because they do not encode protein sequences does not mean that they do not 

have important functions. In fact, there are many different types of ncRNAs, each with its own unique 

function in the cell. Recent studies have revealed that a large proportion of the human genome is 

transcribed into ncRNAs, suggesting that these molecules may play a much more important role in 

cellular function than previously thought [11]. ncRNAs can be divided into two main groups based on 

their length: (i) Small ncRNAs: These are ncRNAs that are less than 200 nucleotides in length. (ii) Long 

ncRNAs: These are ncRNAs that are 200 nucleotides or longer in length [13]. 

Micro RNA: In 1993, in the Victor Ambros laboratory, Lee and his team, discovered the first 

microRNA, which was transcribed by the lin-4 gene in the nematode worm Caenorhabditis elegans. This 

was a groundbreaking discovery because at the time, it was thought that all functional RNAs were coding 

proteins. This was the first example of a non-coding RNA regulating gene expression, and it opened up a 

whole new field of research in molecular biology. The term “microRNA” was coined in 2001 to describe 

small non-coding RNAs that are now known to play critical roles in gene regulation in many different 

organisms [14, 15]. This gene first discovered, by regulating the expression levels of lin-14 and lin-28, 

acts a crucial part in the development of nematode larvae [16]. microRNA (miRNA), a subclass of single-

stranded small non-coding RNA molecule, is about 18-24 nucleotides in length, and regulates post-

transcriptional gene expression by controlling the translation of mRNA into proteins [17-19]. It is 

estimated that miRNAs regulate the translation of more than 60% of protein-coding genes. miRNAs play 

a major role in the regulation of many processes such as cell proliferation, development, differentiation, 

death, apoptosis, metabolism, aging, signal transduction, and viral infection [17]. While some miRNAs 

regulate only certain individual targets, others can act as master regulators of a process. Thus, significant 

miRNAs regulate the expression levels of hundreds of genes simultaneously [20]. Although miRNAs 
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function within cells, they are also abundant in the blood. Thus, they can move to all cells, indicating that 

they can mediate intercellular communication [21]. Therefore, miRNAs especially the relationships 

between miRNAs and human diseases have received much attention from researchers. 

Long non-coding RNA: The first lncRNAs emerged with the discovery of lncRNAs involved in 

epigenetic regulation, such as H19 and X-inactive specific transcript (Xist) in early 1990s [22-24]. 

lncRNAs, which are considered as a class of non-protein-coding transcripts, are over 200 nucleotides in 

length [25]. The majority of the mammalian non-coding transcriptome consists of lncRNAs. Although 

lncRNAs do not code protein, they play major roles in in epigenetic regulation, apoptosis, proliferation, 

and cell differentiation [26]. Dysregulation of lncRNAs, just like miRNAs, can cause many human 

diseases such as breast cancer, lung cancer, prostate cancer, colon cancer, bladder cancer, ovarian cancer, 

leukemia, diabetes, and Alzheimer’s [27-29]. Studies have shown that cancer cell antigen presentation 

and intrinsic tumor suppression are down-regulated by oncogenic lncRNAs [30]. The most expressed 

lncRNA H19 plays a crucial role in tumor initiation, progression, and relapse in many types of cancers 

such as thyroid cancer, liver cancer, and so on [31]. For example, H19 controls cell cycle progression by 

regulating RB-E2F signaling in colorectal cancer [32] and contributes to cell proliferation by regulating 

p53 activity in bladder cancer [33]. Moreover, lncRNA Xist has been shown to bind PRC2 to initiate X 

chromosome inactivation [34]  and has proven to be associated with human glioblastoma stem cells [35]. 

Additionally, it was also observed that HOTAIR expression level was higher in primary breast tumors 

and metastases [36]. For this reason, the associations between lncRNAs and diseases have attracted the 

attention of researchers and they have focused their studies on this subject. 

Circular RNA: More than 40 years ago, the first circular RNA (circRNA) molecules named Viroids, 

were discovered [37]. With the development of bioinformatics, new circRNAs have been discovered in 

mammals, insects, plants, and eukaryotes. circRNAs are a class of non-coding single-stranded RNA 

molecules. The expression level of circRNA is generally low, but it has been experimentally confirmed 

that some circRNAs are highly expressed in specific cells or tissues [38, 39]. Experimental results show 

that circRNAs play significant role in many biological processes and in the emergence of human complex 

diseases such as cancer [40]. For example, circRNA CDR1as is differentially expressed in colorectal 

cancer [41], hepatocellular carcinoma [42], and neurological disorders [43], and also it can regulate 

miRNAs in tumor cells [44]. Likewise, CircRNA ciRS-7 efficiently regulates the activity of miRNA miR-

7 [45]. Therefore, identifying potential circRNA-disease association is important both for discovering 

therapeutic targets and for understanding the complex mechanism of disease. The primary goal of 

biological research is to understand the mechanisms that cause complex human diseases. For this reason, 

research on disease into genes have been extended to ncRNAs [46]. Increasing arguments show that 

ncRNAs interact with many targets. Studies indicates that ncRNAs are associated with various complex 

human such as neurological diseases, diabetes, cardiovascular diseases (CVD), cancers, Alzheimer’s and 

immune deficiency syndrome [47, 48]. Especially, it has been observed that ncRNAs can act as tumor 

suppressors or oncogenes especially in colon cancer, lung cancer, breast cancer, ovarian cancer, and 

prostate cancer. Therefore, ncRNAs can be used as biomarkers to predict and analyze many different 

types of cancer. Uncovering ncRNA and disease associations is useful for diagnosing, treating, and 

preventing diseases, as well as understanding the molecular mechanism of diseases. It also contributes to 

personalized drug treatment [49, 50]. 

