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Abstract – Magnetic resonance imaging (MRI) is the cornerstone of medical diagnosis; however, accurate 

segmentation of MRI images remains a challenging task due to noise, low contrast, and complex anatomical 

structures. Traditional machine learning and early deep learning methods have achieved moderate success, 

but they often struggle to maintain precise boundaries and handle ambiguous areas. Recent innovations, 

such as attention mechanisms and multi-scale architectures like the Nested U-Net, have significantly 

improved the accuracy of locating and segmenting features. Despite all this, traditional clustering processes 

can still cause information loss, especially at object boundaries. In this review, the evolution of MRI 

segmentation will be systematically explored through four developmental stages: (1) classical machine 

learning, (2) convolutional neural networks (CNNs), (3) deep learning architectures, and (4) optimized 

networks. Using attention and fuzzy logic. We will highlight the strengths and limitations of each stage, 

and propose an advanced segmentation framework that combines an attention-enhanced nested U-Net with 

fuzzy pooling, a technique that integrates soft decision-making to retain uncertain and boundary 

information. Preliminary results show improved dice similarity coefficient (DSC) and sensitivity, as well 

as decreased Hausdorff distance (HD), especially in complex MRI data sets of the brain and liver. Our 

approach shows superior generalization and accuracy to traditional clustering strategies. Future work will 

also focus on cross-media adaptation, real-time deployment in clinical settings, and integration of 

automated diagnostics. 
 

Keywords – Medical Image Segmentation MRI, Attention mechanism, Conventional Neural networks, Deep learning models, 

Nested U-Net, Fuzzy Pooling, Intelligent Segmentation, Dice Score. 
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I. INTRODUCTION 

Magnetic resonance imaging (MRI) is widely considered one of the most important imaging modalities 

in clinical diagnosis due to its high-resolution, non-invasive nature and excellent soft tissue contrast. It 

plays a vital role in diagnosing, monitoring, and planning the treatment of various medical conditions, 

including brain tumors, liver cancer, stroke lesions, and retinal diseases [1]. Despite its diagnostic power, 

automatic segmentation of MRI images remains a technically complex and clinically critical task due to 

challenges such as image noise, low contrast, diverse anatomical structures, and irregular lesion shapes. 

Over the past decade, the field of medical image segmentation has evolved through distinct 

methodological stages. Early methods relied on traditional machine learning (ML) techniques such as 

support vector machines (SVMs), random forests (RFs), and K-Nearest Neighbors (KNNs) to extract 

features and classify regions. Although these methods were computationally efficient, they often failed to 

generalize across different data sets and required hand-crafted features that limited performance on 

complex tasks [2]. 

The emergence of convolutional neural networks (CNNs) has greatly enhanced segmentation 

capabilities by enabling automatic feature learning from data. CNN-based architectures such as U-Net 

have shown impressive performance, especially in biomedical segmentation tasks. However, these models 

have suffered from problems such as loss of spatial resolution due to maximal clustering, lack of context 

awareness in deep layers, and limited representation power in multi-class segmentation scenarios [3]. 

In order to overcome these limitations, researchers have introduced more sophisticated deep learning 

(DL) strategies, including full convolutional networks (FCNs), 3D U-nets, and nested U-nets (U-Net++). 

Among these techniques, mesh U networks have provided a significant improvement, and that is by 

incorporating dense skip connections and better feature fusion across layers [4]. While these constructs 

improved segmentation accuracy, traditional clustering layers continued to ignore fine spatial details —

especially at anatomical boundaries—, and this limited the model's accuracy in clinical applications. 

More recently, attention mechanisms have emerged as powerful improvements to CNN-based models. 

These mechanisms enable networks to focus on the most relevant features while suppressing irrelevant or 

noisy information, and this is particularly useful in segmenting ambiguous or overlapping areas. U-

networks and attention-enhanced transducers have shown success in medical image segmentation tasks 

involving gliomas, stroke lesions, and liver tumors, and this has led to higher dice similarity coefficients 

(DSC) and sensitivity values [5]. 

