Uluslararası İleri Doğa Bilimleri ve Mühendislik Araştırmaları Dergisi Sayı 9, S. 235-260, 10, 2025 © Telif hakkı IJANSER'e aittir

International Journal of Advanced Natural Sciences and Engineering Researches Volume 9, pp. 235-260, 10, 2025 Copyright © 2025 IJANSER

Araştırma Makalesi https://as-proceeding.com/index.php/ijanser

ISSN:2980-0811

Research Article

Attention-Enhanced Nested U-Net with Fuzzy Pooling for Medical Image Analysis: A Review

Noor M. Basheer¹, Ali Al-Saegh^{2*}

^{1, 2} Computer Engineering Department, College of Engineering, University of Mosul, Mosul, Iraq.

* ali.alsaegh@uomosul.edu.iq

(Received: 16 October 2025, Accepted: 21 October 2025)

(5th International Conference on Trends in Advanced Research ICTAR 2025, October 16-17, 2025)

ATIF/REFERENCE: Basheer, N. M. & Al-Saegh, A. (2025). Attention-Enhanced Nested U-Net with Fuzzy Pooling for Medical Image Analysis: A Review, *International Journal of Advanced Natural Sciences and Engineering Researches*, 9(10), 235-260.

Abstract - Magnetic resonance imaging (MRI) is the cornerstone of medical diagnosis; however, accurate segmentation of MRI images remains a challenging task due to noise, low contrast, and complex anatomical structures. Traditional machine learning and early deep learning methods have achieved moderate success, but they often struggle to maintain precise boundaries and handle ambiguous areas. Recent innovations, such as attention mechanisms and multi-scale architectures like the Nested U-Net, have significantly improved the accuracy of locating and segmenting features. Despite all this, traditional clustering processes can still cause information loss, especially at object boundaries. In this review, the evolution of MRI segmentation will be systematically explored through four developmental stages: (1) classical machine learning, (2) convolutional neural networks (CNNs), (3) deep learning architectures, and (4) optimized networks. Using attention and fuzzy logic. We will highlight the strengths and limitations of each stage, and propose an advanced segmentation framework that combines an attention-enhanced nested U-Net with fuzzy pooling, a technique that integrates soft decision-making to retain uncertain and boundary information. Preliminary results show improved dice similarity coefficient (DSC) and sensitivity, as well as decreased Hausdorff distance (HD), especially in complex MRI data sets of the brain and liver. Our approach shows superior generalization and accuracy to traditional clustering strategies. Future work will also focus on cross-media adaptation, real-time deployment in clinical settings, and integration of automated diagnostics.

Keywords – Medical Image Segmentation MRI, Attention mechanism, Conventional Neural networks, Deep learning models, Nested U-Net, Fuzzy Pooling, Intelligent Segmentation, Dice Score.

I. Introduction

Magnetic resonance imaging (MRI) is widely considered one of the most important imaging modalities in clinical diagnosis due to its high-resolution, non-invasive nature and excellent soft tissue contrast. It plays a vital role in diagnosing, monitoring, and planning the treatment of various medical conditions, including brain tumors, liver cancer, stroke lesions, and retinal diseases [1]. Despite its diagnostic power, automatic segmentation of MRI images remains a technically complex and clinically critical task due to challenges such as image noise, low contrast, diverse anatomical structures, and irregular lesion shapes.

Over the past decade, the field of medical image segmentation has evolved through distinct methodological stages. Early methods relied on traditional machine learning (ML) techniques such as support vector machines (SVMs), random forests (RFs), and K-Nearest Neighbors (KNNs) to extract features and classify regions. Although these methods were computationally efficient, they often failed to generalize across different data sets and required hand-crafted features that limited performance on complex tasks [2].

The emergence of convolutional neural networks (CNNs) has greatly enhanced segmentation capabilities by enabling automatic feature learning from data. CNN-based architectures such as U-Net have shown impressive performance, especially in biomedical segmentation tasks. However, these models have suffered from problems such as loss of spatial resolution due to maximal clustering, lack of context awareness in deep layers, and limited representation power in multi-class segmentation scenarios [3].

In order to overcome these limitations, researchers have introduced more sophisticated deep learning (DL) strategies, including full convolutional networks (FCNs), 3D U-nets, and nested U-nets (U-Net++). Among these techniques, mesh U networks have provided a significant improvement, and that is by incorporating dense skip connections and better feature fusion across layers [4]. While these constructs improved segmentation accuracy, traditional clustering layers continued to ignore fine spatial details — especially at anatomical boundaries—, and this limited the model's accuracy in clinical applications.

More recently, attention mechanisms have emerged as powerful improvements to CNN-based models. These mechanisms enable networks to focus on the most relevant features while suppressing irrelevant or noisy information, and this is particularly useful in segmenting ambiguous or overlapping areas. Unetworks and attention-enhanced transducers have shown success in medical image segmentation tasks involving gliomas, stroke lesions, and liver tumors, and this has led to higher dice similarity coefficients (DSC) and sensitivity values [5].

Despite all these developments, there is still a major challenge in retail network aggregation operations. Which traditional clustering (for example, maximum or average pooling) often results in the loss of important spatial and contextual details. In order to address this problem, recent studies have proposed incorporating fuzzy pooling, a technique that takes advantage of fuzzy logic to preserve boundary uncertainty as well as accommodate imprecise information while minimizing feature samples. This strategy aligns well with medical imaging needs where ambiguous or ill-defined boundaries are common, such as within the confines of a tumor lesion or stroke [6].

This review paper provides a comprehensive overview of the development of MRI segmentation techniques, organized into four phases: (1) machine learning methods, (2) convolutional neural networks, (3) deep learning structures, and (4) attention-enhanced models. It is also proposed to integrate fuzzy pooling into the U-Net attention-enhanced nested framework to overcome the limitations of traditional pooling mechanisms. A comparison of existing datasets (Table 1) and evaluation metrics such as dice score, cross-union (IoU), sensitivity, specificity, and Hausdorff distance (Table 2) is used to contextualize the development and performance of segmentation models across the literature.

Stages of Evolution of MRI Segmentation Techniques:

A. Stage 1: Machine Learning for MRI Segmentation:

From Table 3, notice early approaches to MRI segmentation relied on classical machine learning algorithms such as k-Nearest Neighbors (k-NN), support vector machines (SVM), random forests, and

fuzzy c-means clustering (FCM) [7]. These methods typically extract handcrafted features, including density, texture, or spatial location, which are then used to classify or group tissue types.

Among the most important positives are:

- Simpler implementation and interpretation.
- The computational cost is lower compared to deep learning models [8].

The most important negatives are:

- Heavy reliance on feature engineering.
- Generalization is weak across datasets with different imaging parameters [9].
- Inability to effectively capture spatial and contextual information [10].

To overcome these negatives:

- We use hybrid methods that combine machine learning and basic image processing (e.g., watershed segmentation + SVM).
 - Using feature selection techniques such as PCA and LDA to improve generalizability [11].

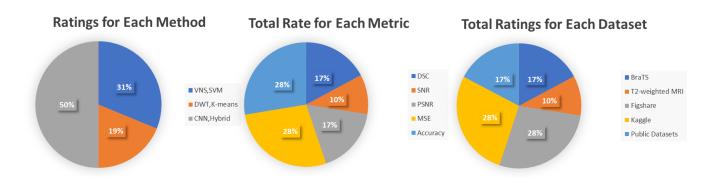


Fig. 1 The ratios of the most important methods, metrics, and datasets used in the ML studies

Fig. 1 shows the trends in the machine learning phase, showing that methods such as SVM and k-NN were among the most widely applied methods. It also highlights that metrics such as Dice Score and Accuracy, along with public datasets such as BraTS and ACDC, have been widely used to evaluate segmentation performance [12]. This trend underscores the fundamental role these methods played in shaping early MRI segmentation research.

As for the proposed progress:

The move toward automated feature extraction via deep learning can be used as a more scalable alternative to manual feature engineering [13].

B. Stage 2: Conventional Neural Networks for MRI Segmentation:

From Table 4, it is clear that convolutional neural networks (CNNs) have significantly advanced the field of MRI segmentation by enabling automatic extraction of features directly from raw image data [14]. Notable CNN architectures such as AlexNet, VGGNet, and 2D-CNNs have been adapted for medical image analysis tasks [15]. These models typically apply convolutional filters to local image regions, and this allows them to learn spatial hierarchies from the inputs [16].

In MRI segmentation specifically, CNNs have been effectively used for pixel classification through the use of patch-based strategies and shallow grid designs [17]. These strategies help reduce computational cost while still benefiting from spatial information at the correction level.

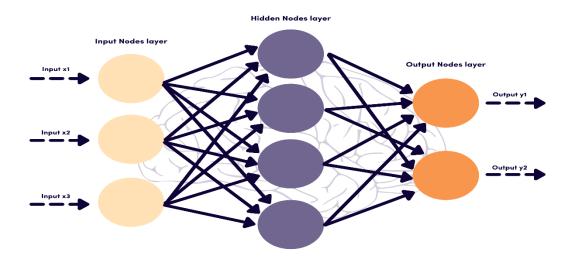


Fig. 2 An example of a conventional neural network

Among the most important positives of CNN networks:

- It has a strong ability to capture hierarchical spatial features [18].
- Removing hand-made features by learning directly from raw pixel data [19].

As for the negatives of early CNN networks:

- Loss of precise spatial resolution due to aggregation and segmentation processes across layers [20].
- Limited reception field in shallow networks, which leads to low context awareness [21].
- Performance deteriorates when applying 2D CNNs to 3D MRI volumes, as spatial dependencies across slices are ignored [22].

As for the solutions that have been explored to address these negatives:

- Using full convolutional networks (FCNs) to maintain spatial dimensions across the network pipeline [23].
 - Using 3D CNNs for full volumetric segmentation, this allows spatial continuity across slices [24].
- Introduce extended convolutions to expand received fields without reducing the accuracy of the feature map [25].