Drug: Drugs are the general term for substances given to humans or animals for the treatment, 

prevention, or diagnosis of a disease. In other words, drugs are chemical compounds that provide desired 

therapeutic effects by interacting with certain targets in humans or animals. Drugs can either directly 

target disease-associated genes or target disease-causing proteins [51]. Developing drugs to treat a 

particular disease is a very costly and time-consuming process [52]. The process of selecting an 

appropriate target for the drug being development and identifying the compound to bind to the target 

requires a lot of time [53]. But more importantly, drugs must go through clinical trials before they are 

released to the market. However, many drugs do not pass the clinical trial stage. The success rate of 

passing the trial stages of drugs developed according to the data of pharmaceutical companies is only 

19% [54]. The main drug development stages are given in Figure 2. 
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Figure 2. Drug Development 

 

Drug-target interaction (DTI) means that a drug binds to a target location, causing a change in the 

behavior or function of the target. When a drug is absorbed or injected, the chemical composition of the 

drug binds to the target molecule and can reacts with the target, preventing the target of functioning. 

Inhibition of target functions can regulate metabolism or kill pathogens that cause diseases. Identifying 

drug-target interactions facilitates of drug repositioning [55] [56] [57], drug discovery [58], drug 

resistance [59], and drug side effect prediction [60] [61]. Interactions between drugs and target proteins 

can be inferred by wet lab experiments using various techniques [62]. However, biological experiments to 

discover a new drug are both very expensive, time-consuming, and challenging work. For example, the 

identification of each new molecular entity requires approximately $1,8 billion [52] and it takes almost 

ten years for approval of a new drug developed [63]. Therefore, in-silico prediction of drug-target 

interactions is desirable given the many factors mentioned above [64]. Possible interactions between 

drugs and targets can be predict effectively and quickly with computational techniques than experimental 

techniques. DTI prediction methods are basically divided into three categories namely Ligand-based 

approaches, Insertion-based approaches, and Chemogenomic approaches. Ligands and 3D structures 

available for some target proteins are still missing. Therefore, chemogenomic approaches are widely used 

to predict DTI due to the limited applicability of ligand-based and docking-based approaches. 

Chemogenomic approach also divided in two subcategories as feature-based methods and similarity-

based methods. In feature-based methods, drugs and targets are represented by feature vectors. In 

similarity-based methods, the inputs are the drug similarity matrix, the target similarity matrix, and the 

DTI matrix that shows which drug and target pairs interact  [65, 66]. For this reason, similarity-based 

methods have been discussed in our study, and powerful and reliable computational techniques are 

needed to predict interactions between drug and target. 

Drug repurposing: also called drug repositioning. Drug development requires a very expensive and 

time-consuming experimental process. However, about 90% of the drugs developed are rejected by the 

Food and Drug Administration (FDA). Drug repurposing refers to the process of discovering new 

therapeutic uses for existing drugs that have already been approved for the treatment of other diseases. 

The goal of drug repurposing is to identify new indications for drugs that have already been shown to be 

safe and effective, which can potentially lead to faster and less expensive development of new treatments. 

For example, Sildenafil, trade name "Viagra", is an important example of drug repurposing. Sildenafil, 

developed in the 1980s for the treatment of chest pain, has been found to be ineffective in clinical trials. 

However, some side effects such as prolonged erections have been observed in patients given this drug. 

That's why researchers repurposed the drug Sildenafil to treat erectile dysfunction. As a result, 

computational methods can be used to predict drug repositioning [67]. 

Drug Design: Drug design, also known as rational drug design or computer-aided drug design, is the 

process of creating new pharmaceuticals based on the molecular structure of diseases and their targets. 

The goal of drug design is to develop drugs that are safe, effective, and have fewer side effects. The 

process of drug design involves several stages, including target identification, lead discovery, lead 

optimization, preclinical testing, and clinical trials. In target identification, researchers identify the 

specific molecular target of a disease [68]. Lead discovery involves identifying potential compounds that 

can interact with the target. Lead optimization involves testing and modifying the selected compounds to 

improve their effectiveness and reduce their toxicity. Preclinical testing is performed on animals to assess 

the safety and efficacy of the drug candidate, while clinical trials are conducted on humans to determine 

its safety, efficacy, and optimal dosing. Drug design utilizes various computational and experimental 

techniques, such as molecular modeling, virtual screening, and high-throughput screening, to identify and 

optimize drug candidates. Advances in computer technology, computational biology, and structural 

biology have made drug design a more efficient and effective process. The drug discovery process is a 