Despite all these developments, there is still a major challenge in retail network aggregation operations. 

Which traditional clustering (for example, maximum or average pooling) often results in the loss of 

important spatial and contextual details. In order to address this problem, recent studies have proposed 

incorporating fuzzy pooling, a technique that takes advantage of fuzzy logic to preserve boundary 

uncertainty as well as accommodate imprecise information while minimizing feature samples. This 

strategy aligns well with medical imaging needs where ambiguous or ill-defined boundaries are common, 

such as within the confines of a tumor lesion or stroke [6]. 

This review paper provides a comprehensive overview of the development of MRI segmentation 

techniques, organized into four phases: (1) machine learning methods, (2) convolutional neural networks, 

(3) deep learning structures, and (4) attention-enhanced models. It is also proposed to integrate fuzzy 

pooling into the U-Net attention-enhanced nested framework to overcome the limitations of traditional 

pooling mechanisms. A comparison of existing datasets (Table 1) and evaluation metrics such as dice 

score, cross-union (IoU), sensitivity, specificity, and Hausdorff distance (Table 2) is used to contextualize 

the development and performance of segmentation models across the literature. 

Stages of Evolution of MRI Segmentation Techniques: 

 

A. Stage 1: Machine Learning for MRI Segmentation:  

From Table 3, notice early approaches to MRI segmentation relied on classical machine learning 

algorithms such as k-Nearest Neighbors (k-NN), support vector machines (SVM), random forests, and 
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fuzzy c-means clustering (FCM) [7]. These methods typically extract handcrafted features, including 

density, texture, or spatial location, which are then used to classify or group tissue types. 

 

Among the most important positives are: 

• Simpler implementation and interpretation. 

• The computational cost is lower compared to deep learning models [8]. 

 

The most important negatives are: 

• Heavy reliance on feature engineering. 

• Generalization is weak across datasets with different imaging parameters [9]. 

• Inability to effectively capture spatial and contextual information [10]. 

 

To overcome these negatives: 

• We use hybrid methods that combine machine learning and basic image processing (e.g., 

watershed segmentation + SVM). 

• Using feature selection techniques such as PCA and LDA to improve generalizability [11]. 

 

  

 
  

Fig. 1 The ratios of the most important methods, metrics, and datasets used in the ML studies 

  

Fig. 1 shows the trends in the machine learning phase, showing that methods such as SVM and k-NN 

were among the most widely applied methods. It also highlights that metrics such as Dice Score and 

Accuracy, along with public datasets such as BraTS and ACDC, have been widely used to evaluate 

segmentation performance [12].  This trend underscores the fundamental role these methods played in 

shaping early MRI segmentation research. 

 

As for the proposed progress: 

The move toward automated feature extraction via deep learning can be used as a more scalable 

alternative to manual feature engineering [13]. 

 

B. Stage 2: Conventional Neural Networks for MRI Segmentation: 

From Table 4, it is clear that convolutional neural networks (CNNs) have significantly advanced the 

field of MRI segmentation by enabling automatic extraction of features directly from raw image data [14]. 

Notable CNN architectures such as AlexNet, VGGNet, and 2D-CNNs have been adapted for medical 

image analysis tasks [15]. These models typically apply convolutional filters to local image regions, and 

this allows them to learn spatial hierarchies from the inputs [16]. 

In MRI segmentation specifically, CNNs have been effectively used for pixel classification through the 

use of patch-based strategies and shallow grid designs [17]. These strategies help reduce computational 

cost while still benefiting from spatial information at the correction level. 
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Fig. 2 An example of a conventional neural network 

 

Among the most important positives of CNN networks: 

• It has a strong ability to capture hierarchical spatial features [18]. 

• Removing hand-made features by learning directly from raw pixel data [19]. 

 

As for the negatives of early CNN networks: 

• Loss of precise spatial resolution due to aggregation and segmentation processes across layers [20]. 

• Limited reception field in shallow networks, which leads to low context awareness [21]. 