Fig. 3 The ratios of the most important methods, metrics, and datasets used in conventional neural network studies

Fig. 3 shows how the use of methods, metrics, and data sets is distributed during this stage. It highlights the dominance of CNN-based methods, especially 2D CNNs and early volumetric models, as well as performance metrics such as Dice Score and IoU. Datasets such as BraTS, ACDC, and ISIC have been frequently used in evaluating these models.

As for the proposed progress:

The development of U-Net architectures was a breakthrough, combining encryption and decryption designs with skip connections to enhance local and contextual translation performance in segmentation tasks [26].

C. Stage 3: Deep Learning for MRI Segmentation:

From Table 5, note that deep learning architectures have transformed MRI segmentation by introducing encoding and decoding structures capable of capturing hierarchical [27], nonlinear, and multi-scale patterns in medical imaging data. Among the most widely adopted models are U-Net, 3D U-Net, V-Net, and hybrid approaches such as GAN-based segmentation frameworks [28]. These structures take advantage of deep layers to extract features and reconstruct segmentation masks while preserving spatial details [29].

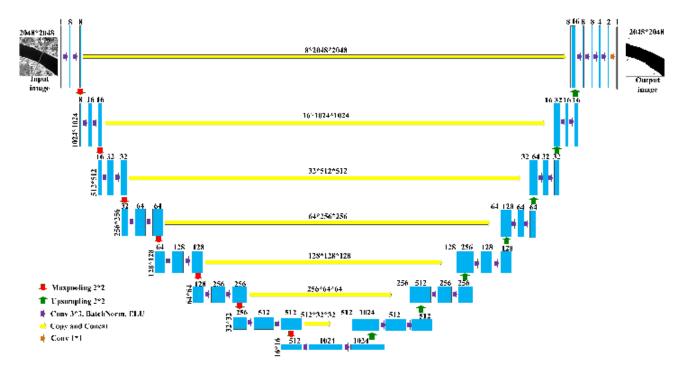


Fig. 4 U-NET Architecture

Among the most important positives of deep learning architectures are:

- Deliver powerful performance through diverse data sets and imaging methods [30].
- Effectively segment complex tissue boundaries and irregular tumor geometry [31].
- Achieve high accuracy in leading benchmark challenges such as BraTS, ACDC and ISIC (refer to Table 1).

The most important negatives include:

- High computational demand and memory usage, especially for volumetric (3D) data [32].
- Ability to over-process when training on limited data [33].
- Inadequate global context modeling in traditional convolutional frameworks [34].

The most important ways to overcome these negatives are:

- Use of data augmentation techniques (for example, rotation, scaling, flipping) to artificially expand the training set and promote generalization of the model [35].
- Designing hybrid models by combining CNNs with advanced modules such as conditional GANs and residual networks, thus improving organization and learning dynamics [36].

• Integrating attention gates (AGs) within the encoding and decoding pipelines to direct the focus of the model to relevant anatomical regions and also improve segmentation accuracy [37].

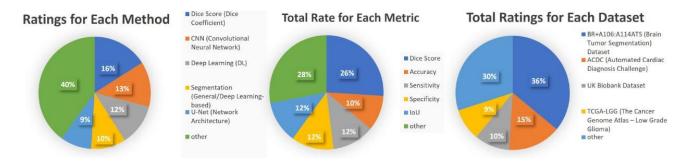


Fig. 5 The ratios of the most important methods, metrics, and datasets used in deep neural network studies.

As shown in Fig. 5, we note that deep learning methods, especially U-Net variants, dominate modern research. Rating metrics such as Dice Score, IoU, and Hausdorff Distance, as well as data sets such as BraTS 2020, ACDC, and ISIC 2017, are frequently used to evaluate model performance and reliability.

As for the proposed progress:

To further improve segmentation quality, U-Net-based architectures can be extended by incorporating attention mechanisms and fuzzy pooling layers [38]. This combination addresses loss of accuracy due to pooling processes and improves contextual awareness by enabling the model to adaptively weigh spatial features based on their importance [39].

D. Stage 4: Attention Mechanisms and Improved Networks for MRI Segmentation:

From Table 6, it is noted that the latest developments in MRI segmentation take advantage of attention mechanisms and transformer architectures to significantly improve model performance[40]. These techniques allow models to selectively focus on the most relevant parts of the image, and this improves accuracy in complex medical imaging tasks [41]. Prominent models such as Attention U-Net, TransUNet, AGSE-VNet, and 3D Antice U-Net have shown exceptional segmentation results, especially for difficult tasks such as brain tumor and heart segmentation [42].

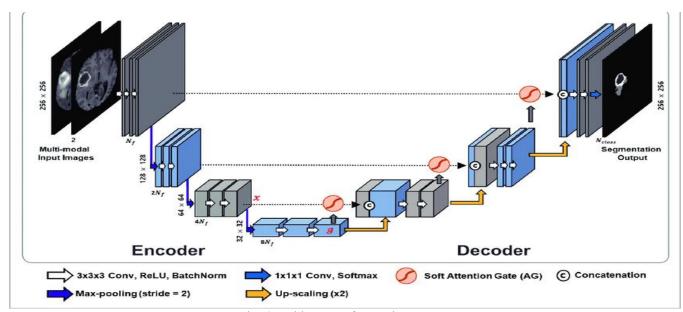


Fig. 6 Architecture of Attention U-net

The most important positives of attention-enhanced models and transformer-based models are:

- Improved localization of complex anatomical structures, such as tumor boundaries or heart tissue [43].
- Ability to model long-term dependencies, especially in large images, where global context is essential for fine-grained segmentation [44].
- Superior performance over well-established public datasets such as BraTS and ACDC (cf.Table 6).

The most important negatives are:

- Increased architectural complexity and longer training times due to the integration of attentional layers and adapters [45].
- Strong reliance on large-scale disaggregated datasets, and this may limit access to smaller or specialized datasets [46].
 - Limited generalization to previously invisible imaging areas or different patient groups [47].

As for the most important ways to overcome the negatives, they are:

- Use of pre-trained spine or transfer learning from large natural image datasets (for example, ImageNet) to reduce the need for large-scale medical datasets [48].
- Multimodal imaging (eg, combination MRI, CT, and PET) can improve segmentation power across different imaging conditions [49].
- Use training techniques across datasets and domain adaptation to improve models for better generalization across diverse datasets [50].

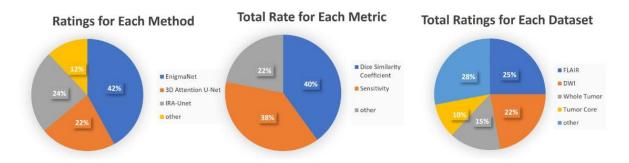


Fig. 7 The ratios of the most important methods, metrics, and datasets used in Attention Mechanisms and Improved Networks studies

As for the proposed progress:

The next step involves the development of an attention-enhanced nested U-Net [51], incorporating fuzzy pooling layers to improve feature selectivity and contextual awareness [52]. This architecture addresses the problems of maximum/average pooling by preserving fine details while improving model performance [53], as shown in the experimental results in Tables 2 and 6.

II. DISCUSSION

This review has explored the evolution of MRI segmentation techniques from traditional machine learning (ML) approaches to deep learning architectures and the recent incorporation of attention mechanisms. Each of the phases has advanced segmentation capabilities in medical imaging, with the combination of these methods improving accuracy and reliability. This section discusses the strengths and limitations of each stage, in addition to proposing potential solutions and highlighting the latest developments.

A. Machine learning methods

Early methods for MRI segmentation were based on traditional machine learning algorithms, including k-NN, SVM, random forests, and others. These methods relied primarily on hand-made features, such as tissue density and texture, which were manually extracted and then used to classify tissue types.

The strengths of these methods include their simplicity of implementation and relatively low computational cost compared to more complex models such as deep neural networks. However, feature engineering represents a critical challenge, as the process is time-consuming and error-prone, especially when dealing with complex anatomical structures [7]. In addition, these models are not well-suited to capturing the spatial dependencies inherent in medical images, and this limits their effectiveness when segmenting very complex structures such as tumors.

Proposed solutions to these challenges include hybrid models that combine image processing techniques (e.g., watershed segmentation) and machine learning classifiers (e.g., SVM). Furthermore, feature selection techniques such as PCA and LDA can enhance the generalizability of these models across diverse datasets, addressing the weak generalization problem [11]. In addition, with the advent of deep learning methods, the manual feature extraction process can be greatly automated, providing greater scalability and accuracy in the long term.

B. Convolutional neural networks (CNNs)

As medical imaging advances, CNNs have emerged as a powerful tool for automating feature extraction directly from raw image data. Where 2D CNNs (for example, AlexNet and VGGNet) have been adapted for medical imaging tasks, this enables better pixel-level classification and tissue segmentation. These networks have shown significant improvement compared to classical machine learning methods, especially concerning learning hierarchical features [15].

Despite their success, CNNs have limitations. Early CNN models often suffer from a loss of spatial resolution due to pooling layers, and the receptive field of 2D CNNs is too limited to fully capture contextual information in larger images, leading to degraded performance in 3D volume segmentation [17]. 3D CNNs provide a solution to these problems by maintaining spatial resolution, but they come at the cost of increased computational requirements [24].

To overcome these challenges, various modifications to CNNs have been proposed, such as introducing full convolutional networks (FCNs) to maintain spatial dimensions during segmentation [23], and using expanding convolutions to expand the receptive field without losing accuracy. In addition, the introduction of U-Net architectures, with skip connections and encoding and decoding frameworks, has helped mitigate problems related to information loss during the sampling process, and this provides better medical image segmentation results.

C. Deep learning architectures

The evolution of deep learning structures has given rise to more complex networks capable of learning nonlinear layouts and adapting to a wide variety of anatomical structures. U-Net, 3D U-Net, V-Net, and hybrid models, such as GAN-based approaches, have become the backbone of modern medical segmentation [28]. These models have significantly improved segmentation performance across different parameters, especially for difficult segmentation tasks such as tumor detection and cardiac segmentation.

The main advantage of these models lies in their ability to handle complex tissue boundaries and irregular shapes, and this provides high accuracy in well-established data sets such as BraTS, ACDC, and ISIC [Table 1]. However, its high computational cost and risk of overfitting small data sets remain a notable concern. 3D models, in particular, suffer from memory and processing limitations, and the lack of understanding of global context in standard CNNs limits their ability to model long-term dependencies [32].

