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Abstract — Magnetic resonance imaging (MRI) is the cornerstone of medical diagnosis; however, accurate
segmentation of MRI images remains a challenging task due to noise, low contrast, and complex anatomical
structures. Traditional machine learning and early deep learning methods have achieved moderate success,
but they often struggle to maintain precise boundaries and handle ambiguous areas. Recent innovations,
such as attention mechanisms and multi-scale architectures like the Nested U-Net, have significantly
improved the accuracy of locating and segmenting features. Despite all this, traditional clustering processes
can still cause information loss, especially at object boundaries. In this review, the evolution of MRI
segmentation will be systematically explored through four developmental stages: (1) classical machine
learning, (2) convolutional neural networks (CNNs), (3) deep learning architectures, and (4) optimized
networks. Using attention and fuzzy logic. We will highlight the strengths and limitations of each stage,
and propose an advanced segmentation framework that combines an attention-enhanced nested U-Net with
fuzzy pooling, a technique that integrates soft decision-making to retain uncertain and boundary
information. Preliminary results show improved dice similarity coefficient (DSC) and sensitivity, as well
as decreased Hausdorff distance (HD), especially in complex MRI data sets of the brain and liver. Our
approach shows superior generalization and accuracy to traditional clustering strategies. Future work will
also focus on cross-media adaptation, real-time deployment in clinical settings, and integration of
automated diagnostics.

Keywords — Medical Image Segmentation MRI, Attention mechanism, Conventional Neural networks, Deep learning models,
Nested U-Net, Fuzzy Pooling, Intelligent Segmentation, Dice Score.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) is widely considered one of the most important imaging modalities
in clinical diagnosis due to its high-resolution, non-invasive nature and excellent soft tissue contrast. It
plays a vital role in diagnosing, monitoring, and planning the treatment of various medical conditions,
including brain tumors, liver cancer, stroke lesions, and retinal diseases [1]. Despite its diagnostic power,
automatic segmentation of MRI images remains a technically complex and clinically critical task due to
challenges such as image noise, low contrast, diverse anatomical structures, and irregular lesion shapes.

Over the past decade, the field of medical image segmentation has evolved through distinct
methodological stages. Early methods relied on traditional machine learning (ML) techniques such as
support vector machines (SVMs), random forests (RFs), and K-Nearest Neighbors (KNNs) to extract
features and classify regions. Although these methods were computationally efficient, they often failed to
generalize across different data sets and required hand-crafted features that limited performance on
complex tasks [2].

The emergence of convolutional neural networks (CNNs) has greatly enhanced segmentation
capabilities by enabling automatic feature learning from data. CNN-based architectures such as U-Net
have shown impressive performance, especially in biomedical segmentation tasks. However, these models
have suffered from problems such as loss of spatial resolution due to maximal clustering, lack of context
awareness in deep layers, and limited representation power in multi-class segmentation scenarios [3].

In order to overcome these limitations, researchers have introduced more sophisticated deep learning
(DL) strategies, including full convolutional networks (FCNs), 3D U-nets, and nested U-nets (U-Net++).
Among these techniques, mesh U networks have provided a significant improvement, and that is by
incorporating dense skip connections and better feature fusion across layers [4]. While these constructs
improved segmentation accuracy, traditional clustering layers continued to ignore fine spatial details —
especially at anatomical boundaries—, and this limited the model's accuracy in clinical applications.

More recently, attention mechanisms have emerged as powerful improvements to CNN-based models.
These mechanisms enable networks to focus on the most relevant features while suppressing irrelevant or
noisy information, and this is particularly useful in segmenting ambiguous or overlapping areas. U-
networks and attention-enhanced transducers have shown success in medical image segmentation tasks
involving gliomas, stroke lesions, and liver tumors, and this has led to higher dice similarity coefficients
(DSC) and sensitivity values [5].

Despite all these developments, there is still a major challenge in retail network aggregation operations.
Which traditional clustering (for example, maximum or average pooling) often results in the loss of
important spatial and contextual details. In order to address this problem, recent studies have proposed
incorporating fuzzy pooling, a technique that takes advantage of fuzzy logic to preserve boundary
uncertainty as well as accommodate imprecise information while minimizing feature samples. This
strategy aligns well with medical imaging needs where ambiguous or ill-defined boundaries are common,
such as within the confines of a tumor lesion or stroke [6].

This review paper provides a comprehensive overview of the development of MRI segmentation
techniques, organized into four phases: (1) machine learning methods, (2) convolutional neural networks,
(3) deep learning structures, and (4) attention-enhanced models. It is also proposed to integrate fuzzy
pooling into the U-Net attention-enhanced nested framework to overcome the limitations of traditional
pooling mechanisms. A comparison of existing datasets (Table 1) and evaluation metrics such as dice
score, cross-union (IoU), sensitivity, specificity, and Hausdorff distance (Table 2) is used to contextualize
the development and performance of segmentation models across the literature.

Stages of Evolution of MRI Segmentation Techniques:

A. Stage 1: Machine Learning for MRI Segmentation:

From Table 3, notice early approaches to MRI segmentation relied on classical machine learning
algorithms such as k-Nearest Neighbors (k-NN), support vector machines (SVM), random forests, and
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fuzzy c-means clustering (FCM) [7]. These methods typically extract handcrafted features, including
density, texture, or spatial location, which are then used to classify or group tissue types.

Among the most important positives are:
. Simpler implementation and interpretation.
. The computational cost is lower compared to deep learning models [8].

The most important negatives are:

. Heavy reliance on feature engineering.

. Generalization is weak across datasets with different imaging parameters [9].
. Inability to effectively capture spatial and contextual information [10].

To overcome these negatives:

. We use hybrid methods that combine machine learning and basic image processing (e.g.,
watershed segmentation + SVM).

. Using feature selection techniques such as PCA and LDA to improve generalizability [11].

Ratings for Each Method Total Rate for Each Metric Total Ratings for Each Dataset
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Fig. 1 The ratios of the most important methods, metrics, and datasets used in the ML studies

Fig. 1 shows the trends in the machine learning phase, showing that methods such as SVM and k-NN
were among the most widely applied methods. It also highlights that metrics such as Dice Score and
Accuracy, along with public datasets such as BraTS and ACDC, have been widely used to evaluate
segmentation performance [12]. This trend underscores the fundamental role these methods played in
shaping early MRI segmentation research.

As for the proposed progress:
The move toward automated feature extraction via deep learning can be used as a more scalable
alternative to manual feature engineering [13].

B. Stage 2: Conventional Neural Networks for MRI Segmentation:

From Table 4, it is clear that convolutional neural networks (CNNs) have significantly advanced the
field of MRI segmentation by enabling automatic extraction of features directly from raw image data [14].
Notable CNN architectures such as AlexNet, VGGNet, and 2D-CNNs have been adapted for medical
image analysis tasks [15]. These models typically apply convolutional filters to local image regions, and
this allows them to learn spatial hierarchies from the inputs [16].

In MRI segmentation specifically, CNNs have been effectively used for pixel classification through the
use of patch-based strategies and shallow grid designs [17]. These strategies help reduce computational
cost while still benefiting from spatial information at the correction level.
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Fig. 2 An example of a conventional neural network

Among the most important positives of CNN networks:
. It has a strong ability to capture hierarchical spatial features [18].
. Removing hand-made features by learning directly from raw pixel data [19].

As for the negatives of early CNN networks:
. Loss of precise spatial resolution due to aggregation and segmentation processes across layers [20].
. Limited reception field in shallow networks, which leads to low context awareness [21].

. Performance deteriorates when applying 2D CNNs to 3D MRI volumes, as spatial dependencies
across slices are ignored [22].