• Performance deteriorates when applying 2D CNNs to 3D MRI volumes, as spatial dependencies 

across slices are ignored [22]. 

 

As for the solutions that have been explored to address these negatives: 

• Using full convolutional networks (FCNs) to maintain spatial dimensions across the network 

pipeline [23]. 

• Using 3D CNNs for full volumetric segmentation, this allows spatial continuity across slices [24]. 

• Introduce extended convolutions to expand received fields without reducing the accuracy of the 

feature map [25]. 

 

 
Fig. 3 The ratios of the most important methods, metrics, and datasets used in conventional neural network studies 

 

Fig. 3 shows how the use of methods, metrics, and data sets is distributed during this stage. It highlights 

the dominance of CNN-based methods, especially 2D CNNs and early volumetric models, as well as 

performance metrics such as Dice Score and IoU. Datasets such as BraTS, ACDC, and ISIC have been 

frequently used in evaluating these models. 
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As for the proposed progress: 

The development of U-Net architectures was a breakthrough, combining encryption and decryption 

designs with skip connections to enhance local and contextual translation performance in segmentation 

tasks [26]. 

 

C. Stage 3: Deep Learning for MRI Segmentation: 

From Table 5, note that deep learning architectures have transformed MRI segmentation by introducing 

encoding and decoding structures capable of capturing hierarchical [27], nonlinear, and multi-scale 

patterns in medical imaging data. Among the most widely adopted models are U-Net, 3D U-Net, V-Net, 

and hybrid approaches such as GAN-based segmentation frameworks [28]. These structures take 

advantage of deep layers to extract features and reconstruct segmentation masks while preserving spatial 

details [29]. 

 

  
Fig. 4 U-NET Architecture 

 

Among the most important positives of deep learning architectures are: 

• Deliver powerful performance through diverse data sets and imaging methods [30]. 

• Effectively segment complex tissue boundaries and irregular tumor geometry [31]. 

• Achieve high accuracy in leading benchmark challenges such as BraTS, ACDC and ISIC (refer to 

Table 1). 

 

The most important negatives include: 

• High computational demand and memory usage, especially for volumetric (3D) data [32]. 

• Ability to over-process when training on limited data [33]. 

• Inadequate global context modeling in traditional convolutional frameworks [34]. 

 

The most important ways to overcome these negatives are: 

• Use of data augmentation techniques (for example, rotation, scaling, flipping) to artificially expand 

the training set and promote generalization of the model [35]. 

• Designing hybrid models by combining CNNs with advanced modules such as conditional GANs 

and residual networks, thus improving organization and learning dynamics [36]. 
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• Integrating attention gates (AGs) within the encoding and decoding pipelines to direct the focus of 

the model to relevant anatomical regions and also improve segmentation accuracy [37]. 

  

 
  

Fig. 5 The ratios of the most important methods, metrics, and datasets used in deep neural network studies. 

 

As shown in Fig. 5, we note that deep learning methods, especially U-Net variants, dominate modern 

research. Rating metrics such as Dice Score, IoU, and Hausdorff Distance, as well as data sets such as 

BraTS 2020, ACDC, and ISIC 2017, are frequently used to evaluate model performance and reliability. 

 

As for the proposed progress: 

To further improve segmentation quality, U-Net-based architectures can be extended by incorporating 

attention mechanisms and fuzzy pooling layers [38]. This combination addresses loss of accuracy due to 

pooling processes and improves contextual awareness by enabling the model to adaptively weigh spatial 

features based on their importance [39]. 

 

D. Stage 4: Attention Mechanisms and Improved Networks for MRI Segmentation:  

From Table 6, it is noted that the latest developments in MRI segmentation take advantage of attention 

mechanisms and transformer architectures to significantly improve model performance[40].These 

techniques allow models to selectively focus on the most relevant parts of the image, and this improves 

accuracy in complex medical imaging tasks [41]. Prominent models such as Attention U-Net, TransUNet, 

AGSE-VNet, and 3D Antice U-Net have shown exceptional segmentation results, especially for difficult 

tasks such as brain tumor and heart segmentation [42]. 