complex and challenging endeavor that requires significant time, resources, and expertise. The low 
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success rates and high costs associated with the traditional drug discovery process have driven the 

development of computer-aided drug molecular design techniques. These techniques leverage 

computational methods, artificial intelligence, and machine learning to predict the potential efficacy and 

safety of new drugs, helping to reduce the time and costs associated with the traditional drug discovery 

process. In recent years, the use of computer-aided drug molecular design has shown promising results, 

with many drug discovery projects utilizing these methods to streamline the development process and 

improve the chances of success. The use of these techniques can help identify promising drug candidates 

early in the discovery process, reducing the number of failed experiments and ultimately leading to faster 

and more efficient drug development. In addition, computer-aided drug molecular design techniques also 

offer a valuable tool for understanding the underlying mechanisms of diseases and can help to identify 

new targets for drug development. This can lead to the development of innovative treatments for 

previously untreatable diseases and can help to advance our understanding of the biological processes 

underlying these conditions. Overall, the integration of computer-aided drug molecular design techniques 

into the drug discovery process represents a major step forward in the industry, offering the potential to 

revolutionize the way that new drugs are developed and discovered [69]. 

Protein-Protein interactions: One of the most common molecules, proteins play important roles in 

many biological processes such as any cell’s function and regulation. Proteins can associate with DNA 

and RNA in the genome to initiate transcription and the production of proteins, and monomeric chains of 

protein can lead to functional complexes that are stable. Understanding the interactions between proteins 

can help us to understand the function of each protein, and also aids in the understanding of cellular 

pathways, this information is crucial in developing effective treatments for human diseases, additionally, 

it also helps in the design of new drugs [70]. As a result, the process of predicting PPIs is fundamental to 

research and has gained increased attention in recent years. Laboratory experiments that seek to find PPIs 

are typically time-consuming and expensive. To address this issue, multiple computational models have 

been proposed that allow the systematic identification of protein pairs that interact. With the increasing 

rate of artificial intelligence, the potential for machine learning to predict protein-protein interactions has 

increased significantly [71]. 

Microbes: Microbes are indeed small organisms, including bacteria, archaea, fungi, viruses, and other 

microorganisms, that could exist as cell groups or single cells. They are found in nearly every 

environment on Earth, including soil, water, air, and within living organisms. Studies have shown that 

some microbes can be parasitic and cause infections or diseases in different tissues, such as urogenital 

system, skin, and lung. However, it is important to note that not all microbes are harmful, and many play 

important beneficial roles in the human body [72-74]. 

Microbes, which were parasites in the human body for millions of years, evolved over time and 

established close and complex relationships with the immune system [75]. Studies have revealed that 

there is a very close relationship between diseases and microbes. For example, a major rising in the 

Enterobacteriaceae’s expression level was observed in colorectal carcinoma patients [76]. Also, 

Gordonibacter pamelae and Bifidobacterium catenulatum are less abundant in colorectal carcinoma 

patients than in healthy people [77]. In addition, studies have shown that Veillonella and Streptococcus 

levels increase in liver cirrhosis patients, while Eubacterium and Alistipes are dominant in healthy people. 

For this reason, we can say that Veillonella and Streptococcus have an effect on the progression of liver 

cirrhosis [78].  

Therefore, it is necessary to reveal the associations among microbes and human diseases to 

understand disease pathogenesis. However, determining the relationships between diseases and microbes 

through experimental studies is a very expensive and time-consuming process, just like identifying the 

ncRNA-disease relationship and drug-target interactions. Therefore, calculation techniques are being 

developed for prediction of disease related microbes. In this study, several successful machine learning-

based computational methods are explained. 
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II. DATABASES 

With technology’ and bioinformatics’ development, various databases have been developed for 

miRNA, lncRNA, and drug-target interaction storage. Some of these databases are described below. 

miRbase contains all miRNA species discovered so far and provides nomenclature for newly discovered 

miRNAs. The current version of miRbase contains miRNA sequences: 48.860 mature miRNAs and 

38.589 hairpin precursors [79]. 

HMDD includes 53.530 miRNA-disease relationships with 2.360 diseases and 1.817 miRNAs 

information from 37.090 articles. The human disease and miRNA association data in this database have 

been experimentally proven [80, 81]. 

miR2Disease contains detailed information of associations among miRNAs and diseases, including 

miRNA-disease relationships description, disease name, miRNA ID, expression pattern, detection method 

for miRNA expression, and experimentally validated miRNA target genes [82]. 

deepBase contains information on the expression levels and functions of ncRNAs. This database provides 

a comprehensively expression information of lncRNAs and small RNAs by combining thousands of data 

approximately 50 cancer tissues and 80 normal tissues [83]. 

miRCancer is a human cancer database containing miRNA expression level information such as up or 

down regulation of miRNA. Currently miRCancer documents 9.080 relationships between 57.984 

microRNAs and 196 human cancers from more than 7.288 publications [84]. 

LncRNADisease database contains 13.191 experimentally proven associations among 6.066 lncRNAs 

and 484 diseases, also 12.249 experimentally proven associations among 10.732 circRNAs and 262 

diseases [85]. 