As for the solutions that have been explored to address these negatives:

. Using full convolutional networks (FCNs) to maintain spatial dimensions across the network
pipeline [23].

. Using 3D CNNe s for full volumetric segmentation, this allows spatial continuity across slices [24].

. Introduce extended convolutions to expand received fields without reducing the accuracy of the
feature map [25].

Ratings for Each Method Total Rate for Each Metric Total Ratings for Each Dataset
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Fig. 3 The ratios of the most important methods, metrics, and datasets used in conventional neural network studies

Fig. 3 shows how the use of methods, metrics, and data sets is distributed during this stage. It highlights
the dominance of CNN-based methods, especially 2D CNNs and early volumetric models, as well as
performance metrics such as Dice Score and IoU. Datasets such as BraTS, ACDC, and ISIC have been
frequently used in evaluating these models.
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As for the proposed progress:
The development of U-Net architectures was a breakthrough, combining encryption and decryption

designs with skip connections to enhance local and contextual translation performance in segmentation
tasks [26].

C. Stage 3: Deep Learning for MRI Segmentation:

From Table 5, note that deep learning architectures have transformed MRI segmentation by introducing
encoding and decoding structures capable of capturing hierarchical [27], nonlinear, and multi-scale
patterns in medical imaging data. Among the most widely adopted models are U-Net, 3D U-Net, V-Net,
and hybrid approaches such as GAN-based segmentation frameworks [28]. These structures take
advantage of deep layers to extract features and reconstruct segmentation masks while preserving spatial
details [29].
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Fig. 4 U-NET Architecture

Among the most important positives of deep learning architectures are:

. Deliver powerful performance through diverse data sets and imaging methods [30].

. Effectively segment complex tissue boundaries and irregular tumor geometry [31].

. Achieve high accuracy in leading benchmark challenges such as BraTS, ACDC and ISIC (refer to
Table 1).

The most important negatives include:

. High computational demand and memory usage, especially for volumetric (3D) data [32].
. Ability to over-process when training on limited data [33].

. Inadequate global context modeling in traditional convolutional frameworks [34].

The most important ways to overcome these negatives are:

. Use of data augmentation techniques (for example, rotation, scaling, flipping) to artificially expand
the training set and promote generalization of the model [35].

. Designing hybrid models by combining CNNs with advanced modules such as conditional GANs
and residual networks, thus improving organization and learning dynamics [36].
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. Integrating attention gates (AGs) within the encoding and decoding pipelines to direct the focus of
the model to relevant anatomical regions and also improve segmentation accuracy [37].
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Fig. 5 The ratios of the most important methods, metrics, and datasets used in deep neural network studies.

As shown in Fig. 5, we note that deep learning methods, especially U-Net variants, dominate modern
research. Rating metrics such as Dice Score, loU, and Hausdorff Distance, as well as data sets such as
BraTS 2020, ACDC, and ISIC 2017, are frequently used to evaluate model performance and reliability.

As for the proposed progress:

To further improve segmentation quality, U-Net-based architectures can be extended by incorporating
attention mechanisms and fuzzy pooling layers [38]. This combination addresses loss of accuracy due to
pooling processes and improves contextual awareness by enabling the model to adaptively weigh spatial
features based on their importance [39].

D. Stage 4: Attention Mechanisms and Improved Networks for MRI Segmentation:

From Table 6, it is noted that the latest developments in MRI segmentation take advantage of attention
mechanisms and transformer architectures to significantly improve model performance[40].These
techniques allow models to selectively focus on the most relevant parts of the image, and this improves
accuracy in complex medical imaging tasks [41]. Prominent models such as Attention U-Net, TransUNet,
AGSE-VNet, and 3D Antice U-Net have shown exceptional segmentation results, especially for difficult
tasks such as brain tumor and heart segmentation [42].
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The most important positives of attention-enhanced models and transformer-based models are:

. Improved localization of complex anatomical structures, such as tumor boundaries or heart tissue
[43].

. Ability to model long-term dependencies, especially in large images, where global context is
essential for fine-grained segmentation [44].

. Superior performance over well-established public datasets such as BraTS and ACDC (cf.Table
6).

The most important negatives are:

. Increased architectural complexity and longer training times due to the integration of attentional
layers and adapters [45].

. Strong reliance on large-scale disaggregated datasets, and this may limit access to smaller or
specialized datasets [46].

. Limited generalization to previously invisible imaging areas or different patient groups [47].

As for the most important ways to overcome the negatives, they are:

. Use of pre-trained spine or transfer learning from large natural image datasets (for example,
ImageNet) to reduce the need for large-scale medical datasets [48].

. Multimodal imaging (eg, combination MRI, CT, and PET) can improve segmentation power across
different imaging conditions [49].

. Use training techniques across datasets and domain adaptation to improve models for better
generalization across diverse datasets [50].

Ratings for Each Method Total Rate for Each Metric Total Ratings for Each Dataset
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Fig. 7 The ratios of the most important methods, metrics, and datasets used in Attention Mechanisms and Improved
Networks studies

As for the proposed progress:

The next step involves the development of an attention-enhanced nested U-Net [51], incorporating fuzzy
pooling layers to improve feature selectivity and contextual awareness [52]. This architecture addresses
the problems of maximum/average pooling by preserving fine details while improving model performance
[53], as shown in the experimental results in Tables 2 and 6.

1. DISCUSSION

This review has explored the evolution of MRI segmentation techniques from traditional machine
learning (ML) approaches to deep learning architectures and the recent incorporation of attention
mechanisms. Each of the phases has advanced segmentation capabilities in medical imaging, with the
combination of these methods improving accuracy and reliability. This section discusses the strengths and
limitations of each stage, in addition to proposing potential solutions and highlighting the latest
developments.
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A. Machine learning methods

Early methods for MRI segmentation were based on traditional machine learning algorithms, including
k-NN, SVM, random forests, and others. These methods relied primarily on hand-made features, such as
tissue density and texture, which were manually extracted and then used to classify tissue types.

The strengths of these methods include their simplicity of implementation and relatively low
computational cost compared to more complex models such as deep neural networks. However, feature
engineering represents a critical challenge, as the process is time-consuming and error-prone, especially
when dealing with complex anatomical structures [7]. In addition, these models are not well-suited to
capturing the spatial dependencies inherent in medical images, and this limits their effectiveness when
segmenting very complex structures such as tumors.

Proposed solutions to these challenges include hybrid models that combine image processing techniques
(e.g., watershed segmentation) and machine learning classifiers (e.g., SVM). Furthermore, feature
selection techniques such as PCA and LDA can enhance the generalizability of these models across diverse
datasets, addressing the weak generalization problem [11]. In addition, with the advent of deep learning
methods, the manual feature extraction process can be greatly automated, providing greater scalability and
accuracy in the long term.

B. Convolutional neural networks (CNNs)

As medical imaging advances, CNNs have emerged as a powerful tool for automating feature extraction
directly from raw image data. Where 2D CNNs (for example, AlexNet and VGGNet) have been adapted
for medical imaging tasks, this enables better pixel-level classification and tissue segmentation. These
networks have shown significant improvement compared to classical machine learning methods,
especially concerning learning hierarchical features [15].

Despite their success, CNNs have limitations. Early CNN models often suffer from a loss of spatial
resolution due to pooling layers, and the receptive field of 2D CNNs is too limited to fully capture
contextual information in larger images, leading to degraded performance in 3D volume segmentation
[17]. 3D CNNs provide a solution to these problems by maintaining spatial resolution, but they come at
the cost of increased computational requirements [24].