 

   
Fig. 6 Architecture of Attention U-net 
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The most important positives of attention-enhanced models and transformer-based models are: 

• Improved localization of complex anatomical structures, such as tumor boundaries or heart tissue 

[43]. 

• Ability to model long-term dependencies, especially in large images, where global context is 

essential for fine-grained segmentation [44]. 

• Superior performance over well-established public datasets such as BraTS and ACDC (cf.Table 

6). 

 

The most important negatives are: 

• Increased architectural complexity and longer training times due to the integration of attentional 

layers and adapters [45]. 

• Strong reliance on large-scale disaggregated datasets, and this may limit access to smaller or 

specialized datasets [46]. 

• Limited generalization to previously invisible imaging areas or different patient groups [47]. 

 

As for the most important ways to overcome the negatives, they are: 

• Use of pre-trained spine or transfer learning from large natural image datasets (for example, 

ImageNet) to reduce the need for large-scale medical datasets [48]. 

• Multimodal imaging (eg, combination MRI, CT, and PET) can improve segmentation power across 

different imaging conditions [49]. 

• Use training techniques across datasets and domain adaptation to improve models for better 

generalization across diverse datasets [50]. 

 

 
  

Fig. 7 The ratios of the most important methods, metrics, and datasets used in Attention Mechanisms and Improved 

Networks studies 

 

As for the proposed progress: 

The next step involves the development of an attention-enhanced nested U-Net [51], incorporating fuzzy 

pooling layers to improve feature selectivity and contextual awareness [52]. This architecture addresses 

the problems of maximum/average pooling by preserving fine details while improving model performance 

[53], as shown in the experimental results in Tables 2 and 6. 

 

II. DISCUSSION 

This review has explored the evolution of MRI segmentation techniques from traditional machine 

learning (ML) approaches to deep learning architectures and the recent incorporation of attention 

mechanisms. Each of the phases has advanced segmentation capabilities in medical imaging, with the 

combination of these methods improving accuracy and reliability. This section discusses the strengths and 

limitations of each stage, in addition to proposing potential solutions and highlighting the latest 

developments. 
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A. Machine learning methods 

Early methods for MRI segmentation were based on traditional machine learning algorithms, including 

k-NN, SVM, random forests, and others. These methods relied primarily on hand-made features, such as 

tissue density and texture, which were manually extracted and then used to classify tissue types. 

The strengths of these methods include their simplicity of implementation and relatively low 

computational cost compared to more complex models such as deep neural networks. However, feature 

engineering represents a critical challenge, as the process is time-consuming and error-prone, especially 

when dealing with complex anatomical structures [7]. In addition, these models are not well-suited to 

capturing the spatial dependencies inherent in medical images, and this limits their effectiveness when 

segmenting very complex structures such as tumors. 

Proposed solutions to these challenges include hybrid models that combine image processing techniques 

(e.g., watershed segmentation) and machine learning classifiers (e.g., SVM). Furthermore, feature 

selection techniques such as PCA and LDA can enhance the generalizability of these models across diverse 

datasets, addressing the weak generalization problem [11]. In addition, with the advent of deep learning 

methods, the manual feature extraction process can be greatly automated, providing greater scalability and 

accuracy in the long term. 

 

B. Convolutional neural networks (CNNs) 

As medical imaging advances, CNNs have emerged as a powerful tool for automating feature extraction 

directly from raw image data. Where 2D CNNs (for example, AlexNet and VGGNet) have been adapted 

for medical imaging tasks, this enables better pixel-level classification and tissue segmentation. These 

networks have shown significant improvement compared to classical machine learning methods, 

especially concerning learning hierarchical features [15]. 

Despite their success, CNNs have limitations. Early CNN models often suffer from a loss of spatial 

resolution due to pooling layers, and the receptive field of 2D CNNs is too limited to fully capture 

contextual information in larger images, leading to degraded performance in 3D volume segmentation  

[17]. 3D CNNs provide a solution to these problems by maintaining spatial resolution, but they come at 

the cost of increased computational requirements [24]. 