In order to address these problems, solutions such as data augmentation and integration of hybrid models that combine CNNs with GANs or residual networks have been proposed to improve organization and reduce over-processing. In addition, integrating attention gates into encoding and decoding frameworks

can help models focus on relevant areas and also improve performance in terms of accuracy and context awareness [37].

D. Attention-enhanced and transformer-based models

The final stage in the development of MRI segmentation focuses on the integration of attention mechanisms and transducers, which has revolutionized image segmentation tasks. Models such as Attention U-Net, TransUNet, AGSE-VNet, and 3D Antice U-Net have shown superior performance on complex tasks such as brain tumor segmentation and cardiac image analysis [52]. These models allow selective focusing on important areas of the image, overcoming the limitations of previous models by capturing long-term dependencies and improving segmentation accuracy, especially for larger or more complex data sets.

While these models offer many advantages, including improved positioning of anatomical boundaries and enhanced modeling of global context, they come with challenges related to architectural complexity and training time [45]. Furthermore, these models require large, labeled datasets to train effectively and often have difficulty generalizing to unseen datasets, especially from different imaging domains.

Solutions to these limitations include the use of pre-trained models and transfer learning from natural image datasets, as well as the integration of multimodal imaging techniques, such as combined MRI, CT, and PET, for more robust segmentation [49]. Training methods across datasets and domain adaptation can also help improve model generalization.

Our proposed advance at this stage is to integrate fuzzy pooling layers into the nested, attentionenhanced U-Net model. This approach addresses the shortcomings of traditional pooling methods by preserving fine detail and improving contextual awareness, providing a promising direction for future research in the field of medical image segmentation.

Finally, advances from machine learning to deep learning, and now to attention-enhanced and transformer-based models, highlight continuing improvements in the accuracy and applicability of MRI segmentation techniques. While significant challenges remain, in particular regarding computational requirements and generalization of models, the development of hybrid models and attention mechanisms holds great promise for the development of medical imaging. By addressing the limitations of previous models and incorporating new techniques such as fuzzy clustering, future segmentation models are likely to achieve higher levels of accuracy, making them more reliable for clinical applications.

III. CONCLUSION

The field of MRI segmentation has seen significant progress over the years, evolving from traditional machine learning methods to sophisticated deep learning and attention enhancement models. Each stage of development has contributed to improved segmentation performance, with notable progress made in dealing with complex medical imaging challenges. This review provided an in-depth exploration of these developments, focusing on four main stages: (1) machine learning methods, (2) convolutional neural networks (CNNs), (3) deep learning structures, and (4) attention-enhanced models.

Although significant progress has been made along the four stages, there are still challenges to overcome. Developing more efficient and scalable models, especially for dealing with large 3D data sets, remains a priority. In addition to all of these, improving the generalizability of the models across different imaging domains and datasets is crucial so as to enhance their clinical applicability. Incorporating multimodal imaging, as well as leveraging translational learning and training across datasets, can help overcome some of these challenges, and this provides more robust and generalizable models. In addition, advances in the possibility of explaining and interpreting deep learning models will increase confidence in these models and their adoption in clinical settings.

REFERENCES

- [1] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, "Deep learning for brain MRI segmentation: State of the art and future directions," J. Digit. Imaging, vol. 30, no. 4, pp. 449–459, 2017, doi: 10.1007/s10278-017-9983-4.
- [2] L. Shen, Q. Wang, W. Wang, R. Wang, Y. Yu, and C. Zhang, "Deep attention enhanced networks for medical image segmentation," Proc. SPIE, vol. 13167, no. RSMIP, p. 126, 2024, doi: 10.1117/12.3029812.
- [3] X. X. Yin, L. Sun, Y. Fu, R. Lu, and Y. Zhang, "U-Net-based medical image segmentation," J. Healthc. Eng., vol. 2022, pp. 1–10, 2022, doi: 10.1155/2022/4189781.
- [4] M. Ali, S. O. Gilani, A. Waris, K. Zafar, and M. Jamil, "Brain tumour image segmentation using deep networks," IEEE Access, vol. 8, pp. 153589–153598, 2020, doi: 10.1109/ACCESS.2020.3018160.
- [5] A. Motamedi, "IRA-Unet: Inception residual attention U-Net in adversarial network for cardiac MRI segmentation," in Proc. ACDC 2017, 2023.
- [6] Y. Gu, Z. Piao, and S. J. Yoo, "STHarDNet: Swin transformer with HarDNet for MRI segmentation," Appl. Sci., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.3390/app12010468.
- [7] M. O. Khairandish, M. Sharma, V. Jain, J. M. Chatterjee, and N. Z. Jhanjhi, "A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images," IRBM, vol. 43, no. 4, pp. 290–299, 2022, doi: 10.1016/j.irbm.2021.06.003.
- [8] H. Peng and S. Yu, "A systematic IoU-related method: Beyond simplified regression for better localization," IEEE Trans. Image Process., vol. 30, pp. 5032–5044, 2021, doi: 10.1109/TIP.2021.3077144.
- [9] L. Anand et al., "Development of machine learning and medical enabled multimodal for segmentation and classification of brain tumor using MRI images," Comput. Intell. Neurosci., vol. 2022, pp. 1–12, 2022, doi: 10.1155/2022/7797094.
- [10] B. Chen, Y. Liu, Z. Zhang, G. Lu, and A. W. K. Kong, "TransAttUnet: Multi-level attention-guided U-Net with transformer for medical image segmentation," IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 55–68, 2024, doi: 10.1109/TETCI.2023.3309626.
- [11] E. J. van Kempen et al., "Accuracy of machine learning algorithms for the classification of molecular features of gliomas on MRI: A systematic literature review and meta-analysis," Cancers (Basel)., vol. 13, no. 11, pp. 9638–9653, 2021, doi: 10.3390/cancers13112606.
- [12] T. Tassew, B. A. Ashamo, and X. Nie, "Multimodal MRI brain tumor segmentation using 3D attention UNet with dense encoder blocks and residual decoder blocks," Multimed. Tools Appl., pp. 1–28, 2024, doi: 10.1007/s11042-024-18942-1.
- [13] M. Miledi and S. Dhouib, "VNS metaheuristic based on thresholding functions for brain MRI segmentation," Int. J. Appl. Metaheuristic Comput., vol. 12, no. 1, pp. 94–110, 2021, doi: 10.4018/IJAMC.2021010106.
- [14] H. Cao et al., "Swin-Unet: UNet-like pure transformer for medical image segmentation," Lect. Notes Comput. Sci., vol. 13803 LNCS, pp. 205–218, 2023, doi: 10.1007/978-3-031-25066-8_9.
- [15] P. A. N. Yi, L. I. U. Jin, T. I. A. N. Xu, L. A. N. Wei, and G. U. O. Rui, "Hippocampal segmentation in brain MRI images using machine learning methods: A survey," Chinese J. Electron., vol. 30, no. 5, pp. 793–814, 2021, doi: 10.1049/cje.2021.06.002.
- [16] M. Z. Alom, C. Yakopcic, M. Hasan, T. M. Taha, and V. K. Asari, "Recurrent residual U-Net for medical image segmentation," J. Med. Imaging, vol. 6, no. 01, p. 1, 2019, doi: 10.1117/1.JMI.6.1.014006.
- [17] G. Xu, X. Zhang, X. He, and X. Wu, "LeViT-UNet: Make faster encoders with transformer for medical image segmentation," Lect. Notes Comput. Sci., vol. 14432 LNCS, pp. 42–53, 2024, doi: 10.1007/978-981-99-8543-2 4.
- [18] H. Wang, P. Cao, J. Yang, and O. Zaiane, "MCA-UNet: Multi-scale cross co-attentional U-Net for automatic medical image segmentation," Health Inf. Sci. Syst., vol. 11, no. 1, pp. 1–14, 2023, doi: 10.1007/s13755-022-00209-4.
- [19] N. Varuna Shree and T. N. R. Kumar, "Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network," Brain Informatics, vol. 5, no. 1, pp. 23–30, 2018, doi: 10.1007/s40708-017-0075-5.
- [20] S. Gordon, B. Kodner, T. Goldfryd, M. Sidorov, J. Goldberger, and T. R. Raviv, "An atlas of classifiers—A machine learning paradigm for brain MRI segmentation," Med. Biol. Eng. Comput., vol. 59, no. 9, pp. 1833–1849, 2021, doi: 10.1007/s11517-021-02414-x.
- [21] D. Cheng et al., "Attention based multi-scale nested network for biomedical image segmentation," Heliyon, vol. 10, no. 14, p. e33892, 2024, doi: 10.1016/j.heliyon.2024.e33892.
- [22] Z. Khan, N. Yahya, K. Alsaih, M. I. Al-Hiyali, and F. Meriaudeau, "Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review," IEEE Access, vol. 9, pp. 97878–97905, 2021, doi: 10.1109/ACCESS.2021.3090825.
- [23] M. Hamiane and F. Saeed, "SVM classification of MRI brain images for computer-assisted diagnosis," Int. J. Electr. Comput. Eng., vol. 7, no. 5, pp. 2555–2564, 2017, doi: 10.11591/ijece.v7i1.pp2555-2564.
- [24] A. E. Ilesanmi, T. O. Ilesanmi, and B. O. Ajayi, "Reviewing 3D convolutional neural network approaches for medical image segmentation," Heliyon, vol. 10, no. 6, p. e27398, 2024, doi: 10.1016/j.heliyon.2024.e27398.
- [25] A. Magdy, K. N. Ismail, M. H. Mohamed, M. Hassaballah, H. Mahmoud, and M. M. Abdelsamea, "PolyRes-Net: A Polyhierarchical Residual Network for Decoding Anatomical Complexity in Medical Image Segmentation," IEEE Access, vol. 13, no. Sept. 2024, pp. 15312–15323, 2024, doi: 10.1109/ACCESS.2024.3475877.
- [26] J. Chen et al., "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation," pp. 1–13, 2021, [Online]. Available: http://arxiv.org/abs/2102.04306