Lnc2Cancer provides comprehensively experimentally validated lncRNA-cancer relationships and 

circRNA-cancer relationships. This database contains 10.303 relationships information between 216 

cancers, 743 circRNAs, and 2.659 lncRNAs from more than 1.500 published papers [86]. 

DrugBank provides comprehensive cheminformatics and bioinformatics information by combining 

comprehensive drug targets with detailed drug data. This frequently updated database contains over 7.800 

drug entries, >15.000 drug-target interactions, 340 FDA-approved biotech drugs and 2.200 FDA-

approved small molecule drugs [87]. 

KEGG is a database containing knowledge about diverse chemical compounds, drugs, and diseases, as 

well as genomic, chemical, and systemic functional information obtained from experimental studies [88]. 

STITCH contains information about predicted and known interactions between proteins and chemicals. 

This database contains, from 2.031 organisms, 1,6 billion interactions among 9,6 million proteins, and 

500.000 chemicals [89]. 

TDR targets is a chemogenomic database containing information on neglected tropical diseases and an 

important resource for discovering drug. TDR Targets chemogenomic includes genomic information from 

pathogens and detailed knowledge about bioactive components [90]. 

HMDAD, the Human Microbe-Disease Association Database, is a database that collects microbe-disease 

relationships from studies of microbiota. This database includes 483 empirically proven associations 

between 292 microbes and 39 diseases [91]. 

MorCVD is a database containing host-pathogen protein-protein interactions data i.e. a total of 19 

cardiovascular diseases including Endocarditis, Pericarditis, and Myocarditis. This database contains a 

total of 23.377 host-pathogen protein-protein interactions along [92]. 

PHI (The pathogen-host interactions database) is a database that includes biological and molecular 

information on genes verified to affect the outcome of interactions between pathogens and hosts. There is 

information of 296 pathogens, 9.973 genes, 249 hosts, and 22.408 interactions in the latest version of PHI 

database [93]. 

STRING database regularly collects both protein-protein physical interactions and protein-protein 

functional interactions [94]. 
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III. COMPUTATIONAL MODELS 

Because experimental studies are time-consuming and expensive, reliable computational tools are 

needed to predict ncRNA-disease associations, microbe-disease associations, drug-target interactions. 

There are four subgroups of computational methods used to determine relationships to date: 

Computational methods used to date to determine these relationships have four subgroups: score function 

models, complex network algorithm model, multiple biological information models, and machine 

learning models [95]. We comprehensively examined machine learning algorithms for forecasting 

ncRNA related disease and also drug-target interactions. 

Regularized Least Squares 

This method is a prediction model for disease related miRNAs based on the regularized least squares 

algorithm (RLSMDA), shown in Figure 3, which can be used for prediction without using any negative 

samples [96]. However, this model is highly dependent on parameters. This computational method is a 

semi-supervised learning model developed for inferring miRNA-disease associations. In the RLSMDA 

model, relationships between miRNAs and diseases are given by a combined classifier in the miRNA 

space and disease space. The Regularized Least Squares (RLS) method was carried out to form two 

optimum classifiers in the RLSMDA method. For miRNA space and disease space, optimal classification 

functions can be obtained by solving the following optimization problem: 

𝐹𝑀
∗ = 𝑆𝑀 ∗ (𝑆𝑀 + ƞ𝑀 ∗ 𝐼𝑀)

−1 ∗ 𝐴𝑇         (1) 

𝐹𝐷
∗ = 𝑆𝐷 ∗ (𝑆𝐷 + ƞ𝐷 ∗ 𝐼𝐷)

−1 ∗ 𝐴          (2) 

where, similarity networks of miRNA functional and disease semantic were represented with 𝑆𝑀 and 𝑆𝐷, 

and miRNA-disease relationship network was represented with an adjacency matrix 𝐴, 𝐼𝑀 is the identity 

matrix with the same size as the 𝑆𝑀, and the 𝐼𝐷 is the identity matrix with the same dimensions as the 𝑆𝐷. 

ƞ𝑀 and ƞ𝐷 parameters are for trade-off. Lastly, optimal classifier results from space of miRNA and 

disease are integrated to get new relationships between miRNAs and diseases. 

𝐹∗ = 𝑤 ∗ 𝐹𝑀
∗𝑇 + (1 − 𝑤) ∗ 𝐹𝐷

∗           (3) 

𝐹(𝑖, 𝑗) is the predicted scores that indicates the possibility of relationship among miRNA 𝑖 and disease 𝑗. 
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Figure 3. RLSMDA 

RLSMDA method has some limitations. First of these limitations, it is not clear how to decide 

parameter values in RLSMDA. Secondly, reconstruction of miRNA functional similarity and disease 

semantic similarity will increase the predictive talent. The advantage of RLSMDA is that it can be applied 

to diseases that do not have any known related miRNAs. 