To overcome these challenges, various modifications to CNNs have been proposed, such as introducing 

full convolutional networks (FCNs) to maintain spatial dimensions during segmentation [23], and using 

expanding convolutions to expand the receptive field without losing accuracy. In addition, the introduction 

of U-Net architectures, with skip connections and encoding and decoding frameworks, has helped mitigate 

problems related to information loss during the sampling process, and this provides better medical image 

segmentation results. 

 

C. Deep learning architectures 

The evolution of deep learning structures has given rise to more complex networks capable of learning 

nonlinear layouts and adapting to a wide variety of anatomical structures. U-Net, 3D U-Net, V-Net, and 

hybrid models, such as GAN-based approaches, have become the backbone of modern medical 

segmentation [28]. These models have significantly improved segmentation performance across different 

parameters, especially for difficult segmentation tasks such as tumor detection and cardiac segmentation. 

The main advantage of these models lies in their ability to handle complex tissue boundaries and 

irregular shapes, and this provides high accuracy in well-established data sets such as BraTS, ACDC, and 

ISIC [Table 1]. However, its high computational cost and risk of overfitting small data sets remain a 

notable concern. 3D models, in particular, suffer from memory and processing limitations, and the lack of 

understanding of global context in standard CNNs limits their ability to model long-term dependencies 

[32]. 

In order to address these problems, solutions such as data augmentation and integration of hybrid models 

that combine CNNs with GANs or residual networks have been proposed to improve organization and 

reduce over-processing. In addition, integrating attention gates into encoding and decoding frameworks 
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can help models focus on relevant areas and also improve performance in terms of accuracy and context 

awareness [37]. 

 

D. Attention-enhanced and transformer-based models 

The final stage in the development of MRI segmentation focuses on the integration of attention 

mechanisms and transducers, which has revolutionized image segmentation tasks. Models such as 

Attention U-Net, TransUNet, AGSE-VNet, and 3D Antice U-Net have shown superior performance on 

complex tasks such as brain tumor segmentation and cardiac image analysis [52]. These models allow 

selective focusing on important areas of the image, overcoming the limitations of previous models by 

capturing long-term dependencies and improving segmentation accuracy, especially for larger or more 

complex data sets. 

While these models offer many advantages, including improved positioning of anatomical boundaries 

and enhanced modeling of global context, they come with challenges related to architectural complexity 

and training time [45]. Furthermore, these models require large, labeled datasets to train effectively and 

often have difficulty generalizing to unseen datasets, especially from different imaging domains. 

Solutions to these limitations include the use of pre-trained models and transfer learning from natural 

image datasets, as well as the integration of multimodal imaging techniques, such as combined MRI, CT, 

and PET, for more robust segmentation [49]. Training methods across datasets and domain adaptation can 

also help improve model generalization. 

Our proposed advance at this stage is to integrate fuzzy pooling layers into the nested, attention-

enhanced U-Net model. This approach addresses the shortcomings of traditional pooling methods by 

preserving fine detail and improving contextual awareness, providing a promising direction for future 

research in the field of medical image segmentation. 

Finally, advances from machine learning to deep learning, and now to attention-enhanced and 

transformer-based models, highlight continuing improvements in the accuracy and applicability of MRI 

segmentation techniques. While significant challenges remain, in particular regarding computational 

requirements and generalization of models, the development of hybrid models and attention mechanisms 

holds great promise for the development of medical imaging. By addressing the limitations of previous 

models and incorporating new techniques such as fuzzy clustering, future segmentation models are likely 

to achieve higher levels of accuracy, making them more reliable for clinical applications. 
 

III. CONCLUSION 

The field of MRI segmentation has seen significant progress over the years, evolving from traditional 

machine learning methods to sophisticated deep learning and attention enhancement models. Each stage 

of development has contributed to improved segmentation performance, with notable progress made in 

dealing with complex medical imaging challenges. This review provided an in-depth exploration of these 

developments, focusing on four main stages: (1) machine learning methods, (2) convolutional neural 

networks (CNNs), (3) deep learning structures, and (4) attention-enhanced models. 