To overcome these challenges, various modifications to CNNs have been proposed, such as introducing
full convolutional networks (FCNs) to maintain spatial dimensions during segmentation [23], and using
expanding convolutions to expand the receptive field without losing accuracy. In addition, the introduction
of U-Net architectures, with skip connections and encoding and decoding frameworks, has helped mitigate
problems related to information loss during the sampling process, and this provides better medical image
segmentation results.

C. Deep learning architectures

The evolution of deep learning structures has given rise to more complex networks capable of learning
nonlinear layouts and adapting to a wide variety of anatomical structures. U-Net, 3D U-Net, V-Net, and
hybrid models, such as GAN-based approaches, have become the backbone of modern medical
segmentation [28]. These models have significantly improved segmentation performance across different
parameters, especially for difficult segmentation tasks such as tumor detection and cardiac segmentation.

The main advantage of these models lies in their ability to handle complex tissue boundaries and
irregular shapes, and this provides high accuracy in well-established data sets such as BraTS, ACDC, and
ISIC [Table 1]. However, its high computational cost and risk of overfitting small data sets remain a
notable concern. 3D models, in particular, suffer from memory and processing limitations, and the lack of
understanding of global context in standard CNNs limits their ability to model long-term dependencies
[32].

In order to address these problems, solutions such as data augmentation and integration of hybrid models
that combine CNNs with GANSs or residual networks have been proposed to improve organization and
reduce over-processing. In addition, integrating attention gates into encoding and decoding frameworks
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can help models focus on relevant areas and also improve performance in terms of accuracy and context
awareness [37].

D. Attention-enhanced and transformer-based models

The final stage in the development of MRI segmentation focuses on the integration of attention
mechanisms and transducers, which has revolutionized image segmentation tasks. Models such as
Attention U-Net, TransUNet, AGSE-VNet, and 3D Antice U-Net have shown superior performance on
complex tasks such as brain tumor segmentation and cardiac image analysis [52]. These models allow
selective focusing on important areas of the image, overcoming the limitations of previous models by
capturing long-term dependencies and improving segmentation accuracy, especially for larger or more
complex data sets.

While these models offer many advantages, including improved positioning of anatomical boundaries
and enhanced modeling of global context, they come with challenges related to architectural complexity
and training time [45]. Furthermore, these models require large, labeled datasets to train effectively and
often have difficulty generalizing to unseen datasets, especially from different imaging domains.

Solutions to these limitations include the use of pre-trained models and transfer learning from natural
image datasets, as well as the integration of multimodal imaging techniques, such as combined MRI, CT,
and PET, for more robust segmentation [49]. Training methods across datasets and domain adaptation can
also help improve model generalization.

Our proposed advance at this stage is to integrate fuzzy pooling layers into the nested, attention-
enhanced U-Net model. This approach addresses the shortcomings of traditional pooling methods by
preserving fine detail and improving contextual awareness, providing a promising direction for future
research in the field of medical image segmentation.

Finally, advances from machine learning to deep learning, and now to attention-enhanced and
transformer-based models, highlight continuing improvements in the accuracy and applicability of MRI
segmentation techniques. While significant challenges remain, in particular regarding computational
requirements and generalization of models, the development of hybrid models and attention mechanisms
holds great promise for the development of medical imaging. By addressing the limitations of previous
models and incorporating new techniques such as fuzzy clustering, future segmentation models are likely
to achieve higher levels of accuracy, making them more reliable for clinical applications.

1. CONCLUSION

The field of MRI segmentation has seen significant progress over the years, evolving from traditional
machine learning methods to sophisticated deep learning and attention enhancement models. Each stage
of development has contributed to improved segmentation performance, with notable progress made in
dealing with complex medical imaging challenges. This review provided an in-depth exploration of these
developments, focusing on four main stages: (1) machine learning methods, (2) convolutional neural
networks (CNNs), (3) deep learning structures, and (4) attention-enhanced models.

Although significant progress has been made along the four stages, there are still challenges to overcome.
Developing more efficient and scalable models, especially for dealing with large 3D data sets, remains a
priority. In addition to all of these, improving the generalizability of the models across different imaging
domains and datasets is crucial so as to enhance their clinical applicability. Incorporating multimodal
imaging, as well as leveraging translational learning and training across datasets, can help overcome some
of these challenges, and this provides more robust and generalizable models. In addition, advances in the
possibility of explaining and interpreting deep learning models will increase confidence in these models
and their adoption in clinical settings.
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Table 1. A summary of MRI datasets used in the reviewed studies

No. Dataset name Source /Publisher No. of Tumor types modality Segmentation tasks Classification tasks Reference
images
1 BraTS (Brain Tumor MICCAI 2000+ | Gliomas (Low- MRI Tumor segmentation Tumor classification [39]
Segmentation) grade, High- (whole, core, and (benign vs malignant)
grade) enhancing tumor)
2 ISLES (Ischemic Stroke MICCAI 500+ Ischemic MRI Stroke lesion null [40]
Lesion) Stroke Lesions segmentation
3 LiTS (Liver Tumor 1316 Liver tumors CT/MRI Liver tumor null [27]
Segmentation) MICCAI segmentation
4 Gliomas MRI Tumor segmentation | Tumor grading and type [27]
MICCAI 350+ (whole, core, classification
enhancing)
5 GBM (Glioblastoma Publicly Available 200+ Glioblastoma MRI Tumor segmentation Tumor classification [39]
Multiforme) (grading)
6 RMI (Retinopathy of Kaggle 1000+ | Retinopathy of | Fundus/Optical Segmentation of Classification (normal vs [27]
Prematurity) Prematurity Retinal Vessels abnormal)
7 DCE-MRI (Dynamic Institutional 1000+ Various Brain MRI Tumor segmentation Tumor classification [27]
Contrast MRI) Database Tumors (Dynamic) (benign vs malignant)
8 DeepBrain (Brain Tumor Kaggle 2000 Glioma, MRI Brain tumor Brain tumor classification [28]
Dataset) Meningioma, segmentation
Pituitary
9 Brain MRI Tumor Dataset Publicly Available 250 Glioma, MRI Tumor Tumor classification [29]
Meningioma segmentation (benign vs malignant)
10 | SYNTH3D (Synthetic MRI Research Lab 1000+ Synthetic MRI Synthetic tumor null [41]
Dataset) tumors segmentation
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Table 2. The use of the dice similarity coefficient (DSC), cross-union (IoU), sensitivity, privacy, and Hausdorff distance at different stages of the MRI process

Phase

Dice Similarity
Coefficient (DSC)

Intersection over
Union (IoU)

Sensitivity

Specificity

Hausdorff Distance

Phase 1:
Preprocessing

Used to compare the
initial preprocessing
segmentation with the
ground truth

Measures the overlap of
preprocessed image
regions

Assesses how many true
positives are detected in
preprocessing

Measures the true
negative rate in the
preprocessing phase

Assesses the distance of
boundary points in
preprocessed images

Phase 2: Feature

Evaluates the feature

Used to validate feature

Measures the sensitivity of

Evaluates the specificity

Used to check the boundary
Extraction segmentation accuracy detection regions the extracted features of the extracted features distance for feature regions
against ground truth

Phase 3: Primary metric to Used to assess the Quantifies the sensitivity of | Quantifies the specificity Measures the distance

Segmentation evaluate segmentation overlap between the segmented structures of segmented regions between the boundaries of
accuracy predicted segments and segmented regions
ground truth
Phase 4: Evaluates the refined Validates post- Assesses how well Assesses how well Final evaluation of the
Postprocessing & segmentation accuracy processed segment postprocessing detects true postprocessing avoids boundary accuracy after
Evaluation accuracy positives false positives postprocessing
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Table 3. Details of the reviewed studies for the machine learning stage

Learning Classifiers
for the Tumor
Segmentation and
Classification in
Brain MRI

classification, comparing its
methods with previous
research and evaluating
performance using
objective metrics.

glioma, meningioma, and
pituitary tumors.

image quality, including TP,
TN, FP, FN, sensitivity,
specificity, DSC, MSE,
PSNR, and others.