Random Forest 

A Random Forest computation model for miRNA-disease association (RFMDA) prediction developed 

based on machine learning is shown in Figure 4 [97]. The training set used in this study was obtained 

from the HMDD database. miRNA functional similarity, disease semantic similarity, and Gaussian 

interaction profile kernel similarity were integrated to create feature vectors to represent miRNA-disease 

samples. The features of miRNA functional similarity and integrated semantic similarity are represented 

by 𝑆𝐷 and 𝑆𝑀. An 878-dimensional vector represented by 𝐹 is created using 𝑆𝐷 and 𝑆𝑀 with the 

following equation. 

 

𝐹 = (𝑆𝑀(𝑚(𝑖)), 𝑆𝐷(𝑑(𝑢)))          (4) 

 

Then, using the following equation, each feature’s final score can be calculated. 

 

𝑆𝑐𝑜(𝑖) =
𝐹𝐹𝑝(𝑖)

𝐹𝐹𝑛(𝑖)
𝑖 = 1, 2, … , 878.          (5) 

 

Where 𝐹𝑝 demonstrate the feature in the positive sample set and 𝐹𝑛 represent negative sample set. 
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Figure 4. FRMDA 

The RFMDA method also has some limitations. RFMDA requires both positive and negative training 

examples. As known, obtaining reliable negative samples, is very difficult or even impossible. Negative 

samples of unknown associations between miRNA and disease were selected by a random selection 

method. This random selection method can affect the prediction result. 

K-Nearest Neighbors (KNN) 

As seen in Figure 5, a calculational technique based on K-nearest neighbor (KNN), namely 

RKNNMDA, is proposed [98]. In this technique, for re-ranking, the prediction scores calculate with using 

a support vector mechanism. RKNNMDA is a computational method developed to forecast new disease-

associated miRNAs, by combining known disease-miRNA relationships, similarities of disease semantic, 

miRNA functional, and Gaussian interaction profile kernel. 
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Figure 5. RKNNMDA 

Each miRNA 𝑚(𝑖)’s k-nearest-neighbors 𝑛𝑒𝑖𝑚(𝑖) are determined based on the KNN algorithm. These 

determined k-nearest-neighbors are reranked with the SVM Ranking model. The weight value is 

represented by 𝑊𝑆, and the 𝑊𝑆1 value between 𝑚(𝑖) and disease 𝑑 is calculated by the following 

equation: 

 

𝑊𝑆1(𝑚(𝑖), 𝑑) = ∑ 𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑛𝑒𝑖𝑚′(𝑖, 𝑗)) ∗ 2𝑘−𝑗𝑘
𝑗=1         (6) 

 

where 𝑛𝑒𝑖𝑚′(𝑖, 𝑗) represents 𝑗th neighbor miRNA of miRNA 𝑚(𝑖), and 𝑑𝑖𝑠𝑒𝑎𝑠𝑒(𝑛𝑒𝑖𝑚′(𝑖, 𝑗)) indicates 

feature score of disease 𝑑 with regard to miRNA 𝑚(𝑖) and its neighbor 𝑚(𝑗). 
Similar manner, 𝑊𝑆2 between 𝑑(𝑖) and miRNA 𝑚 is calculated by the following equation: 

 

𝑊𝑆2(𝑚, 𝑑(𝑖)) = ∑ 𝑚𝑖𝑅𝑁𝐴(𝑛𝑒𝑖𝑑′(𝑖, 𝑗)) ∗ 2𝑘−𝑗𝑘
𝑗=1         (7) 

 

where 𝑛𝑒𝑖𝑑′(𝑖, 𝑗) represents 𝑗th neighbor disease of disease 𝑑(𝑖), and 𝑚𝑖𝑅𝑁𝐴(𝑛𝑒𝑖𝑑′(𝑖, 𝑗)) indicates 

feature score of miRNA 𝑚 with regard to disease 𝑑(𝑖) and its neighbor 𝑑(𝑗). To determined potential 

relationships between miRNAs and disease, 𝑊𝑆1 and 𝑊𝑆2 have been integrated. 

 

Graph Regression 
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A Graph Regression method developed using singular value decomposition and partial least squares 

regression for miRNA-disease association prediction (GRMDA) is shown in Figure 6 [99]. In this study, 

a graph regression between several similarities data, and known disease-miRNA relationships were used 

to forecast new disease-miRNA relationships. Since graph regression in disease similarity, miRNA 

similarity, and disease-miRNA relationship space is performed simultaneously, the following equation is 

obtained. 

 

{𝐴𝑟
∗ , 𝐴𝑑

∗ , 𝐹𝑟
∗, 𝐹𝑑

∗, 𝐵𝑟
∗, 𝐵𝑑

∗} = arg𝑚𝑖𝑛 {
‖𝐴−𝐴𝑟𝐴𝑑

𝑇‖
2
+‖𝑆𝑚−𝐹𝑟𝐹𝑟

𝑇‖
2
+‖𝑆𝑑−𝐹𝑑𝐹𝑑

𝑇‖
2

+‖𝐴𝑟−𝐹𝑟𝐵𝑟‖2+‖𝐴𝑑−𝐹𝑑𝐵𝑑‖
2 }      (8) 

 

where 𝐹𝑟 , 𝐹𝑑 , 𝐵𝑟 , and 𝐵𝑑 represents the features of miRNA, feature of diseases, association between 𝐴 and 

𝐹𝑟, association between 𝐴 and 𝐹𝑑, respectively. 