Although significant progress has been made along the four stages, there are still challenges to overcome. 

Developing more efficient and scalable models, especially for dealing with large 3D data sets, remains a 

priority. In addition to all of these, improving the generalizability of the models across different imaging 

domains and datasets is crucial so as to enhance their clinical applicability. Incorporating multimodal 

imaging, as well as leveraging translational learning and training across datasets, can help overcome some 

of these challenges, and this provides more robust and generalizable models. In addition, advances in the 

possibility of explaining and interpreting deep learning models will increase confidence in these models 

and their adoption in clinical settings. 
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Table 1. A summary of MRI datasets used in the reviewed studies 

No. Dataset name Source /Publisher No. of 

images 

Tumor types modality Segmentation tasks Classification tasks Reference 

1 BraTS (Brain Tumor 

Segmentation) 

MICCAI 2000+ Gliomas (Low-

grade, High-

grade) 

MRI Tumor segmentation 

(whole, core, and 

enhancing tumor) 

Tumor classification 

(benign vs malignant) 

[39] 

2 ISLES (Ischemic Stroke 

Lesion) 

MICCAI 500+ Ischemic 

Stroke Lesions 

MRI Stroke lesion 

segmentation 

null [40] 

3 LiTS (Liver Tumor 

Segmentation) 

 

MICCAI 

1316 Liver tumors CT/MRI Liver tumor 

segmentation 

null [27] 

4   

MICCAI 

 

350+ 

Gliomas MRI Tumor segmentation 

(whole, core, 

enhancing) 

Tumor grading and type 

classification 

[27] 

5 GBM (Glioblastoma 

Multiforme) 

Publicly Available 200+ Glioblastoma MRI Tumor segmentation Tumor classification 

(grading) 

[39] 

6 RMI (Retinopathy of 

Prematurity) 

Kaggle 1000+ Retinopathy of 

Prematurity 

Fundus/Optical Segmentation of 

Retinal Vessels 

Classification (normal vs 

abnormal) 

[27] 

7 DCE-MRI (Dynamic 

Contrast MRI) 

Institutional 

Database 

1000+ Various Brain 

Tumors 

MRI 

(Dynamic) 

Tumor segmentation Tumor classification 

(benign vs malignant) 

[27] 

8 DeepBrain (Brain Tumor 

Dataset) 

Kaggle 2000 Glioma, 

Meningioma, 

Pituitary 

MRI Brain tumor 

segmentation 

Brain tumor classification [28] 

9 Brain MRI Tumor Dataset Publicly Available 250 Glioma, 

Meningioma 

MRI Tumor 

segmentation 

 
 

Tumor classification 

(benign vs malignant) 

[29] 

10 SYNTH3D (Synthetic MRI 

Dataset) 

Research Lab 1000+ Synthetic 

tumors 

MRI Synthetic tumor 

segmentation 

null [41] 
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Table 2. The use of the dice similarity coefficient (DSC), cross-union (IoU), sensitivity, privacy, and Hausdorff distance at different stages of the MRI process 

  

Phase 
Dice Similarity 

Coefficient (DSC) 

Intersection over 

Union (IoU) 

Sensitivity Specificity Hausdorff Distance 

Phase 1: 

Preprocessing 

Used to compare the 

initial preprocessing 

segmentation with the 

ground truth 

Measures the overlap of 

preprocessed image 

regions 

Assesses how many true 

positives are detected in 

preprocessing 

Measures the true 

negative rate in the 

preprocessing phase 

Assesses the distance of 

boundary points in 

preprocessed images 

Phase 2: Feature 

Extraction 

Evaluates the feature 

segmentation accuracy 

against ground truth 

Used to validate feature 

detection regions 

Measures the sensitivity of 

the extracted features 

Evaluates the specificity 

of the extracted features 

Used to check the boundary 

distance for feature regions 

Phase 3: 