Paper Reference Method Dataset metric Result with a number Calculator and software
specifications used by
the experiment
Machine learning | [1], 2023 ML: SVM, RF, Naive The study uses various Metrics include accuracy, CNN achieved 97.6% Experiments were run on
and deep learning Bayes; DL: ANN, CNN; public and self-created sensitivity, and specificity . | accuracy, followed by RF at | a 64-bit computer with an
approach for TL for large datasets; MRI, CT, PET, and X-ray | The study provides detailed |96.93%, SVM at 95.05%, DT| Intel i3 CPU, 8GB RAM,
medical image literature review. datasets. evaluation metrics for ML at 93.35%, LR at 93.01%, | using Python on Google
analysis: diagnosis and DL techniques . and ResNet50V2 at 85.71%. Colab.
to detection
Retracted: A [2], 2023 The paper uses a deep The first dataset has 3174 | The paper defines metrics for| The study used three brain |The model was trained for
Hybrid Approach learning algorithm with | MRI images (2674 tumors, evaluating tumor MRI datasets and evaluated 100 epochs using the
Based on Deep CNN for tumor 500 non-tumors), and the | identification, classification, | model performance using Adam optimizer with a
CNN and Machine segmentation and second has 3064 images of | accuracy, segmentation, and sensitivity, specificity, learning rate of 0.00001,

accuracy, and the Adam
optimizer.

and evaluated using
sensitivity, specificity, and
accuracy.

Development of
Machine Learning
and Medical
Enabled
Multimodal for
Segmentation and
Classification of
Brain Tumor
Using MRI Images

[3], 2022

Geometric mean filter for
noise removal, fuzzy c-
means for segmentation,
GLCM for feature
extraction, and SVM, RBF,
ANN, and AdaBoost for
classification.

One hundred images were
randomly selected for the
study .
25images contain tumors;
75 are healthy 80 .images
were used for training; 20
for testing .Data is available

upon request .

Accuracy is a key metric for
evaluation .
Sensitivity and specificity are
also assessed .
Various algorithmic
approaches are compared for
performance.

The SVM RBF algorithm
achieved 99% accuracy in
classification .
80images were used for
training; 20 for testing .
25 out of 100 images
contained tumors

The contexts provided do
not contain information
regarding the calculator

and software
specifications used in the
experiment.

Performance of
machine learning
algorithms for
glioma
Segmentation of

brain MRI: a

[4], 2021

The study reviews
segmentation studies,
extracts data, analyzes
MLA methods for gliomas,
and evaluates performance

using DSC scores.

The BraTS dataset was
primarily used for
segmentation studies .
Some studies used original
data or TCIA data .

The primary metric used is
the DSC score .

DSC score ranges from 0.0 to

1.0.

A DSC score of 0.8 indicates

good overlap .

Overall DSC score: 0.84
(95% CI: 0.82-0.86)
High-grade gliomas DSC
score: 0.83 (95% CI: 0.80-
0.8)

IBM SPSS Statistics was
used for statistical
analyses .
Version 25.0 of IBM
SPSS Statistics was

utilized .
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Paper Reference Method Dataset metric Result with a number Calculator and software
specifications used by
the experiment
systematic literature A DSC score of 0.5 indicates| Low-grade gliomas DSC Open Meta [Analyst]
review poor overlap . score: 0.82 (95% CI: 0.78- software was used for
and meta-analysis 0.87) quantitative meta-analysis.
VNS Metaheuristic | [5], 2021 |The Variable Neighborhood| Eleven benchmark brain | The paper does not specify | The paper demonstrates the | The contexts provided do

Based on
Thresholding
Functions for the
Brain
MRI Segmentation

Search (VNS) metaheuristic
is used to optimize Otsu's
and Kapur's thresholding

functions, resulting in VNS-

Otsu and VNS-Kapur
versions.

MRI slices are used in the
study.

evaluation metrics.

effectiveness of the VNS-
Otsu and VNS-Kapur
methods on brain MRI slices.

not contain information

regarding the calculator
and software

specifications used in the
experiment.

Hippocampal [6], 2021 | The text covers traditional, HarP :hippocampal TP: Correct positives, FP: The paper reviews The provided contexts do
Segmentation in deep learning, atlas-based, |segmentation, ABIDE: MRI| Incorrect positives, FN: hippocampal segmentation | not contain information
Brain MRI Images label-fusion, classification- | images, IBSR: manual Missed positives, TN: methods, highlighting regarding the calculator
Using Machine based methods, and the U- samples, OASIS: no Correct negatives. DSC and | automated approaches and and software
Learning Methods: net framework for segmentation, MMMRR: | JSC: Measure segmentation the use of atlas-based specifications used in the
A Survey segmentation. multimodal images, LONI: overlap. techniques. experiment.
multi-species MRI.
An atlas of [7],2021 | The text covers AoC for IBSR18: 18 MRI scans, Dice scores evaluate AoC achieved 90.95% for The study utilized the
classifiers—a MRI segmentation, IBSR20: 20 MRI scans, |performance, p-values assess| WM, 92.39% for GM, and | MRBrainS13 dataset for
machine learning compares DC-FCN, nnU- | BrainWeb: 20 simulated | significance, and mean and 76.63% for CSF feature extraction .
paradigm for brain Net, and classifiers for images. standard deviation are segmentation on the IBSR18 | The SPM package was
MRI performance. reported. dataset. used for data processing
segmentation
Recent Automatic | [8], 2021 | The text discusses ML and The text lists prostate DSC measures segmentation | The paper reviews prostate | The contexts provided do
Segmentation DL techniques, up- datasets: PROMISE12, |performance, RVD compares | MRI segmentation methods, | not contain information
Algorithms of MRI sampling, regional NCI-ISBI 2013, QIN- segmented and reference metrics, datasets, cancer regarding the calculator
Prostate Regions: A proposal, GANs, and PROSTATE, 12CVB, images, and metrics are rates, and key research. and software
Review model-based hybrid PROSTATEX, calculated per slice. specifications used in the
networks for prostate PROSTATEx-2, and UKM experiment.
segmentation.
SVM Classification| [9],2017 | DWT for noise removal, |The dataset contains 40 T2-| MSE, SNR, and PSNR are | The SVM classifier achieved| MATLAB toolboxes,
of MRI Brain Canny for edges, Otsu for weighted MRI brain used for evaluation. 100% accuracy on 40 MRI | Canny edge detection,
Images for segmentation, images, with 20 normal and images. Biorl.3 wavelet | DWT for noise removal,
Computer- 20 abnormal images denoised with MSE: 6.0511, and wavelet
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Paper

Reference

Method

Dataset

metric

Result with a number

Calculator and software
specifications used by
the experiment

Assisted Diagnosis

morphological operations,
and SVM with RBF kernel.

featuring various brain

diseases.

SNR: 29.2336, PSNR:
40.3124.

types/thresholding were
used.