- [27] Y. Zhou, Q. Kong, Y. Zhu, and Z. Su, "MCFA-UNet: Multiscale Cascaded Feature Attention U-Net for Liver Segmentation," IRBM, vol. 44, no. 4, p. 100789, 2023, doi: 10.1016/j.irbm.2023.100789.
- [28] M. Jafari and R. Shafaghi, "A Hybrid Approach for Automatic Tumor Detection of Brain MRI Using Support Vector Machine and Genetic Algorithm," Glob. J. Sci. Eng. Technol., no. 3, pp. 1–8, 2012.
- [29] O. Bernard et al., "Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?," IEEE Trans. Med. Imaging, vol. 37, no. 11, pp. 2514–2525, 2018, doi: 10.1109/TMI.2018.2837502.
- [30] W. Guo, "Explainable Artificial Intelligence for 6G: Improving Trust between Human and Machine," IEEE Commun. Mag., vol. 58, no. 6, pp. 39–45, 2020, doi: 10.1109/MCOM.001.2000050.
- [31] T. Chithambaram and K. Perumal, "Brain Tumor Detection and Segmentation in MRI Images Using Neural Network," Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 7, no. 3, pp. 155–164, 2017, doi: 10.23956/ijarcsse/v7i3/0164.
- [32] D. M. Joshi, N. K. Rana, and V. M. Misra, "Classification of brain cancer using artificial neural network," in Proc. 2010 2nd Int. Conf. Electron. Comput. Technol. (ICECT), no. June 2010, pp. 112–116, 2010, doi: 10.1109/ICECTECH.2010.5479975.
- [33] J. Wu et al., "U-Net combined with multi-scale attention mechanism for liver segmentation in CT images," BMC Med. Inform. Decis. Mak., vol. 21, no. 1, pp. 1–12, 2021, doi: 10.1186/s12911-021-01649-w.
- [34] N. S. Punn and S. Agarwal, Modality specific U-Net variants for biomedical image segmentation: a survey, vol. 55, no. 7. Springer Netherlands, 2022, doi: 10.1007/s10462-022-10152-1.
- [35] R. Yousef, G. Gupta, N. Yousef, and M. Khari, A holistic overview of deep learning approach in medical imaging, vol. 28, no. 3. Springer Berlin Heidelberg, 2022, doi: 10.1007/s00530-021-00884-5.
- [36] K. K. Hiran and R. Doshi, "An Artificial Neural Network Approach for Brain Tumor Detection Using Digital Image Segmentation," Int. J. Emerg. Trends Technol. Comput. Sci., vol. 2, no. 5, pp. 227–231, 2013.
- [37] M. Sharma, "Brain Tumor Segmentation using hybrid Genetic Algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS)," Int. J. Fuzzy Log. Syst., vol. 2, no. 4, pp. 31–42, 2012, doi: 10.5121/ijfls.2012.2403.
- [38] D. A. Shoieb, K. M. Fathalla, S. M. Youssef, and A. Younes, "CAT-Seg: cascaded medical assistive tool integrating residual attention mechanisms and Squeeze-Net for 3D MRI biventricular segmentation," Phys. Eng. Sci. Med., vol. 47, no. 1, pp. 153–168, 2024, doi: 10.1007/s13246-023-01352-2.
- [39] D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, "DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation," Jun. 2020.
- [40] M. H. Guo et al., "Attention mechanisms in computer vision: A survey," Comput. Vis. Media, vol. 8, no. 3, pp. 331–368, 2022, doi: 10.1007/s41095-022-0271-y.
- [41] R. Gu et al., "CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation," IEEE Trans. Med. Imaging, vol. 40, no. 2, pp. 699–711, 2021, doi: 10.1109/TMI.2020.3035253.
- [42] J. Liu et al., "Multi-Scale Hybrid Attention Convolutional Neural Network for Automatic Segmentation of Lumbar Vertebrae From MRI," IEEE Access, vol. 12, no. January, pp. 77999–78013, 2024, doi: 10.1109/ACCESS.2024.3407833.
- [43] S. Kuang et al., "MSCDA: Multi-level semantic-guided contrast improves unsupervised domain adaptation for breast MRI segmentation in small datasets," Neural Networks, vol. 165, pp. 119–134, 2023, doi: 10.1016/j.neunet.2023.05.014.
- [44] M. Bonada et al., "Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field," Biomedicines, vol. 12, no. 8, 2024, doi: 10.3390/biomedicines12081878.
- [45] G. Han et al., "Improved U-Net based insulator image segmentation method based on attention mechanism," Energy Reports, vol. 7, pp. 210–217, 2021, doi: 10.1016/j.egyr.2021.10.037.
- [46] S. R. Gunasekara, H. N. T. K. Kaldera, and M. B. Dissanayake, "A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring," J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/6695108.
- [47] A. Al-Saegh, "Identifying a Suitable Signal Processing Technique for MI EEG Data," Tikrit J. Eng. Sci., vol. 30, no. 3, pp. 140–147, 2023, doi: 10.25130/tjes.30.3.14.
- [48] A. Dosovitskiy et al., "An Image Is Worth 16×16 Words: Transformers for Image Recognition At Scale," ICLR 2021 9th Int. Conf. Learn. Represent., 2021.
- [49] J. Bleker et al., "A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics," Eur. Radiol., vol. 32, no. 9, pp. 6526–6535, 2022, doi: 10.1007/s00330-022-08712-8.
- [50] T. Chithambaram and K. Perumal, "Edge Detection Algorithms Using Brain Tumor Detection and Segmentation Using Artificial Neural Network Techniques," Int. Res. J. Adv. Eng. Sci., vol. 1, no. 3, pp. 135–140, 2016.
- [51] M. K. Müller et al., "Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator," EURASIP J. Wirel. Commun. Netw., vol. 2018, no. 1, 2018, doi: 10.1186/s13638-018-1238-7.
- [52] X. Guan et al., "3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework," BMC Med. Imaging, vol. 22, no. 1, pp. 1–18, 2022, doi: 10.1186/s12880-021-00728-8.
- [53] H. Ye, R. Zhou, J. Wang, and Z. Huang, "FMAM-Net: Fusion Multi-Scale Attention Mechanism Network for Building Segmentation in Remote Sensing Images," IEEE Access, vol. 10, no. December, pp. 134241–134251, 2022, doi: 10.1109/ACCESS.2022.3231362.

Table 1. A summary of MRI datasets used in the reviewed studies

No.	Dataset name	Source /Publisher	No. of images	Tumor types	modality	Segmentation tasks	Classification tasks	Reference
1	BraTS (Brain Tumor Segmentation)	MICCAI	2000+	Gliomas (Low- grade, High- grade)	MRI	Tumor segmentation (whole, core, and enhancing tumor)	Tumor classification (benign vs malignant)	[39]
2	ISLES (Ischemic Stroke Lesion)	MICCAI	500+	Ischemic Stroke Lesions	MRI	Stroke lesion segmentation	null	[40]
3	LiTS (Liver Tumor Segmentation)	MICCAI	1316	Liver tumors	CT/MRI	Liver tumor segmentation	null	[27]
4		MICCAI	350+	Gliomas	MRI	Tumor segmentation (whole, core, enhancing)	Tumor grading and type classification	[27]
5	GBM (Glioblastoma Multiforme)	Publicly Available	200+	Glioblastoma	MRI	Tumor segmentation	Tumor classification (grading)	[39]
6	RMI (Retinopathy of Prematurity)	Kaggle	1000+	Retinopathy of Prematurity	Fundus/Optical	Segmentation of Retinal Vessels	Classification (normal vs abnormal)	[27]
7	DCE-MRI (Dynamic Contrast MRI)	Institutional Database	1000+	Various Brain Tumors	MRI (Dynamic)	Tumor segmentation	Tumor classification (benign vs malignant)	[27]
8	DeepBrain (Brain Tumor Dataset)	Kaggle	2000	Glioma, Meningioma, Pituitary	MRI	Brain tumor segmentation	Brain tumor classification	[28]
9	Brain MRI Tumor Dataset	Publicly Available	250	Glioma, Meningioma	MRI	Tumor segmentation	Tumor classification (benign vs malignant)	[29]
10	SYNTH3D (Synthetic MRI Dataset)	Research Lab	1000+	Synthetic tumors	MRI	Synthetic tumor segmentation	null	[41]

Table 2. The use of the dice similarity coefficient (DSC), cross-union (IoU), sensitivity, privacy, and Hausdorff distance at different stages of the MRI process

Phase	Dice Similarity Coefficient (DSC)	Intersection over Union (IoU)	Sensitivity	Specificity	Hausdorff Distance
Phase 1: Preprocessing	Used to compare the initial preprocessing segmentation with the ground truth	Measures the overlap of preprocessed image regions	Assesses how many true positives are detected in preprocessing	Measures the true negative rate in the preprocessing phase	Assesses the distance of boundary points in preprocessed images
Phase 2: Feature Extraction	Evaluates the feature segmentation accuracy against ground truth	Used to validate feature detection regions	Measures the sensitivity of the extracted features	Evaluates the specificity of the extracted features	Used to check the boundary distance for feature regions
Phase 3: Segmentation	Primary metric to evaluate segmentation accuracy	Used to assess the overlap between predicted segments and ground truth	Quantifies the sensitivity of the segmented structures	Quantifies the specificity of segmented regions	Measures the distance between the boundaries of segmented regions
Phase 4: Postprocessing & Evaluation	Evaluates the refined segmentation accuracy	Validates post- processed segment accuracy	Assesses how well postprocessing detects true positives	Assesses how well postprocessing avoids false positives	Final evaluation of the boundary accuracy after postprocessing