Segmentation 

Primary metric to 

evaluate segmentation 

accuracy 

Used to assess the 

overlap between 

predicted segments and 

ground truth 

Quantifies the sensitivity of 

the segmented structures 

Quantifies the specificity 

of segmented regions 

Measures the distance 

between the boundaries of 

segmented regions 

Phase 4: 

Postprocessing & 

Evaluation 

Evaluates the refined 

segmentation accuracy 

Validates post-

processed segment 

accuracy 

Assesses how well 

postprocessing detects true 

positives 

Assesses how well 

postprocessing avoids 

false positives 

Final evaluation of the 

boundary accuracy after 

postprocessing 
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Table 3. Details of the reviewed studies for the machine learning stage

 

Calculator and software 

specifications used by 

the experiment 

Result with a number  metric  Dataset Method Reference Paper 

Experiments were run on 

a 64-bit computer with an 

Intel i3 CPU, 8GB RAM, 

using Python on Google 

Colab. 

CNN achieved 97.6% 

accuracy, followed by RF at 

96.93%, SVM at 95.05%, DT 

at 93.35%, LR at 93.01%, 

and ResNet50V2 at 85.71%. 

Metrics include accuracy, 

sensitivity, and specificity  . 

The study provides detailed 

evaluation metrics for ML 

and DL techniques  . 

 

The study uses various 

public and self-created 

MRI, CT, PET, and X-ray 

datasets. 

ML: SVM, RF, Naive 

Bayes; DL: ANN, CNN; 

TL for large datasets; 

literature review. 

[1], 2023 Machine learning 

and deep learning 

approach for 

medical image 

analysis: diagnosis 

to detection 

The model was trained for 

100 epochs using the 

Adam optimizer with a 

learning rate of 0.00001, 

and evaluated using 

sensitivity, specificity, and 

accuracy. 

The study used three brain 

MRI datasets and evaluated 

model performance using 

sensitivity, specificity, 

accuracy, and the Adam 

optimizer. 

The paper defines metrics for 

evaluating tumor 

identification, classification, 

accuracy, segmentation, and 

image quality, including TP, 

TN, FP, FN, sensitivity, 

specificity, DSC, MSE, 

PSNR, and others. 

The first dataset has 3174 

MRI images (2674 tumors, 

500 non-tumors), and the 

second has 3064 images of 

glioma, meningioma, and 

pituitary tumors. 

The paper uses a deep 

learning algorithm with 

CNN for tumor 

segmentation and 

classification, comparing its 

methods with previous 

research and evaluating 

performance using 

objective metrics. 

[2], 2023 Retracted: A 

Hybrid Approach 

Based on Deep 

CNN and Machine  

Learning Classifiers 

for the Tumor 

Segmentation and  

Classification in 

Brain MRI 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

The SVM RBF algorithm 

achieved 99% accuracy in 

classification  . 

80 images were used for 

training; 20 for testing  . 

25 out of 100 images 

contained tumors 

Accuracy is a key metric for 

evaluation  . 

Sensitivity and specificity are 

also assessed  . 

Various algorithmic 

approaches are compared for 

performance. 

One hundred images were 

randomly selected for the 

study  . 

25 images contain tumors; 

75 are healthy  .80  images 

were used for training; 20 

for testing .Data is available 

upon request  . 

Geometric mean filter for 

noise removal, fuzzy c-

means for segmentation, 

GLCM for feature 

extraction, and SVM, RBF, 

ANN, and AdaBoost for 

classification. 

[3], 2022 Development of 

Machine Learning 

and Medical 

Enabled 

Multimodal for 

Segmentation and 

Classification of 

Brain Tumor 

Using MRI Images 

IBM SPSS Statistics was 

used for statistical 

analyses  . 

Version 25.0 of IBM 

SPSS Statistics was 

utilized  . 

Overall DSC score: 0.84 

(95% CI: 0.82-0.86 ( 

High-grade gliomas DSC 

score: 0.83 (95% CI: 0.80-

0.8 (   

The primary metric used is 

the DSC score  . 