A Machine [10],2017 | Wavelet denoising, median | Real-time images from |PSNR measures signal power| The method achieved 96% | The analysis and results
Learning Approach filter, Otsu binarization, K- |  different databases are Versus noise power . classification, with eight were done using
for MRI Brain Means segmentation, and | utilized .Both real-time and | MSE quantifies differences | features, high noise removal, MATLAB .
Tumor binary tree SVM. simulated images are between predicted and and improved system Image quality metrics
Classification included . observed values . performance. used are PSNR and MSE.
. A.simple and [11],2015 | Pre-processing for noise . The study used 70 MRI Accuracy ,the Similarity Tre}inir.lg accuracy: 88.9% Experiments were
intelligent approach and skull removal, feature | images: 25 normal and 45 index was used for results Validation accuracy: 94.9% conducted on an Intel
for brain MRI extraction with color abnormal, divided into evaluation . Testing accuracy: 94.2% Core i3 processor (2.40
classification moments, and classification| training, validation, and Extra fraction and overlap Overall accuracy: 91.8% GHz) with 2 GB of
using a neural network. testing sets. fraction were also utilized for ANN accuracy: 91.80% memory, running
evaluation . Windows 7 and
MATLAB 7.6.0
(R2008a).
A Hybrid Approach| [12], 2010 A hybrid GA-SVM The study used a dataset of | Sensitivity measures true The hybrid approach The contexts provided do
for Automatic approach with SGLDM 83 brain MRI images: 29 positives, specificity achieved 94.44%-98.14% | not contain information
Classification of feature extraction, 2D normal, 22 malignant measures true negatives, and | accuracy and 91.9%-97.3% | regarding the calculator
Brain MRI Using wavelet transform, and GA | tumors, and 32 benign accuracy measures overall |sensitivity, excelling in tumor and software
Genetic Algorithm for feature selection. tumors. classification correctness. classification. specifications used in the
and Support Vector experiment.
Machine
Classification of | [13], 2009 The study uses pattern The study involved 98 | ACC measures classification | Classification accuracy for | The provided contexts do
Brain Tumor Type classification, automated patients with 102 brain  |correctness, sensitivity shows | metastases vs gliomas: 85%, | not contain information
and Grade Using analysis, SVM, and masses, including the true positive rate, sensitivity: 87%, specificity: | regarding the calculator
MRI methods like LDA and kKNN| metastasis, meningiomas, | specificity shows the true | 79%. For high-grade vs low- and software

Texture and Shape
in a Machine
Learning Scheme

for tumor classification.

and gliomas.

negative rate, and AUC
evaluates model
performance.

grade gliomas: accuracy:
88%, sensitivity: 85%,
specificity: 96%.

specifications used in the
experiment
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Table 4. Details of the reviewed studies for the conventional neural network stage

Paper Reference method Dataset metric Result with a number |Calculator and software
specifications used by
the experiment

Classification of | [14], 2010 | MRI processing uses | Known MRI images from | The system classifies MRI | The system classifies MRI |The provided contexts do

Brain Cancer histogram equalization,| Tata Memorial Hospital images into tumor grades, images into Astrocytoma | not contain information
using an Artificial segmentation, GLCM (TMH) were used . with results confirmed by |tumor grades .Results show a| regarding the calculator

Neural Network for features, and a Unknown MRI samples |cancer specialists from TMH, | tumor region extracted from and software

Neuro Fuzzy Classifier| were also obtained from | matching doctors' accuracy. the outer skull. specifications used in the
for classification. TMH for testing. experiment.
Brian Tumor | [15],2012 | MRI processing uses | The dataset includes MRI Sensitivity is one of the | The method uses ANFIS withf MATLAB 7.0.4 is used

Segmentation histogram equalization,|  Astrocytoma images, evaluation metrics used. 49 fuzzy rules, classifying | for feature calculations,

using a hybrid segmentation, GLCM | categorized by grade and Specificity is another MRI images from GRADE I with 'histeq' for

Genetic features, and a Neuro | clustered into four regions: | important evaluation metric. to IV, measured by histogram equalization
Algorithm and an Fuzzy Classifier. white matter, grey matter, | Accuracy is also measured | sensitivity, specificity, and | and GLCM for feature
Artificial Neural CSF, and tumor. for performance evaluation. accuracy. extraction.
Network Fuzzy
Inference System
(ANFIS)
Brain Tumor | [16], 2012 |Multi-Layer Perceptron| The dataset includes 30 | Peak recognition rate is used | PCA has 100% peak and |The contexts provided do
Diagnosis (MLP) for head MRI cases (3 types), for evaluation. 78% average recognition, | not contain information
Systems Based on classification. 15 gadolinium-enhanced | Average recognition rate is | while WMEM has 96.7% | regarding the calculator
Artificial Neural Principal Component slices per case. also considered. peak and 88.2% average. and software
Networks and Analysis (PCA) for Norm error measures specifications used in the
Segmentation feature extraction. reconstruction accuracy. experiment.
Using MRI WMEM algorithm for
image segmentation.

Brain Tumor | [17],2013 | The study uses feature | The study uses proton The paper does not specify | The classification accuracy | The image processing
Detection Using sets, modified Canny, Magnetic Resonance evaluation metrics. varies across different algorithm is based on a
Neural Network neural networks, and Spectroscopy images. datasets. modified Canny edge

learning vector Different datasets yield detection algorithm and
quantization for tumor varying classification implemented using
classification and accuracy results. MATLAB
detection.
Brain Tumor | [18],2013 | The study uses GLCM | The dataset consists of MRI

Segmentation

for feature extraction,

Genetic Algorithm for

images of astrocytoma

Sensitivity is used for
evaluating model

tumors.

performance.

The paper compares tumor
segmentation methods,

The contexts provided do
not contain information
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Paper

Reference

method

Dataset

metric

Result with a number

Calculator and software
specifications used by
the experiment

Using Genetic

selection, ANFIS for

Images are categorized by

Specificity is another key

highlighting ANFIS for

and software

Algorithm and segmentation, and tumor grades I to I'V. evaluation metric. Astrocytoma grades [-IV. |specifications used in the
Artificial Neural compares segmentation| The images were collected | Accuracy is also considered experiment.
Network Fuzzy techniques. from web resources. for assessment.

Inference System
(ANFIS)
An Artificial [19],2013 | The study uses MRI, | Brain tumor (MRI image) |Similarity index (S) measures| A similarity index S of 80 | MATLAB version 7.6.0
Neural Network image enhancement, segmentation quality, FPVF |indicates excellent similarity.| was used for algorithm
Approach for watershed and FNVF assess Higher S, lower FPVF, and development.
Brain Tumor segmentation, and misclassification and lost FNVF yield better
Detection Using neural networks for pixels, and the Jaccard index segmentation results.
Digital Image brain tumor detection. evaluates volume overlap.
Segmentation
Detection of | [20], 2014 The method uses  |The study used twenty brain| TP: Correctly identified Twenty MR images were | No specific calculator or

Tumor in MRI neural networks, MR images. cancer, TN: Correctly evaluated, with histogram | software specifications

Images Using GLCM features, MLP MR images included identified normal, FP: equalization and are mentioned in the
Artificial Neural classification, and | normal and abnormal brain Incorrect cancer, FN: segmentation improving context.

Networks thresholding/edge tissues. Incorrect normal. tumor assessment.
detection for brain
tumor detection.
Edge Detection | [21],2016 | Canny edge detection, | The study uses real MRI | The paper does not specify | The algorithm is flexible, |The implementation used
Algorithms Using histogram thresholding brain images. evaluation metrics. efficient, fast, and accurate | the Image Processing
Brain Tumor for segmentation, T1 and T2-weighted MRI for tumor detection and Toolbox under

Detection and neural network images are specifically segmentation. MATLAB Software.

Segmentation classification, and utilized. The experiments were
Using Artificial feature conducted on real MRI
Neural Network extraction/selection to images.