In the following equation to create 𝐴𝑟 , 𝐴𝑑 , 𝐹𝑟 , and 𝐹𝑑, Singular Value Decomposition was applied for low-

rank decompositions. 

 

𝑀
𝑆𝑉𝐷
⇒  𝑈𝛴𝑉𝑇 = (𝑈√𝛴)(𝑉√𝛴)

𝑇
= 𝐿𝑅𝑇         (9) 

 

Disease-related miRNA candidates can be calculated in the following equation. 

𝐶 = 𝐹𝑟𝐵𝑟𝐵𝑑
𝑇𝐹𝑑
𝑇            (10) 

 

 

 
Figure 6. GRMDA 

 

As in the previous methods, the GRMDA method has some weaknesses. Firstly, existing studies 

utility from known miRNA-disease relationships data. However, the collection of data has not yet reached 

the final result. This means that our estimation is always in the absence of data. That is, there will always 

be a shortcoming in our predictions. Secondly, in Singular Value Decomposition and Partial Least 

Squares Regression there are difficulties in parameter selection due to the size of the matrices.  

Support Vector Machine 

In this approach, a computational method of ILDMSF was proposed to forecast possible lncRNA-

disease relationships, as shown in Figure 7 [5]. ILDMSF combined multiple lncRNA-lncRNA similarity 

and disease-disease similarity with a network fusion method. Support Vector Machine (SVM) is 
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employed to predict relationships between lncRNAs and diseases, and also the bagging method is used to 

deal with imbalance data. 

The SVM function can be defined in the following eq. 

 

{
𝑚𝑎𝑥 𝜆        −

1

2
∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) + ∑ 𝜆𝑖

𝑁
𝑖=1

𝑁
𝑗=1

𝑁
𝑖=1              

𝑠. 𝑡.        ∑ 𝜆𝑖𝑦𝑖 = 0,   0 ≤ 𝜆𝑖 ≤ 𝑊,   𝑖 = 1,2, … . . , 𝑁
𝑁
𝑖=1

     (11) 

 

where 𝑁,𝐾,𝑊, and 𝜆 parameters represent the number of samples, kernel function, soft margin, and 

Lagrange multiplier, respectively. 𝑥𝑖 is the feature vector for 𝑖th sample. The label corresponding to 𝑥𝑖, is 

𝑦𝑗, and usually 0 or 1. 

 

 
Figure 7. ILDMSF 

 

Kernel Fusion and Deep Auto-Encoder 

This method is a prediction model for prediction of circRNA-disease associations based on the Kernel 

Fusion and Deep Autoencoder (KFDAE) [100]. Primarily, each circRNA-diseases pair’s feature vectors 

are obtained. These resulting sets are used as the input data of the DAE. The DAE’s structure is depicted 

in Figure 8. 𝑌 is denoted of the encoder output, can be calculated follows: 

 

𝑌 = Φ(𝑤𝑋 + 𝑏)            (12) 

 

Φ(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
           (13) 

 

where, 𝑤, 𝑋, and 𝑏 represent weight, bias, and input, respectively. Then, feature vectors obtained from 

DAE are used as the input of the multilayer perceptron to train the model. 
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Figure 8. KFDAE 

 

Kernel Regression Method 

Yamanishi et al. suggested a supervised learning technique in this study, shown in Figure 9, that maps 

targets in genomic space and drugs in chemical space into pharmacological space. This technique forecast 

possible drug-target interactions with integrating known DTI network, target proteins’ sequence 

information, and chemical structure [101]. 
 

 
Figure 9. Kernel Regression Method 

 

𝑢𝑐𝑛𝑒𝑤 = ∑ 𝑆𝑐
𝑛𝑐
𝑖=1 (𝑐𝑛𝑒𝑤, 𝑐𝑖)𝑤𝑐𝑖          (14) 

 

𝑢𝑔𝑛𝑒𝑤 = ∑ 𝑆𝑔
𝑛𝑔
𝑗=1

(𝑔𝑛𝑒𝑤, 𝑔𝑖)𝑤𝑔𝑗          (15) 

 

where, 𝑆𝑐(. , . ) is the chemical structure similarity score, 𝑆𝑔(. , . ) is the sequence similarity score, and 𝑤𝑐𝑖 

and 𝑤𝑔𝑖 are the weight vector. In this pharmacological space, feature-based similarity scores were 

calculated, and potential compound-protein interactions were predicted. 



International Journal of Advanced Natural Sciences and Engineering Researches 

82 

DeepDTIs 

A deep-learning-based method named DeepDTIs was developed by Wen et al. [102]. Without 

separating the targets into different classes, DeepDTIs aimed to infer new interactions between approved 

drugs and targets. The flowchart of DeepDTIs is shown in Figure 10. DeepDTIs method predicts new 

interactions in three sections. In first section, most common features are calculated to identify drugs and 

targets. Second section consists of the second, third and fourth layers called the hidden layer. Third 

section is the output layer, where a classification is made with known label drug-target interactions. Based 

on the Deep Belief Network, the joint distribution between 𝑙 hidden layers and training sample vector 𝑥 is 

modeled as follows. 