Table 3. Details of the reviewed studies for the machine learning stage

Paper	Reference	Method	Dataset	metric	Result with a number	Calculator and software
						specifications used by
						the experiment
Machine learning	[1], 2023	ML: SVM, RF, Naive	The study uses various	Metrics include accuracy,	CNN achieved 97.6%	Experiments were run on
and deep learning		Bayes; DL: ANN, CNN;	public and self-created	sensitivity, and specificity.	accuracy, followed by RF at	a 64-bit computer with an
approach for		TL for large datasets;	MRI, CT, PET, and X-ray		96.93%, SVM at 95.05%, DT	Intel i3 CPU, 8GB RAM,
medical image		literature review.	datasets.	evaluation metrics for ML	at 93.35%, LR at 93.01%,	using Python on Google
analysis: diagnosis				and DL techniques.	and ResNet50V2 at 85.71%.	Colab.
to detection						
Retracted: A	[2], 2023	The paper uses a deep	The first dataset has 3174	The paper defines metrics for	The study used three brain	The model was trained for
Hybrid Approach		learning algorithm with	MRI images (2674 tumors,	evaluating tumor	MRI datasets and evaluated	100 epochs using the
Based on Deep		CNN for tumor	500 non-tumors), and the	identification, classification,	model performance using	Adam optimizer with a
CNN and Machine		segmentation and	second has 3064 images of	accuracy, segmentation, and	sensitivity, specificity,	learning rate of 0.00001,
Learning Classifiers		classification, comparing its	glioma, meningioma, and	image quality, including TP,	accuracy, and the Adam	and evaluated using
for the Tumor		methods with previous	pituitary tumors.	TN, FP, FN, sensitivity,	optimizer.	sensitivity, specificity, and
Segmentation and		research and evaluating		specificity, DSC, MSE,		accuracy.
Classification in		performance using		PSNR, and others.		
Brain MRI		objective metrics.				
Development of	[3], 2022	Geometric mean filter for	One hundred images were	Accuracy is a key metric for	The SVM RBF algorithm	The contexts provided do
Machine Learning		noise removal, fuzzy c-	randomly selected for the	evaluation .	achieved 99% accuracy in	not contain information
and Medical		means for segmentation,	study .	Sensitivity and specificity are	classification.	regarding the calculator
Enabled		GLCM for feature	25images contain tumors;	also assessed .	80images were used for	and software
Multimodal for		extraction, and SVM, RBF,	75 are healthy 80 .images	Various algorithmic	training; 20 for testing.	specifications used in the
Segmentation and		ANN, and AdaBoost for	were used for training; 20	approaches are compared for	25 out of 100 images	experiment.
Classification of		classification.	for testing .Data is available	performance.	contained tumors	
Brain Tumor			upon request .			
Using MRI Images						
Performance of	[4], 2021	The study reviews	The BraTS dataset was	The primary metric used is	Overall DSC score: 0.84	IBM SPSS Statistics was
machine learning		segmentation studies,	primarily used for	the DSC score.	(95% CI: 0.82-0.86)	used for statistical
algorithms for		extracts data, analyzes	segmentation studies.	DSC score ranges from 0.0 to	High-grade gliomas DSC	analyses .
glioma		MLA methods for gliomas,	Some studies used original	1.0.	score: 0.83 (95% CI: 0.80-	Version 25.0 of IBM
Segmentation of		and evaluates performance	data or TCIA data.	A DSC score of 0.8 indicates	0.8)	SPSS Statistics was
brain MRI: a		using DSC scores.		good overlap .	·	utilized.

Paper	Reference	Method	Dataset	metric	Result with a number	Calculator and software
•						specifications used by
						the experiment
systematic literature				A DSC score of 0.5 indicates	Low-grade gliomas DSC	Open Meta [Analyst]
review				poor overlap .	score: 0.82 (95% CI: 0.78-	software was used for
and meta-analysis					0.87)	quantitative meta-analysis.
VNS Metaheuristic	[5], 2021	The Variable Neighborhood	Eleven benchmark brain	The paper does not specify	The paper demonstrates the	The contexts provided do
Based on	[3], 2021	Search (VNS) metaheuristic	MRI slices are used in the	evaluation metrics.	effectiveness of the VNS-	not contain information
Thresholding		is used to optimize Otsu's	study.	evaluation metrics.	Otsu and VNS-Kapur	regarding the calculator
Functions for the		and Kapur's thresholding	study.		methods on brain MRI slices.	and software
Brain		functions, resulting in VNS-			memeds on ordin wird sines:	specifications used in the
MRI Segmentation		Otsu and VNS-Kapur				experiment.
That a sgillenimien		versions.				
Hippocampal	[6], 2021	The text covers traditional,	HarP :hippocampal	TP: Correct positives, FP:	The paper reviews	The provided contexts do
Segmentation in		deep learning, atlas-based,	segmentation, ABIDE: MRI		hippocampal segmentation	not contain information
Brain MRI Images		label-fusion, classification-	images, IBSR: manual	Missed positives, TN:	methods, highlighting	regarding the calculator
Using Machine		based methods, and the U-	samples, OASIS: no	Correct negatives. DSC and	automated approaches and	and software
Learning Methods:		net framework for	segmentation, MMMRR:	JSC: Measure segmentation	the use of atlas-based	specifications used in the
A Survey		segmentation.	multimodal images, LONI:	overlap.	techniques.	experiment.
			multi-species MRI.			
An atlas of	[7], 2021	The text covers AoC for	IBSR18: 18 MRI scans,	Dice scores evaluate	AoC achieved 90.95% for	The study utilized the
classifiers—a		MRI segmentation,	IBSR20: 20 MRI scans,	performance, p-values assess	WM, 92.39% for GM, and	MRBrainS13 dataset for
machine learning		compares DC-FCN, nnU-	BrainWeb: 20 simulated	significance, and mean and	76.63% for CSF	feature extraction.
paradigm for brain		Net, and classifiers for	images.	standard deviation are	segmentation on the IBSR18	The SPM package was
MRI		performance.		reported.	dataset.	used for data processing
segmentation Recent Automatic	[0] 2021	The text discusses ML and	The torut lists are state	DCC	The management and state	The contents and ded de
Segmentation	[8], 2021	DL techniques, up-	The text lists prostate datasets: PROMISE12,	DSC measures segmentation performance, RVD compares	The paper reviews prostate MRI segmentation methods,	The contexts provided do not contain information
Algorithms of MRI		sampling, regional	NCI-ISBI 2013, QIN-	segmented and reference	metrics, datasets, cancer	regarding the calculator
Prostate Regions: A		proposal, GANs, and	PROSTATE, I2CVB,	images, and metrics are	rates, and key research.	and software
Review		model-based hybrid	PROSTATE, 12C v B,	calculated per slice.	rates, and key research.	specifications used in the
Review		networks for prostate	PROSTATEx-2, and UKM	calculated per since.		experiment.
		segmentation.	TROOTHILA-2, and OKWI			скрепшена.
SVM Classification	[9], 2017	DWT for noise removal,	The dataset contains 40 T2-	MSE, SNR, and PSNR are	The SVM classifier achieved	MATLAB toolboxes,
of MRI Brain		Canny for edges, Otsu for	weighted MRI brain	used for evaluation.	100% accuracy on 40 MRI	Canny edge detection,
Images for		segmentation,	images, with 20 normal and		images. Bior1.3 wavelet	DWT for noise removal,
Computer-			20 abnormal images		denoised with MSE: 6.0511,	and wavelet

International Journal of Advanced Natural Sciences and Engineering Researches

Paper	Reference	Method	Dataset	rai Sciences and Engineering Researc	Result with a number	Calculator and software
1 aper	Reference	Without	Dataset	metre	Result with a number	specifications used by
						the experiment
Assisted Diagnosis		morphological operations,	featuring various brain		SNR: 29.2336, PSNR:	types/thresholding were
Assisted Diagnosis		and SVM with RBF kernel.	diseases.		40.3124.	used.
A Machine	[10], 2017	Wavelet denoising, median	Real-time images from	PSNR measures signal power	The method achieved 96%	The analysis and results
Learning Approach	[10], 2017	filter, Otsu binarization, K-	different databases are	versus noise power.	classification, with eight	were done using
for MRI Brain		Means segmentation, and	utilized .Both real-time and	MSE quantifies differences	features, high noise removal,	MATLAB.
Tumor		binary tree SVM.	simulated images are	between predicted and	and improved system	Image quality metrics
Classification		omary tree s v ivi.	included.	observed values .	performance.	used are PSNR and MSE.
A simple and intelligent approach for brain MRI classification A Hybrid Approach for Automatic Classification of		Pre-processing for noise and skull removal, feature extraction with color moments, and classification using a neural network. A hybrid GA-SVM approach with SGLDM feature extraction, 2D	The study used 70 MRI images: 25 normal and 45 abnormal, divided into training, validation, and testing sets. The study used a dataset of 83 brain MRI images: 29 normal, 22 malignant	Accuracy, the Similarity index was used for results evaluation. Extra fraction and overlap fraction were also utilized for evaluation. Sensitivity measures true positives, specificity measures true negatives, and	Training accuracy: 88.9% Validation accuracy: 94.9% Testing accuracy: 94.2% Overall accuracy: 91.8% ANN accuracy: 91.80% The hybrid approach achieved 94.44%-98.14% accuracy and 91.9%-97.3%	Experiments were conducted on an Intel Core i3 processor (2.40 GHz) with 2 GB of memory, running Windows 7 and MATLAB 7.6.0 (R2008a). The contexts provided do not contain information regarding the calculator and software
Brain MRI Using Genetic Algorithm		wavelet transform, and GA for feature selection.	tumors, and 32 benign	accuracy measures overall classification correctness.	sensitivity, excelling in tumor classification.	and software specifications used in the
and Support Vector		101 leature selection.	tumors.	classification correctness.	Ciassification.	experiment.
Machine						схреннени.
Classification of	[13], 2009	The study uses pattern	The study involved 98	ACC measures classification	Classification accuracy for	The provided contexts do
Brain Tumor Type	_ _ .	classification, automated	patients with 102 brain	correctness, sensitivity shows	metastases vs gliomas: 85%,	not contain information
and Grade Using		analysis, SVM, and	masses, including	the true positive rate,	sensitivity: 87%, specificity:	regarding the calculator
MRI		methods like LDA and kNN	metastasis, meningiomas,	specificity shows the true	79%. For high-grade vs low-	and software
Texture and Shape		for tumor classification.	and gliomas.	negative rate, and AUC	grade gliomas: accuracy:	specifications used in the
in a Machine			- -	evaluates model	88%, sensitivity: 85%,	experiment
Learning Scheme				performance.	specificity: 96%.	