Techniques improve accuracy.
Classification of | [22],2017 | The paper uses region | The dataset includes 39 | TP, TN, FP, and FN measure Sensitivity: 98% The contexts provided do

tumors and it

growing, SVM, and

brain MRI images for

tumor classification;

Specificity: 100%

not contain information

stages in brain ANN for tumor normal/tumor classification |sensitivity is 98%, specificity Accuracy: 97.37% regarding the calculator
MRI using classification, and and 37 images for is 100%, accuracy is 97.37%, BER: 0.0294 and software

support vector TKFCM for benign/malignant tumor and BER is 0.0294. specifications used in the
segmentation. stage classification. experiment.
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Paper Reference method Dataset metric Result with a number |Calculator and software
specifications used by
the experiment
machine and
artificial neural
network
Brain Tumor | [23],2017 | The method uses MRI, | The study utilized MRI Accuracy: Correct The algorithm effectively The system was

Detection and

Canny edge detection,

brain images for analysis.

classifications. Sensitivity:

detects tumors with edge

implemented using

Segmentation in a Gaussian filter, Data was developed from | True positives. Specificity: | detection, performing better MATLAB.
MRI Images Cellular Automata, and| scanning labs and 1.5T | True negatives. TP, TN, FP, | on high-grade tumors across MATLAB provides
Using Neural an ANN for brain scanners. FN: Classification outcomes. multiple images. powerful mathematical
Network tumor detection. and image processing
capabilities.
Fully automatic | [24],2018 | The study uses HOG | A total of 200 MRI cases SSIM measures image Identification precision | The contexts provided do
model-based features, neural were utilized. similarity, PRI assesses recorded at 92.14%. not contain information
segmentation and networks, and Digitized medical MR segmentation accuracy, Vol | Sensitivity achieved was | regarding the calculator

classification
approach for MRI
brain tumor using
artificial neural
networks

supervised learning for
segmentation and
classification,
evaluated against
manual methods.

images from standard
challenge datasets were
used.

quantifies information
difference, and GCE
evaluates segmentation
consistency.

89%.
Specificity reached 94%.

and software
specifications used in the
experiment.

Identification and | [25], 2018 The method uses | The study used 650 samples| PSNR evaluates image Nearly 100% accuracy for |The contexts provided do
classification of GLCM features, DWT from Diacom and quality, MSE measures the trained dataset. not contain information
brain tumor MRI segmentation, radiologists, including 18 | image fidelity, and accuracy | %95accuracy for the tested | regarding the calculator
images morphological infected tumor brain tissues| indicates the correct tumor dataset. and software
with feature filtering, and a and normal samples. classification rate. specifications used in the
extraction using probabilistic neural experiment.
DWT and network for tumor
probabilistic detection.
neural network
Hippocampal | [26], 2021 The method uses  |The study used twenty brain TP: Correct cancer Twenty brain MR images | No specific calculator or
Segmentation in neural networks, MR images. identification, TN: Correct were evaluated, with software specifications
Brain MRI GLCM features, MLP MR images included normal identification, FP: histogram equalization are mentioned in the
Images classification, and | normal and abnormal brain Incorrect cancer improving image definition context.
Using Machine thresholding/edge tissues. identification, FN: Missed | and segmentation enhancing
Learning detection for tumor cancer detection. tumor assessment.
Methods: A detection.
Survey
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Table 5. Details of the reviewed studies for the deep learning stage

Paper reference Method dataset metric Result with a number Calculator and software
specifications used by the
experiment
Deep Learning for | [27],2017 | The method uses CNN The study uses various TPR, PPV, DSC, HD, and Sensitivity: 93.3% for the The contexts provided do
Brain MRI architectures, label fusion, | datasets: BRATS, ISLES, ASSD measure detection of 1p19q status. not contain information
Segmentation: State skull stripping, bias mTOP, MSSEQG, segmentation accuracy, Specificity: 82.22% for the | regarding the calculator and
of the Art correction, registration, NeoBrainS12, and overlap, boundary distance, | detection of 1p19q status. | software specifications used
and Future and noise reduction for MRBrainS for brain tumor and lesion detection by the experiment.
Directions MR image processing. and lesion segmentation. precision.
Deep Generative [28],2020 | A VAE-based generative | UK Biobank dataset: 1,500 | The evaluation metric used The proposed method The model, implemented in
Model-based Quality model is used for quality | subjects' short-axis cardiac is the Dice metric. outperforms CNN and PyTorch, used the Adam
Control for Cardiac control, with iterative images. Pearson correlation hand-crafted features in optimizer (learning rate
MRI Segmentation search and Dice metric ACDC dataset: 100 coefficient (r) is also both correlation and MAE | 0.0001), a batch size of 16,
evaluation. subjects with normal and reported. on ACDC and UK Biobank and was trained for 100
pathology groups. Mean absolute error (MAE) datasets. epochs.
is calculated for
predictions.
Brain Tumour Image | [29], 2020 | An ensemble of 3D CNN The BraTS 2019 dataset Dice scores: 0.750 Dice scores: 0.750 The provided contexts do
Segmentation and U-Net with patch- includes 335 glioma (enhancing), 0.906 (whole), | (enhancing tumour), 0.906 not contain information
Using Deep based inference and data | patients: 259 high-grade, 76 0.846 (core), compared (whole tumour), 0.846 regarding the calculator and
Networks augmentation is used for low-grade, and 125 with state-of-the-art (tumour core). software specifications used
segmentation. unknown-grade cases. methods. in the experiment.
Segmentation Loss | [30], 2020 | The paper categorizes loss | The contexts do not specify The Dice coefficientis a | The question is not relevant | The contexts provided do

Odyssey

functions, explores types,
and provides
implementations.

any datasets used in the
study.

common segmentation
metric, while IoU loss
optimizes object category
segmentation.

to the research paper's
content.

not contain information
regarding the calculator and
software specifications used
in the experiment.
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Paper reference Method dataset metric Result with a number Calculator and software
specifications used by the
experiment
Brain Tumour Image | [31], 2020 | An ensemble of 3D CNN | The study used the BraTS | The Dice scores are 0.750, Dice scores: enhancing The contexts provided do
Segmentation and U-Net is used for 2019 dataset with 335 0.906, and 0.846 for tumour 0.750, whole not contain information
Using Deep segmentation with patch- | glioma patients, including different tumour regions, tumour 0.906, tumour core | regarding the calculator and
Networks based inference and data | 259 high-grade and 76 low- | with a comparison to state- | 0.846, with patient-specific | software specifications used
augmentation. grade cases. of-the-art methods. scores of 0.930, 0.949, and in the experiment.
0.927.
A Systematic [32], 2021 CNN is used for The study used a T1- Dice Score, Rand Index, Average Dice Score: 0.92 The contexts provided do
Approach for MRI classification, Faster R- weighted MRI brain tumor VOI, GCE, BDE, PSNR, Accuracy: 94.27% for not contain information
Brain Tumor CNN for tumor dataset with 233 patients and MAE assess similarity, glioma regarding the calculator and
Localization and localization, and Chan- and 3064 images, focusing accuracy, consistency, Cohen's kappa: 0.843 software specifications used
Segmentation Using Vese for tumor on meningioma and glioma, boundary, quality, and (training), 0.872 (testing( in the experiment.
Deep Learning and segmentation. excluding pituitary tumor error. AUC values: 0.93
Active Contouring images. (training), 0.94 (testing
AHybrid CNN-SVM | [33], 2021 A hybrid CNN-SVM The dataset used is from Accuracy, True Positive The hybrid CNN-SVM The model was
Threshold model for tumor detection BRATS 2015. Value, and texture features | model achieved 98.4959% implemented on a Dell
Segmentation uses the BRATS 2015 It includes 110 training assess image classification accuracy. laptop with a Core
Approach for Tumor dataset, with CNN for cases and 220 testing cases. and properties. SVM accuracy was i7cpu,8GB RAM, and 4GB
Detection and feature extraction and 72.5536%. Nvidia GPU.
Classification of SVM for classification. CNN accuracy was
MRI Brain Images 97.4394%.
Znet: Deep Learning | [34], 2022 DNNs for tumor The study used the TCGA- Pixel accuracy can be Validation Dice coefficient: | The model used 2x Titan
Approach for 2D segmentation, using data LGG dataset with 3,929 misleading; better metrics 0.96 (training), 0.92 GPUs, ADAM optimizer,
MRI Brain augmentation, encoders, FLAIR MRI slices, 1,373 include IoU, Dice (testing); Pixel accuracy: 128x128 images, and
Tumor Segmentation and trained on TCGA- labeled abnormalities, coefficient, F1 score, and 0.996; F1 score: 0.81; Albumentations for
LGG for 200 epochs. annotated by experts. MCC for evaluation. MCC.: 0.81. augmentation.
A holistic overview | [35], 2022 DL for medical image Public datasets from F-beta, ROC, Dice, 0.869 Dice similarity The contexts provided do
of the deep learning analysis includes GitHub and Kaggle are accuracy, sensitivity, and coefficient score achieved not contain information
approach in medical segmentation, used, with medical image | Jaccard assess performance in prostate image regarding the calculator and
imaging classification, datasets being smaller. in segmentation and segmentation software specifications used
augmentation, feature classification. by the experiment.
extraction (GLCM/LBP),
and PCA.
A deep learning [36],2022 | DLM VOI segmentation The study used a AUC compared DLM and DLM method AUC: 0.76 Training used TensorFlow