 

𝑃(𝑥, ℎ1, ℎ2, … ℎ𝑙) = (∏ 𝑃(ℎ𝑘|ℎ𝑘+1)𝑙−2
𝑘=0 )𝑃(ℎ𝑙−1, ℎ𝑙)       (16) 

 
where, 𝑥 = ℎ0, 𝑃(ℎ𝑘−1|ℎ𝑘), is a k-level hidden-visible conditional probability distribution and 
𝑃(ℎ𝑙−1, ℎ𝑙) is the visible-hidden joint distribution in the top-level Restricted Boltzmann Machine. 

 

 
Figure 10. DeepDTIs 

 

Lakizadeh’s proposed model 

Lakizadeh et al. proposed a method called DRSE [67] for drug repurposing in order to integrate 

various heterogeneous data. This model for predicting drug-related diseases takes into account the side-

effect characteristics of drugs and is relies on the combining the more data. The proposed method 

includes random walk with restart (RWR), diffusion component analysis (DCA), and matrix factorization 

(MF). RWR technique combine drug and disease features, DCA technique extract features, and MF 

technique estimate final prediction. 

Jaccard similarity was used to calculate similarity matrices. 

 

𝐽(𝐴, 𝐵) =
𝑄11

𝑄01+𝑄10+𝑄11
           (17) 

 

Where, 𝑄01, 𝑄10, and 𝑄11 are the number of features, which is 0 in 𝐴 and 1 in 𝐵, which is equal to 1 in 𝐴 

and 0 in 𝐵, and which is equal to 1 for both vectors 𝐴 and 𝐵. 
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Figure 11. DRSE 

 

𝑃 ∈ 𝑅𝑁𝑑×𝑁𝑡 shows matrix of relations between drugs and diseases, 𝑋 ∈ 𝑅𝑁𝑑×𝑓𝑑 is drugs feature matrix, 

𝑌 ∈ 𝑅𝑁𝑡×𝑓𝑡 diseases feature matrix, and 𝑍 ∈ 𝑅𝑓𝑑×𝑓𝑡 is projection matrix. Then, the possibility of a 

relationship between drug 𝑖 and disease 𝑗 is computed with the following equation. 

 

𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑥𝑖𝑍𝑦𝑗
𝑇           (18) 

 

MultiPPIs 

Zou et al. proposed the DeepWalk method, a graph representation learning method, to extract multi-

source relationship information of proteins with other biomolecules and named it MultiPPIs [103]. The 

flowchart of MultiPPIs is shown in Figure 12. 
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Figure 12. MultiPPIs 

 

Firstly, the protein sequence features of amino acids were obtained by the autocovariance method (AC) 

with the following equations. 

 

𝑃𝑖𝑗
′ =

𝑃𝑖𝑗−𝑃𝑗̅̅ ̅

𝑆𝑗
, (𝑖 = 1,2, … ,6; 𝑗 = 1,2, … ,20)        (19) 

 

𝑃𝑗̅ =
∑ 𝑃𝑖𝑗
20
𝑖=1

20
             (20) 

 

𝑆𝑗 = √
∑ (𝑃𝑖𝑗−𝑃𝑗̅̅ ̅)

220
𝑖=1

20
           (21) 

 

𝐴𝐶 =
1

𝑁−𝑑
∑ (𝑋𝑖,𝑗 −

1

𝑛
∑ 𝑋𝑖,𝑗
𝑛
𝑖=1 )𝑁−𝑑

𝑗=1 (𝑋𝑖+𝑑,𝑗 −
1

𝑛
∑ 𝑋𝑖,𝑗
𝑛
𝑖=1 )       (22) 

 

Here the length of the protein sequence is represented by 𝑁, and the 𝑗th descriptor value of the 𝑖th amino 

acid is represented by 𝑋𝑖,𝑗. Secondly, the relationships between miRNAs, lncRNAs, drugs, proteins, and 

diseases were integrated to obtain a multi-source relationship network. Then, Random Forest classifier 

was used to predict protein-protein interactions. 

Adaptive Boosting 

An Adaptive Boosting model named ABHMDA [104], was developed for uncovering new microbe-

disease relationships with calculating the probability of association between microbes and diseases using 

a powerful classifier. ABHMDA’s flowchart is shown in Figure 13. 
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Figure 13. ABHMDA 

 

Firstly, similarities of Gaussian interaction kernel were computed for both microbe space and disease 

space rely on the known microbe-disease relationship network. Then, Gaussian interaction profile kernel 

similarity matrix and disease symptom similarity matrix integrated. Also, the feature vector is determined 

for each microbe-disease relationship. By applying k-means clustering according to their feature vectors, 

candidate samples are divided into 23 clusters.  