Table 4. Details of the reviewed studies for the conventional neural network stage

Doman	Dafanan			es for the conventional neural nety		Calculaton and saft
Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software
						specifications used by
	51.47. 2010	, ,	17 1671			the experiment
Classification of	[14], 2010	MRI processing uses	Known MRI images from	The system classifies MRI	The system classifies MRI	The provided contexts do
Brain Cancer		histogram equalization,	Tata Memorial Hospital	images into tumor grades,	images into Astrocytoma	not contain information
using an Artificial		segmentation, GLCM	(TMH) were used.	with results confirmed by	tumor grades .Results show a	
Neural Network		for features, and a	Unknown MRI samples	cancer specialists from TMH,		and software
		Neuro Fuzzy Classifier	were also obtained from	matching doctors' accuracy.	the outer skull.	specifications used in the
		for classification.	TMH for testing.			experiment.
Brian Tumor	[15], 2012	MRI processing uses	The dataset includes MRI	Sensitivity is one of the	The method uses ANFIS with	MATLAB 7.0.4 is used
Segmentation		histogram equalization,	Astrocytoma images,	evaluation metrics used.	49 fuzzy rules, classifying	for feature calculations,
using a hybrid		segmentation, GLCM	categorized by grade and	Specificity is another	MRI images from GRADE I	with 'histeq' for
Genetic		features, and a Neuro	clustered into four regions:	important evaluation metric.	to IV, measured by	histogram equalization
Algorithm and an		Fuzzy Classifier.	white matter, grey matter,	Accuracy is also measured	sensitivity, specificity, and	and GLCM for feature
Artificial Neural			CSF, and tumor.	for performance evaluation.	accuracy.	extraction.
Network Fuzzy			,	•	,	
Inference System						
(ANFIS)						
Brain Tumor	[16], 2012	Multi-Layer Perceptron	The dataset includes 30	Peak recognition rate is used	PCA has 100% peak and	The contexts provided do
Diagnosis		(MLP) for	head MRI cases (3 types),	for evaluation.	78% average recognition,	not contain information
Systems Based on		classification.	15 gadolinium-enhanced	Average recognition rate is	while WMEM has 96.7%	regarding the calculator
Artificial Neural		Principal Component	slices per case.	also considered.	peak and 88.2% average.	and software
Networks and		Analysis (PCA) for	1	Norm error measures		specifications used in the
Segmentation		feature extraction.		reconstruction accuracy.		experiment.
Using MRI		WMEM algorithm for				1
		image segmentation.				
Brain Tumor	[17], 2013	The study uses feature	The study uses proton	The paper does not specify	The classification accuracy	The image processing
Detection Using		sets, modified Canny,	Magnetic Resonance	evaluation metrics.	varies across different	algorithm is based on a
Neural Network		neural networks, and	Spectroscopy images.		datasets.	modified Canny edge
1,000,001		learning vector	Different datasets yield		<u> </u>	detection algorithm and
		quantization for tumor	varying classification			implemented using
		classification and	accuracy results.			MATLAB
		detection.	accuracy resums.			1,1111111111111111111111111111111111111
Brain Tumor	[18], 2013		The dataset consists of MRI	Sensitivity is used for	The paper compares tumor	The contexts provided do
Segmentation	[10], 2013	for feature extraction,	images of astrocytoma	evaluating model	segmentation methods,	not contain information
Segmentation		Genetic Algorithm for	tumors.	performance.	segmentation memous,	regarding the calculator
		Genetic Algorithm 101	tumors.	performance.		regarding the calculator

Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software specifications used by
Using Genetic Algorithm and Artificial Neural Network Fuzzy		selection, ANFIS for segmentation, and compares segmentation techniques.	Images are categorized by tumor grades I to IV. The images were collected from web resources.	Specificity is another key evaluation metric. Accuracy is also considered for assessment.	highlighting ANFIS for Astrocytoma grades I-IV.	and software specifications used in the experiment.
Inference System (ANFIS)		techniques.	from web resources.	ioi assessment.		
An Artificial Neural Network Approach for Brain Tumor Detection Using Digital Image Segmentation	[19], 2013	The study uses MRI, image enhancement, watershed segmentation, and neural networks for brain tumor detection.	Brain tumor (MRI image)	Similarity index (S) measures segmentation quality, FPVF and FNVF assess misclassification and lost pixels, and the Jaccard index evaluates volume overlap.	A similarity index S of 80 indicates excellent similarity. Higher S, lower FPVF, and FNVF yield better segmentation results.	MATLAB version 7.6.0 was used for algorithm development.
Detection of Tumor in MRI Images Using Artificial Neural Networks	[20], 2014	The method uses neural networks, GLCM features, MLP classification, and thresholding/edge detection for brain tumor detection.	The study used twenty brain MR images. MR images included normal and abnormal brain tissues.	TP: Correctly identified cancer, TN: Correctly identified normal, FP: Incorrect cancer, FN: Incorrect normal.	Twenty MR images were evaluated, with histogram equalization and segmentation improving tumor assessment.	No specific calculator or software specifications are mentioned in the context.
Edge Detection Algorithms Using Brain Tumor Detection and Segmentation Using Artificial Neural Network Techniques	[21], 2016	Canny edge detection, histogram thresholding for segmentation, neural network classification, and feature extraction/selection to improve accuracy.	The study uses real MRI brain images. T1 and T2-weighted MRI images are specifically utilized.	The paper does not specify evaluation metrics.	The algorithm is flexible, efficient, fast, and accurate for tumor detection and segmentation.	The implementation used the Image Processing Toolbox under MATLAB Software. The experiments were conducted on real MRI images.
Classification of tumors and it stages in brain MRI using support vector	[22], 2017	The paper uses region growing, SVM, and ANN for tumor classification, and TKFCM for segmentation.	The dataset includes 39 brain MRI images for normal/tumor classification and 37 images for benign/malignant tumor stage classification.	TP, TN, FP, and FN measure tumor classification; sensitivity is 98%, specificity is 100%, accuracy is 97.37%, and BER is 0.0294.	Sensitivity: 98% Specificity: 100% Accuracy: 97.37% BER: 0.0294	The contexts provided do not contain information regarding the calculator and software specifications used in the experiment.

Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software specifications used by the experiment
machine and artificial neural network						the experiment
Brain Tumor Detection and Segmentation in MRI Images Using Neural Network	[23], 2017	The method uses MRI, Canny edge detection, a Gaussian filter, Cellular Automata, and an ANN for brain tumor detection.	The study utilized MRI brain images for analysis. Data was developed from scanning labs and 1.5T scanners.	Accuracy: Correct classifications. Sensitivity: True positives. Specificity: True negatives. TP, TN, FP, FN: Classification outcomes.	The algorithm effectively detects tumors with edge detection, performing better on high-grade tumors across multiple images.	The system was implemented using MATLAB. MATLAB provides powerful mathematical and image processing capabilities.
Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks	[24], 2018	The study uses HOG features, neural networks, and supervised learning for segmentation and classification, evaluated against manual methods.	A total of 200 MRI cases were utilized. Digitized medical MR images from standard challenge datasets were used.	SSIM measures image similarity, PRI assesses segmentation accuracy, VoI quantifies information difference, and GCE evaluates segmentation consistency.	Identification precision recorded at 92.14%. Sensitivity achieved was 89%. Specificity reached 94%.	The contexts provided do not contain information regarding the calculator and software specifications used in the experiment.
Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network	[25], 2018	The method uses GLCM features, DWT segmentation, morphological filtering, and a probabilistic neural network for tumor detection.	The study used 650 samples from Diacom and radiologists, including 18 infected tumor brain tissues and normal samples.	PSNR evaluates image quality, MSE measures image fidelity, and accuracy indicates the correct tumor classification rate.	Nearly 100% accuracy for the trained dataset. %95accuracy for the tested dataset.	The contexts provided do not contain information regarding the calculator and software specifications used in the experiment.
Hippocampal Segmentation in Brain MRI Images Using Machine Learning Methods: A Survey	[26], 2021	The method uses neural networks, GLCM features, MLP classification, and thresholding/edge detection for tumor detection.	The study used twenty brain MR images. MR images included normal and abnormal brain tissues.	TP: Correct cancer identification, TN: Correct normal identification, FP: Incorrect cancer identification, FN: Missed cancer detection.	Twenty brain MR images were evaluated, with histogram equalization improving image definition and segmentation enhancing tumor assessment.	No specific calculator or software specifications are mentioned in the context.

Table 5. Details of the reviewed studies for the deep learning stage

Paper	reference	Method	dataset	metric	Result with a number	Calculator and software
						specifications used by the
						experiment
Deep Learning for	[27], 2017	The method uses CNN	The study uses various	TPR, PPV, DSC, HD, and	Sensitivity: 93.3% for the	The contexts provided do
Brain MRI		architectures, label fusion,	datasets: BRATS, ISLES,	ASSD measure	detection of 1p19q status.	not contain information
Segmentation: State		skull stripping, bias	mTOP, MSSEG,	segmentation accuracy,	Specificity: 82.22% for the	regarding the calculator and
of the Art		correction, registration,	NeoBrainS12, and	overlap, boundary distance,	detection of 1p19q status.	software specifications used
and Future		and noise reduction for	MRBrainS for brain tumor	and lesion detection		by the experiment.
Directions		MR image processing.	and lesion segmentation.	precision.		
Deep Generative	[28], 2020	A VAE-based generative	UK Biobank dataset: 1,500	The evaluation metric used	The proposed method	The model, implemented in
Model-based Quality		model is used for quality	subjects' short-axis cardiac	is the Dice metric.	outperforms CNN and	PyTorch, used the Adam
Control for Cardiac		control, with iterative	images.	Pearson correlation	hand-crafted features in	optimizer (learning rate
MRI Segmentation		search and Dice metric	ACDC dataset: 100	coefficient (r) is also	both correlation and MAE	0.0001), a batch size of 16,
		evaluation.	subjects with normal and	reported.	on ACDC and UK Biobank	and was trained for 100
			pathology groups.	Mean absolute error (MAE)	datasets.	epochs.
				is calculated for		
				predictions.		
Brain Tumour Image	[29], 2020	An ensemble of 3D CNN	The BraTS 2019 dataset	Dice scores: 0.750	Dice scores: 0.750	The provided contexts do
Segmentation		and U-Net with patch-	includes 335 glioma	(enhancing), 0.906 (whole),	(enhancing tumour), 0.906	not contain information
Using Deep		based inference and data	patients: 259 high-grade, 76	0.846 (core), compared	(whole tumour), 0.846	regarding the calculator and
Networks		augmentation is used for	low-grade, and 125	with state-of-the-art	(tumour core).	software specifications used
		segmentation.	unknown-grade cases.	methods.		in the experiment.
Segmentation Loss	[30], 2020	The paper categorizes loss	The contexts do not specify	The Dice coefficient is a	The question is not relevant	The contexts provided do
Odyssey		functions, explores types,	any datasets used in the	common segmentation	to the research paper's	not contain information
		and provides	study.	metric, while IoU loss	content.	regarding the calculator and
		implementations.		optimizes object category		software specifications used
				segmentation.		in the experiment.