masked segmentation
alternative to manual

is compared with expert
manual segmentation,

multicenter dataset of 930
patients.

manual segmentation, with
sensitivity and specificity

(95% CI: 0.66-0.85(

Keras 2.2.0 with a 3D U-
Net architecture, 32-GB
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Result with a number

Calculator and software

Paper

Method

dataset

metric

specifications used by the
experiment
V100 GPU, Adam

segmentation in
biparametric MRI
prostate cancer
radiomics

using ROC analysis for
performance and iMRMC
for model comparison.

Data was collected from 9
different medical centers.
Included 2 tertiary care
academic institutions and 7
non-academic institutions.

evaluated for the best
model.

Manual segmentation
AUC: 0.62 (95% CI: 0.52-
0.73(

Time reduction: over 97%
compared to manual
segmentation

optimizer (learning rate le-
4), batch size of 1, and up
to 400 epochs.

The contexts do not include

A survey of methods
for brain tumor
segmentation-based
MRI images

Segmentation methods:
conventional, supervised,
unsupervised, CNN-
based, hybrid, and FCM
clustering.

The study uses BraTS
2013, 2018, 2019, and 2020

datasets.

Evaluation metrics include
accuracy, sensitivity, and
specificity for assessing

segmentation performance.

Accuracy: Havaei 0.88,
Hussain 0.80, Pereira 0.85,
Ranjbarzadeh 0.92, Wang

0.90.

details on the calculator and
software specifications
used.

MATLAB was used to

Study and analysis of
different
segmentation
methods
for brain tumor MRI

Otsu's method,
Watershed, Level set, K-
means, HAAR DWT, and
CNN are used for image

segmentation and
analysis.

The study used the BRATS
dataset-2018 for
simulations.

Recall, precision, F-
measure, and accuracy
assess model performance.

Otsu: 71.42%, Watershed:
78.26%, Level set: 80.45%,
K-means: 84.34%, DWT:
86.95%, CNN: 91.39%
accuracy, CNN response
time: 2.519s.

simulate segmentation
algorithms on the BRATS
2018 dataset, with a CNN
response time of 2.519
seconds.
The contexts provided do

application
Deep Learning for
MRI Segmentation
and Molecular
Subtyping
in Glioblastoma:
Critical Aspects from

DL for MRI
segmentation, ML for
tumor classification,
Grad-CAM for
interpretability, STAPLE
for averaging, and data
selection for training.

The BraTS and TCIA
datasets are used for
training DL algorithms,
with multi-institutional
databases proposed for
future research.

Al segmentation is
evaluated using Dice Score,
Hausdorff distance, and
annotation averaging to
reduce human error.

Mean patients: 148.6,
median: 60.5; 1p19q
codeletion prediction
accuracy: 92%, algorithms
>80-90% accuracy.

not contain information
regarding the calculator and
software specifications used
in the experiment

an Emerging Field
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Table 6. Details of the reviewed studies for the attention and enhanced networks stage
Paper Reference method Dataset metric Result with a number Calculator and software
specifications used by the
experiment
EnigmaNet: A [40], 2024 EnigmaNet uses a The study used the ISLES- Dice score, sensitivity, EnigmaNet achieved a Dice | The provided contexts do
Novel Attention- modified loss function, 2015 public dataset. specificity, accuracy, and score of 0.8965 (FLAIR), not contain information
Enhanced DWI/FLAIR MRI, It includes 64 sub-acute AUC-ROC assess sensitivity 0.8776, regarding the calculator and
Segmentation Genesis-k blocks, and ischemic stroke cases. segmentation and classifier | specificity 0.9866; a Dice | software specifications used
Framework for dual-headed attention | MRI sequences were skull- performance. score of 0.8423 (DWI), in the experiment.
Ischemic for lesion detection. stripped and co-registered. sensitivity 0.8452,
Stroke Lesion The dataset is divided into specificity 0.9754.
Detection in training and testing cases.
Brain MRI
Deep attention- [41], 2024 A deep attention The Synapse dataset from The primary evaluation The model increased the The model was trained in
enhanced network for the MICCAI 2015 metric used is the DSC Dice score by 2.26, with a PyTorch on a Tesla T4
networks for segmentation uses challenge. metric. highest score of 10.90 in GPU with SGD, 224x224
medical image DCSegHead, attention The ACDC dataset from The method achieved a HD, and an average images, batch size 8, and
segmentation decoder, CNN-Swin 100 MRI patients DSC performance of 90.73. | performance of 90.73 on 400 epochs.
pyramids, and feature the DSC metric.
fusion.
Multimodal MRI | [42],2023 | The 3D Attention U-Net The BraTS 2020 dataset The IoU is the Jaccard Dice scores: WT =(.889, The model was
Brain Tumor uses dense encoders, includes 3D MRI scans Index, and the Dice TC=0.866, ET = 0.828. implemented in Python
Segmentation residual decoders, from 369 patients with coefficient is the Dice- Jaccard means not with PyTorch, trained for
using attention layers, and gliomas (LGG and HGG), Sorensen coefficient, specified. 100 epochs using the Lion
3D Attention BCE-Dice loss, trained manually annotated by measuring discrepancies optimizer and a weight
UNet with Dense on BraTS 2020. neuroradiologists. between segmentation and decay of 0.01.
Encoder Blocks ground truth.
and
Residual Decoder
Blocks
IRA-Unet: [43],2023 | A deep learning method | The ACDC 2017 dataset Dice similarity coefficient Mean Dice score for left The contexts provided do
Inception for cardiac MRI uses has 100 training and 50 test | (DSC), Jaccard similarity ventricle: 0.947. not contain information
Residual IRA-Unet with GAN, subjects, while the MM index (JC), and Hausdorff | Mean Dice score for right | regarding the calculator and
Attention Unet in attention, and a challenge dataset includes | distance (HD) are used for ventricle: 0.919.
Adversarial discriminator for 375 patients from three
Network for

improved segmentation.

countries.

performance evaluation.