Second, the training samples are classified using decision trees and the weights of the classifiers are 

calculated. The error function ∈𝑖, the variate 𝑍𝑖, and the ratio of the weak classifier in the strong classifier 

is computed by following equation: 

 

∈𝑖= ∑ 𝐷𝑖1ℎ(𝑖)𝑗≠𝑌𝑗
𝑛
𝑗=1            (23) 

 

𝛼𝑖 =
𝑙𝑜𝑔

1−∈𝑖
∈𝑖

2
            (24) 

 

𝑍𝑖 = 2[∈𝑖 (1 −∈𝑖)]
2           (25) 

 

The sample’s weight is updated by equation 20: 

 

𝐷𝑖+1(𝑗) =
1

𝑍𝑖
𝐷𝑖(𝑗)𝑒

−𝛼𝑖𝑌𝑗ℎ(𝑖)𝑗           (26) 

 

Finally, the probability of new microbe-disease association could be calculated as follows. 

 

𝑝 = ∑ 𝛼𝑖𝐻(𝑖)
𝑛𝑐
𝑖=1             (27) 

 

Laplacian Regularized Least Squares 

Laplacian regularized least squares classifier, a new semi-supervised computational model called 

LRLSHMDA [105], was used to forecast the possible microbe-disease interactions. LRLSHMDA’s 

flowchart is shown in Figure 14. 
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Figure 14. LRLSHMDA 

 

Firstly, Gaussian interaction kernel similarities were calculated for both microbes and diseases based on 

the known microbe-disease relationship network. Then to normalize these matrices, Laplace operation 

used, shown as following: 

 

𝐿𝑀 = (𝐷𝑀)−1/2(𝐷𝑀 − 𝐾𝑀)(𝐷𝑀)−1/2         (28) 

 

𝐿𝐷 = (𝐷𝐷)−1/2(𝐷𝐷 − 𝑆𝐷)(𝐷𝐷)−1/2          (29) 

 

Then, the cost functions could be calculated as follows: 

 

𝑚𝑖𝑛𝐹𝑀[‖𝐴
𝑇 − 𝐹𝑀‖𝐹

2 + 𝜂𝑀‖𝐹𝑀. 𝐿𝑀. 𝐹𝑀𝑇‖𝐹
2]        (30) 

 

𝑚𝑖𝑛𝐹𝐷[‖𝐴 − 𝐹𝐷‖𝐹
2 + 𝜂𝐷‖𝐹𝐷. 𝐿𝐷. 𝐹𝐷𝑇‖𝐹

2]         (31) 

 

The above two formulas are converted into optimal classification functions. 

 

𝐹𝑀∗ = 𝑆𝑀(𝑆𝑀 + 𝜂𝑀. 𝐿𝑀. 𝑆𝑀)−1𝐴𝑇         (32) 

 

𝐹𝐷∗ = 𝑆𝑀(𝑆𝐷 + 𝜂𝐷. 𝐿𝐷. 𝑆𝐷)−1𝐴          (33) 

 

𝐹∗ was the new microbe-disease association probability matrix. 

 

𝐹∗ = 𝑙𝑤. 𝐹𝑀∗𝑇 + (1 − 𝑙𝑤). 𝐹𝐷∗          (34) 

 

 

IV. CONCLUSION 

Diseases are the leading causes that negatively affect human life or result in death. It has been 

determined that the main causes of diseases are non-coding RNAs (i.e., miRNA, lncRNAs, and circRNA) 

and microbes. miRNAs play a major role in the regulation of many processes such as cell proliferation, 

development, differentiation, death, apoptosis, metabolism, aging, signal transduction, and viral infection. 
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While some miRNAs regulate only certain individual targets, others can act as master regulators of a 

process. Thus, significant miRNAs regulate the expression levels of hundreds of genes simultaneously. 

lncRNAs do not code protein, but they play diverse roles in gene expression regulation, including 

transcriptional regulation, post-transcriptional regulation, and epigenetic regulation. Dysregulation of 

lncRNAs, just like miRNAs, can cause many human diseases such as breast cancer, lung cancer, prostate 

cancer, colon cancer, bladder cancer, ovarian cancer, leukemia, diabetes, and Alzheimer’s. circRNAs play 

significant role in many biological processes and in the emergence of human complex diseases such as 

cancer. Microbes have been found to be parasitic in diverse human body texture, such as the urogenital 

tract, skin, and lungs. For this reason, recent research has focused on determining disease-related non-

coding RNAs and disease-related microbes. The discovery of drugs used for the prevention and treatment 

of detected diseases and the repositioning of drugs are also very important. Drugs may directly target 

disease-related genes or disease-causing proteins. Drug repurposing is the identification of new 

indications for approved drugs beyond the initial indications. 

The identification of disease-related ncRNAs, drug-target interactions, and drug repurposing is crucial 

for disease diagnosis, treatment, prevention, and personalized medicine. However, since the experimental 

processes used to determine these relationships are very expensive and time-consuming, the tendency to 

computational methods has increased and machine learning-based algorithms have gained popularity. 

This article summarizes some of the recently widely used based on machine learning models for 

prediction of ncRNA-disease associations, microbe-disease associations, drug-target interactions, and 

protein-protein interactions. In addition, it also includes databases of miRNA-disease associations, 

lncRNA-disease associations, circRNA-disease associations, drug-target interactions, and protein-protein 

interactions. To further improve the prediction performance of the computational methods mentioned, it is 

necessary to make full use of different types of heterogeneous data sources and integrate new association 

networks. 
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