Paper	reference	Method	dataset	metric	Result with a number	Calculator and software
1 aper	reference	Withou	uataset	metre	Result with a number	specifications used by the
						experiment
Brain Tumour Image	[31], 2020	An ensemble of 3D CNN	The study used the BraTS	The Dice scores are 0.750,	Dice scores: enhancing	The contexts provided do
Segmentation	[],	and U-Net is used for	2019 dataset with 335	0.906, and 0.846 for	tumour 0.750, whole	not contain information
Using Deep		segmentation with patch-	glioma patients, including	different tumour regions,	tumour 0.906, tumour core	regarding the calculator and
Networks		based inference and data	259 high-grade and 76 low-	with a comparison to state-	0.846, with patient-specific	software specifications used
		augmentation.	grade cases.	of-the-art methods.	scores of 0.930, 0.949, and	in the experiment.
					0.927.	•
A Systematic	[32], 2021	CNN is used for	The study used a T1-	Dice Score, Rand Index,	Average Dice Score: 0.92	The contexts provided do
Approach for MRI		classification, Faster R-	weighted MRI brain tumor	VOI, GCE, BDE, PSNR,	Accuracy: 94.27% for	not contain information
Brain Tumor		CNN for tumor	dataset with 233 patients	and MAE assess similarity,	glioma	regarding the calculator and
Localization and		localization, and Chan-	and 3064 images, focusing	accuracy, consistency,	Cohen's kappa: 0.843	software specifications used
Segmentation Using		Vese for tumor	on meningioma and glioma,	boundary, quality, and	(training), 0.872 (testing(in the experiment.
Deep Learning and		segmentation.	excluding pituitary tumor	error.	AUC values: 0.93	
Active Contouring			images.		(training), 0.94 (testing	
AHybrid CNN-SVM	[33], 2021	A hybrid CNN-SVM	The dataset used is from	Accuracy, True Positive	The hybrid CNN-SVM	The model was
Threshold		model for tumor detection	BRATS 2015.	Value, and texture features	model achieved 98.4959%	implemented on a Dell
Segmentation		uses the BRATS 2015	It includes 110 training	assess image classification	accuracy.	laptop with a Core
Approach for Tumor		dataset, with CNN for	cases and 220 testing cases.	and properties.	SVM accuracy was	i7cpu,8GB RAM, and 4GB
Detection and		feature extraction and			72.5536%.	Nvidia GPU.
Classification of		SVM for classification.			CNN accuracy was	
MRI Brain Images	F2.41, 2022	DND C	TI 1 14 TOCA	D' 1 1	97.4394%.	TI 11 12 T'
Znet: Deep Learning	[34], 2022	DNNs for tumor	The study used the TCGA-	Pixel accuracy can be	Validation Dice coefficient:	The model used 2x Titan
Approach for 2D MRI Brain		segmentation, using data	LGG dataset with 3,929 FLAIR MRI slices, 1,373	misleading; better metrics include IoU, Dice	0.96 (training), 0.92	GPUs, ADAM optimizer,
Tumor Segmentation		augmentation, encoders, and trained on TCGA-	labeled abnormalities,	coefficient, F1 score, and	(testing); Pixel accuracy: 0.996; F1 score: 0.81;	128x128 images, and Albumentations for
Tumor Segmentation		LGG for 200 epochs.	annotated by experts.	MCC for evaluation.	MCC: 0.81.	augmentation.
A holistic overview	[35], 2022	DL for medical image	Public datasets from	F-beta, ROC, Dice,	0.869 Dice similarity	The contexts provided do
of the deep learning	[33], 2022	analysis includes	GitHub and Kaggle are	accuracy, sensitivity, and	coefficient score achieved	not contain information
approach in medical		segmentation,	used, with medical image	Jaccard assess performance	in prostate image	regarding the calculator and
imaging		classification,	datasets being smaller.	in segmentation and	segmentation	software specifications used
mugmg		augmentation, feature	datasets semig smaner.	classification.	segmentation	by the experiment.
		extraction (GLCM/LBP),		Oldssilledisi.		of the experiment.
		and PCA.				
A deep learning	[36], 2022	DLM VOI segmentation	The study used a	AUC compared DLM and	DLM method AUC: 0.76	Training used TensorFlow
masked segmentation		is compared with expert	multicenter dataset of 930	manual segmentation, with	(95% CI: 0.66-0.85(Keras 2.2.0 with a 3D U-
alternative to manual		manual segmentation,	patients.	sensitivity and specificity	•	Net architecture, 32-GB

Paper	reference	Method	dataset	metric	Result with a number	Calculator and software
						specifications used by the
						experiment
segmentation in		using ROC analysis for	Data was collected from 9	evaluated for the best	Manual segmentation	V100 GPU, Adam
biparametric MRI		performance and iMRMC	different medical centers.	model.	AUC: 0.62 (95% CI: 0.52-	optimizer (learning rate 1e-
prostate cancer		for model comparison.	Included 2 tertiary care		0.73(4), batch size of 1, and up
radiomics			academic institutions and 7		Time reduction: over 97%	to 400 epochs.
			non-academic institutions.		compared to manual	
					segmentation	
A survey of methods	[37], 2023	Segmentation methods:	The study uses BraTS	Evaluation metrics include	Accuracy: Havaei 0.88,	The contexts do not include
for brain tumor		conventional, supervised,	2013, 2018, 2019, and 2020	accuracy, sensitivity, and	Hussain 0.80, Pereira 0.85,	details on the calculator and
segmentation-based		unsupervised, CNN-	datasets.	specificity for assessing	Ranjbarzadeh 0.92, Wang	software specifications
MRI images		based, hybrid, and FCM		segmentation performance.	0.90.	used.
		clustering.				
Study and analysis of	[38], 2023	Otsu's method,	The study used the BRATS	Recall, precision, F-	Otsu: 71.42%, Watershed:	MATLAB was used to
different		Watershed, Level set, K-	dataset-2018 for	measure, and accuracy	78.26%, Level set: 80.45%,	simulate segmentation
segmentation		means, HAAR DWT, and	simulations.	assess model performance.	K-means: 84.34%, DWT:	algorithms on the BRATS
methods		CNN are used for image			86.95%, CNN: 91.39%	2018 dataset, with a CNN
for brain tumor MRI		segmentation and			accuracy, CNN response	response time of 2.519
application		analysis.			time: 2.519s.	seconds.
Deep Learning for	[39], 2024	DL for MRI	The BraTS and TCIA	AI segmentation is	Mean patients: 148.6,	The contexts provided do
MRI Segmentation		segmentation, ML for	datasets are used for	evaluated using Dice Score,	median: 60.5; 1p19q	not contain information
and Molecular		tumor classification,	training DL algorithms,	Hausdorff distance, and	codeletion prediction	regarding the calculator and
Subtyping		Grad-CAM for	with multi-institutional	annotation averaging to	accuracy: 92%, algorithms	software specifications used
in Glioblastoma:		interpretability, STAPLE	databases proposed for	reduce human error.	>80-90% accuracy.	in the experiment
Critical Aspects from		for averaging, and data	future research.		•	_
an Emerging Field		selection for training.				

Table 6. Details of the reviewed studies for the attention and enhanced networks stage

Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software
Тарсі	Reference	method	Dataset	metric	Result with a number	specifications used by the
						experiment
EnigmaNet: A	[40], 2024	EnigmaNet uses a	The study used the ISLES-	Dice score, sensitivity,	EnigmaNet achieved a Dice	The provided contexts do
Novel Attention-	[10], 2021	modified loss function,	2015 public dataset.	specificity, accuracy, and	score of 0.8965 (FLAIR),	not contain information
Enhanced		DWI/FLAIR MRI,	It includes 64 sub-acute	AUC-ROC assess	sensitivity 0.8776,	regarding the calculator and
Segmentation		Genesis-k blocks, and	ischemic stroke cases.	segmentation and classifier	specificity 0.9866; a Dice	software specifications used
Framework for		dual-headed attention	MRI sequences were skull-	performance.	score of 0.8423 (DWI),	in the experiment.
Ischemic		for lesion detection.	stripped and co-registered.	periormance.	sensitivity 0.8452,	in the experiment.
Stroke Lesion		Tor resion detection.	The dataset is divided into		specificity 0.9754.	
Detection in			training and testing cases.		specifically 0.5 /2	
Brain MRI			and the second second			
Deep attention-	[41], 2024	A deep attention	The Synapse dataset from	The primary evaluation	The model increased the	The model was trained in
enhanced	L 3/	network for	the MICCAI 2015	metric used is the DSC	Dice score by 2.26, with a	PyTorch on a Tesla T4
networks for		segmentation uses	challenge.	metric.	highest score of 10.90 in	GPU with SGD, 224x224
medical image		DCSegHead, attention	The ACDC dataset from	The method achieved a	HD, and an average	images, batch size 8, and
segmentation		decoder, CNN-Swin	100 MRI patients	DSC performance of 90.73.	performance of 90.73 on	400 epochs.
		pyramids, and feature	•	1	the DSC metric.	•
		fusion.				
Multimodal MRI	[42], 2023	The 3D Attention U-Net	The BraTS 2020 dataset	The IoU is the Jaccard	Dice scores: $WT = 0.889$,	The model was
Brain Tumor		uses dense encoders,	includes 3D MRI scans	Index, and the Dice	TC = 0.866, ET = 0.828.	implemented in Python
Segmentation		residual decoders,	from 369 patients with	coefficient is the Dice-	Jaccard means not	with PyTorch, trained for
using		attention layers, and	gliomas (LGG and HGG),	Sorensen coefficient,	specified.	100 epochs using the Lion
3D Attention		BCE-Dice loss, trained	manually annotated by	measuring discrepancies		optimizer and a weight
UNet with Dense		on BraTS 2020.	neuroradiologists.	between segmentation and		decay of 0.01.
Encoder Blocks				ground truth.		
and						
Residual Decoder						
Blocks						
IRA-Unet:	[43], 2023	A deep learning method	The ACDC 2017 dataset	Dice similarity coefficient	Mean Dice score for left	The contexts provided do
Inception		for cardiac MRI uses	has 100 training and 50 test	(DSC), Jaccard similarity	ventricle: 0.947.	not contain information
Residual		IRA-Unet with GAN,	subjects, while the MM	index (JC), and Hausdorff	Mean Dice score for right	regarding the calculator and
Attention Unet in		attention, and a	challenge dataset includes	distance (HD) are used for	ventricle: 0.919.	software specifications used
Adversarial		discriminator for	375 patients from three	performance evaluation.	Mean Dice score for	in the experiments.
Network for		improved segmentation.	countries.		myocardium: 0.907.	

Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software specifications used by the
Cardiac MRI						experiment
Segmentation						
Attention Gate	[44], 2020	AGResU-Net uses	BraTS 2017 dataset with	DSC measures overlap,	AGU-Net and AGResU-	Models were implemented
ResU-Net for		Attention Gates, DSC,	285 glioma patients.	Hausdorff distance	Net outperform U-Net and	in Keras with TensorFlow,
Automatic		Hausdorff distance, z-	BraTS 2018 dataset for	estimates surface distance,	ResU-Net in tumor	using an SGD optimizer,
MRI Brain Tumor		score normalization, and	model evaluation.	and Hausdorff95 measures	segmentation, with	PReLU activation, and
Segmentation		Gaussian regularization.	BraTS 2019 dataset for additional experiments	the 95th quantile.	attention gates boosting core tumor accuracy.	executed on a PC with a GeForce GTX 1080 GPU.
Automatic	[45], 2020	The paper proposes a	The OASIS dataset was	The evaluation metrics	The proposed method	The model was trained with
segmentation of	2 2	patch-wise U-Net for	used for experiments.	include Dice similarity	achieved a Dice similarity	SGD, momentum 0.99,
brain MRI using a		improved segmentation,	The Internet Brain	coefficient (DSC), Jaccard	coefficient of 0.93,	learning rate 0.001, and
novel patch-wise		compared to the U-Net	Segmentation Repository	index (JI), Hausdorff	outperforming U-Net by	categorical cross-entropy
U-net deep		and SegNet.	(IBSR) dataset was also	distance (HD), and mean	3% and SegNet by over	loss, using Keras for
architecture			utilized.	squared error (MSE).	10%.	experiments.
MSCDA: Multi-	[46], 2023	The MSCDA	Dataset 1: 11 healthy	The main evaluation metric	MSCDA achieved stable	No information on
level semantic-		framework uses	female volunteers' MRI	is DSC, with auxiliary	performance with DSC	calculator specifications is
guided contrast		contrastive learning and	images and masks.	metrics including JSC,	89.2, outperforming other	provided.
improves		cross-domain sampling	Dataset 2: 134 patients with	precision, and sensitivity.	methods with fewer source	No information on software
unsupervised		for breast MRI	invasive breast cancer MRI		subjects.	specifications is provided.
domain		segmentation.	images and masks.			
adaptation for						
breast MRI						
segmentation in						
small datasets	5.457. 0.001	DDG CARLO			CD D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Deep learning-	[47], 2021	DDSeg uses CNN for	The study uses MRI data	Accuracy is measured	CNN AT achieved 90.48%	The provided contexts do
based		diffusion MRI	from multiple sources:	across the brain, for tissue	accuracy on HCP data and	not contain information
segmentation of		segmentation,	HCP, CAP, VERIO,	boundaries, and non-	80.30% on VERIO data.	regarding the calculator and
brain tissue from		integrating DKI	MultiCenter, and	boundary regions, with PSI	Dice scores indicate	software specifications used
diffusion MRI		parameters and	SUDMEX.	for WM, GM, and CSF.	prediction accuracy.	in the experiments.
		comparing with other methods.				
STHarDNet:	[48], 2022	The study proposes the	The study used the ATLAS	Dice measures similarity	STHarDNet achieved a	Operating System:
Swin Transformer	[.0], 2022	STHarDNet model	dataset for MRI	between predicted and	Dice value of 0.5547.	Windows 10
with HarDNet for		structure.	segmentation.	actual values.	STHarDNet achieved IoU	CPU: Intel Core i9-9900KF
			8		value of 0.4185.	3.6GHz

Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software
1 apei	Reference	method	Dataset	metric	Result with a number	specifications used by the
						experiment
MRI		It combines HarDNet	The ATLAS dataset	IoU refers to the	STHarDNet achieved a	GPU: NVIDIA GeForce
Segmentation		with Swin Transformer	includes 189 MRI scan	intersection over union area	precision value of 0.6764.	RTX 2080Ti
Segmentation		for MRI segmentation.		ratio.	STHarDNet achieved a	RAM: 112GB
		Four performance	images. It consists of 43,281	Precision indicates the	recall value of 0.5286.	Storage: 1TB SSD
		metrics are used: Dice,	annotated slices.		recall value of 0.3286.	<u> </u>
		· · · · · · · · · · · · · · · · · · ·		percentage of accurately		Language: Python 3.7
		IoU, precision, and	Data from 177 patients were utilized.	predicted pixels. Recall measures the		Framework: PyTorch 1.5
		recall. The ATLAS dataset is				
			80 images were used for	model's detection of ground		
		utilized for model	training, 52 for validation.	truths.		
2D ACCE VAL	[40] 2022	evaluation AGSE-VNet uses SE for	The state of D. TC	Discourse and	D: 0 60 0 05	Til
3D AGSE-VNet:	[49], 2022		The study uses the BraTS	Dice measures accuracy,	Dice: 0.68-0.85.	The experiment used
an automatic		feature enhancement,	2020 dataset with 369	specificity, true negatives,	Sensitivity: 0.83.	TensorFlow 1.13.1, Intel
brain tumor		AG for noise	training and 125 validation	sensitivity, true positives,	Specificity: 0.99.	Core i7-9750H CPU, 32GB
MRI data		suppression, skip	cases of LGG and HGG,	and Hausdorff95 boundary	Hausdorff95: 8.96.	RAM, Nvidia GeForce
segmentation		connections, and multi-	featuring T1, T1-CE, T2,	distance.		RTX 2080 GPU, Windows
framework		modal MRI images for	and FLAIR images.			10, PyCharm, and Python
17777	5503 2021	segmentation.		D	m1 1 7 77 0	3.6.9.
Improved U-Net-	[50], 2021	Improved U-Net with	The study uses 3000 UAV	Precision, recall, IoU, and	The average overlap IoU of	The provided contexts do
based insulator		ECA-Net attention for	aerial images from the 8th	F-Score assess prediction	the proposed method is	not contain information
image		insulator segmentation,	Teddy Cup, with insulator	accuracy and overlap.	96.8%. Precision reached	regarding the
segmentation		evaluated using	labels, enhanced through		98.35, and Recall reached	calculator and software
method based		Precision, Recall, and	image processing		98.38.	specifications used in the
on attention		IoU.	techniques.		F Score increased to 98.36	experiment
mechanism						
Retracted: Brain	[51], 2023	Tumor segmentation,	The dataset includes MRI	Jaccard, Dice: measure	The accuracy and confusion	MATLAB software was
Tumor Detection		feature extraction,	brain images from 66	similarity; sensitivity,	matrix results are shown in	used for the proposed
and Classification		genetic algorithm, and	patients: 22 normal and 44	specificity: assess	Figures 15 and 16	strategy.
by MRI		classification with	abnormal, with T2-	classification; accuracy:		The system had a Core 2
Using		SVM, Naive Bayes, and	weighted 256x256 pixel	overall correctness.		Duo code configuration.
Biologically		CNN.	images.			
Inspired						
Orthogonal						
Wavelet						
Transform and						

Paper	Reference	method	Dataset	metric	Result with a number	Calculator and software specifications used by the experiment
Deep Learning Techniques						
Linear Attention Mechanism: An Efficient Attention for Semantic Segmentation	[52], 2021	The paper proposes a linear attention mechanism using a first-order Taylor expansion to reduce memory and computational costs.	The Fine Gaofen Image Dataset (GID) has 10 RGB images, 15 classes, and is split into 7280 patches for training, validation, and testing.	Evaluation uses OA, AA, Kappa, mIoU, and F1- score.	Evaluation metrics: OA, AA, Kappa, mIoU, F1- score. The search does not contain numerical results.	Experiments on RTX 2080ti GPU with PyTorch, Adam optimizer, batch size 16, and cross-entropy loss.
TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation	[53], 2022	TransAttUnet uses multi-level attention, skip connections, and a unified loss function for segmentation.	Datasets used: ISIC-2018, JSRT, Montgomery, 1NIH, Clean-CC-CCII, Data Science Bowl, GlaS.	Metrics used: DICE for similarity, IoU for segmentation accuracy, ACC for overall correctness, REC for true positives, PRE for true vs. predicted positives.	TransAttUnet achieved an IoU score of 84.98. Improvement of 0.91 over previous models. Highest score on almost all evaluation metrics	The contexts provided do not contain information regarding the calculator and software specifications used in the experiments.