Mean Dice score for

software specifications used
in the experiments.

myocardium: 0.907.
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Paper Reference method Dataset metric Result with a number Calculator and software
specifications used by the
experiment
Cardiac MRI
Segmentation
Attention Gate [44], 2020 AGResU-Net uses BraTS 2017 dataset with DSC measures overlap, AGU-Net and AGResU- Models were implemented
ResU-Net for Attention Gates, DSC, 285 glioma patients. Hausdorff distance Net outperform U-Net and | in Keras with TensorFlow,
Automatic Hausdorff distance, z- BraTsS 2018 dataset for estimates surface distance, ResU-Net in tumor using an SGD optimizer,
MRI Brain Tumor score normalization, and model evaluation. and Hausdorff95 measures segmentation, with PReLU activation, and
Segmentation Gaussian regularization. BraTS 2019 dataset for the 95th quantile. attention gates boosting executed on a PC with a
additional experiments core tumor accuracy. GeForce GTX 1080 GPU.
Automatic [45], 2020 The paper proposes a The OASIS dataset was The evaluation metrics The proposed method The model was trained with
segmentation of patch-wise U-Net for used for experiments. include Dice similarity achieved a Dice similarity SGD, momentum 0.99,
brain MRI using a improved segmentation, The Internet Brain coefficient (DSC), Jaccard coefficient of 0.93, learning rate 0.001, and
novel patch-wise compared to the U-Net Segmentation Repository index (JI), Hausdorff outperforming U-Net by categorical cross-entropy
U-net deep and SegNet. (IBSR) dataset was also distance (HD), and mean 3% and SegNet by over loss, using Keras for
architecture utilized. squared error (MSE). 10%. experiments.
MSCDA: Multi- | [46],2023 The MSCDA Dataset 1: 11 healthy The main evaluation metric MSCDA achieved stable No information on
level semantic- framework uses female volunteers' MRI is DSC, with auxiliary performance with DSC calculator specifications is
guided contrast contrastive learning and images and masks. metrics including JSC, 89.2, outperforming other provided.
improves cross-domain sampling | Dataset 2: 134 patients with | precision, and sensitivity. | methods with fewer source | No information on software
unsupervised for breast MRI invasive breast cancer MRI subjects. specifications is provided.
domain segmentation. images and masks.
adaptation for
breast MRI
segmentation in
small datasets
Deep learning- [47], 2021 DDSeg uses CNN for The study uses MRI data Accuracy is measured CNN AT achieved 90.48% | The provided contexts do
based diffusion MRI from multiple sources: across the brain, for tissue | accuracy on HCP data and not contain information
segmentation of segmentation, HCP, CAP, VERIO, boundaries, and non- 80.30% on VERIO data. regarding the calculator and
brain tissue from integrating DKI MultiCenter, and boundary regions, with PSI Dice scores indicate software specifications used
diffusion MRI parameters and SUDMEX. for WM, GM, and CSF. prediction accuracy. in the experiments.
comparing with other
methods.
STHarDNet: [48],2022 | The study proposes the | The study used the ATLAS Dice measures similarity STHarDNet achieved a Operating System:
Swin Transformer STHarDNet model dataset for MRI between predicted and Dice value of 0.5547. Windows 10
with HarDNet for structure. segmentation. actual values. STHarDNet achieved IoU | CPU: Intel Core i19-9900KF
value of 0.4185. 3.6GHz
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Paper Reference method Dataset metric Result with a number Calculator and software
specifications used by the
experiment
MRI It combines HarDNet The ATLAS dataset IoU refers to the STHarDNet achieved a GPU: NVIDIA GeForce
Segmentation with Swin Transformer includes 189 MRI scan intersection over union area | precision value of 0.6764. RTX 2080Ti
for MRI segmentation. images. ratio. STHarDNet achieved a RAM: 112GB
Four performance It consists of 43,281 Precision indicates the recall value of 0.5286. Storage: 1TB SSD
metrics are used: Dice, annotated slices. percentage of accurately Language: Python 3.7
IoU, precision, and Data from 177 patients predicted pixels. Framework: PyTorch 1.5
recall. were utilized. Recall measures the
The ATLAS dataset is 80 images were used for | model's detection of ground
utilized for model training, 52 for validation. truths.
evaluation
3D AGSE-VNet: | [49],2022 | AGSE-VNetuses SE for | The study uses the BraTS Dice measures accuracy, Dice: 0.68-0.85. The experiment used
an automatic feature enhancement, 2020 dataset with 369 specificity, true negatives, Sensitivity: 0.83. TensorFlow 1.13.1, Intel
brain tumor AG for noise training and 125 validation | sensitivity, true positives, Specificity: 0.99. Core 17-9750H CPU, 32GB
MRI data suppression, skip cases of LGG and HGG, and Hausdorff95 boundary Hausdorff95: 8.96. RAM, Nvidia GeForce
segmentation connections, and multi- featuring T1, T1-CE, T2, distance. RTX 2080 GPU, Windows
framework modal MRI images for and FLAIR images. 10, PyCharm, and Python
segmentation. 3.6.9.
Improved U-Net- | [50], 2021 Improved U-Net with The study uses 3000 UAV | Precision, recall, IoU, and | The average overlap IoU of | The provided contexts do
based insulator ECA-Net attention for aerial images from the 8th F-Score assess prediction the proposed method is not contain information
image insulator segmentation, | Teddy Cup, with insulator accuracy and overlap. 96.8%. Precision reached regarding the
segmentation evaluated using labels, enhanced through 98.35, and Recall reached calculator and software
method based Precision, Recall, and image processing 98.38. specifications used in the
on attention IoU. techniques. F Score increased to 98.36 experiment
mechanism
Retracted: Brain [51],2023 Tumor segmentation, The dataset includes MRI Jaccard, Dice: measure The accuracy and confusion MATLAB software was

Tumor Detection
and Classification
by MRI
Using
Biologically
Inspired
Orthogonal
Wavelet
Transform and

feature extraction,
genetic algorithm, and
classification with
SVM, Naive Bayes, and
CNN.

brain images from 66
patients: 22 normal and 44
abnormal, with T2-
weighted 256x256 pixel
images.

similarity; sensitivity,
specificity: assess
classification; accuracy:
overall correctness.

matrix results are shown in
Figures 15 and 16

used for the proposed
strategy.
The system had a Core 2
Duo code configuration.
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Paper Reference method Dataset metric Result with a number Calculator and software
specifications used by the
experiment
Deep Learning
Techniques
Linear Attention | [52], 2021 The paper proposes a The Fine Gaofen Image Evaluation uses OA, AA, Evaluation metrics: OA, Experiments on RTX

Mechanism: An
Efficient
Attention for
Semantic
Segmentation

linear attention
mechanism using a first-
order Taylor expansion
to reduce memory and
computational costs.

Dataset (GID) has 10 RGB
images, 15 classes, and is
split into 7280 patches for
training, validation, and
testing.

Kappa, mloU, and F1-
score.

AA, Kappa, mloU, F1-
score. The search does not
contain numerical results.

2080ti GPU with PyTorch,
Adam optimizer, batch size
16, and cross-entropy loss.

TransAttUnet:
Multi-level
Attention-guided

[53], 2022

TransAttUnet uses
multi-level attention,
skip connections, and a

Datasets used: ISIC-2018,
JSRT, Montgomery, INIH,
Clean-CC-CCII, Data

Metrics used: DICE for
similarity, IoU for
segmentation accuracy,

TransAttUnet achieved an
IoU score of 84.98.
Improvement of 0.91 over

The contexts provided do
not contain information
regarding the calculator and

U-Net unified loss function for Science Bowl, GlaS. ACC for overall previous models. software specifications used
with Transformer segmentation. correctness, REC for true | Highest score on almost all in the experiments.
for Medical positives, PRE for true vs. evaluation metrics
Image predicted positives.
Segmentation
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