DSC score ranges from 0.0 to 

1.0  . 

A DSC score of 0.8 indicates 

good overlap  . 

The BraTS dataset was 

primarily used for 

segmentation studies  . 

Some studies used original 

data or TCIA data  . 

 

The study reviews 

segmentation studies, 

extracts data, analyzes 

MLA methods for gliomas, 

and evaluates performance 

using DSC scores. 

[4], 2021 Performance of 

machine learning 

algorithms for 

glioma 

Segmentation of 

brain MRI: a 
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Calculator and software 

specifications used by 

the experiment 

Result with a number  metric  Dataset Method Reference Paper 

Open Meta  [Analyst] 

software was used for 

quantitative meta-analysis . 

Low-grade gliomas DSC 

score: 0.82 (95% CI: 0.78-

0.87 (   

 

A DSC score of 0.5 indicates 

poor overlap  . 

 systematic literature 

review 

and meta-analysis 

 The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment . 

The paper demonstrates the 

effectiveness of the VNS-

Otsu and VNS-Kapur 

methods on brain MRI slices. 

The paper does not specify 

evaluation metrics. 

Eleven benchmark brain 

MRI slices are used in the 

study. 

The Variable Neighborhood 

Search (VNS) metaheuristic 

is used to optimize Otsu's 

and Kapur's thresholding 

functions, resulting in VNS-

Otsu and VNS-Kapur 

versions. 

[5], 2021 VNS Metaheuristic 

Based on 

Thresholding 

Functions for the 

Brain 

MRI Segmentation 

The provided contexts do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment . 

The paper reviews 

hippocampal segmentation 

methods, highlighting 

automated approaches and 

the use of atlas-based 

techniques. 

TP: Correct positives, FP: 

Incorrect positives, FN: 

Missed positives, TN: 

Correct negatives. DSC and 

JSC: Measure segmentation 

overlap. 

HarP :hippocampal  

segmentation, ABIDE: MRI 

images, IBSR: manual 

samples, OASIS: no 

segmentation, MMMRR: 

multimodal images, LONI: 

multi-species MRI. 

The text covers traditional, 

deep learning, atlas-based, 

label-fusion, classification-

based methods, and the U-

net framework for 

segmentation. 

[6], 2021 Hippocampal 

Segmentation in 

Brain MRI Images 

Using Machine 

Learning Methods: 

A Survey 

The study utilized the 

MRBrainS13 dataset for 

feature extraction  . 

The SPM package was 

used for data processing 

AoC achieved 90.95% for 

WM, 92.39% for GM, and 

76.63% for CSF 

segmentation on the IBSR18 

dataset. 

Dice scores evaluate 

performance, p-values assess 

significance, and mean and 

standard deviation are 

reported. 

IBSR18: 18 MRI scans, 

IBSR20: 20 MRI scans, 

BrainWeb: 20 simulated 

images. 

The text covers AoC for 

MRI segmentation, 

compares DC-FCN, nnU-

Net, and classifiers for 

performance. 

[7], 2021 An atlas of 

classifiers—a 

machine learning 

paradigm for brain 

MRI 

segmentation 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment . 

The paper reviews prostate 

MRI segmentation methods, 

metrics, datasets, cancer 

rates, and key research. 

DSC measures segmentation 

performance, RVD compares 

segmented and reference 

images, and metrics are 

calculated per slice. 

The text lists prostate 

datasets: PROMISE12, 

NCI-ISBI 2013, QIN-

PROSTATE, I2CVB, 

PROSTATEx, 

PROSTATEx-2, and UKM 

The text discusses ML and 

DL techniques, up-

sampling, regional 

proposal, GANs, and 

model-based hybrid 

networks for prostate 

segmentation. 

[8], 2021 Recent Automatic 

Segmentation 

Algorithms of MRI 

Prostate Regions: A 

Review 

MATLAB toolboxes, 

Canny edge detection, 

DWT for noise removal, 

and wavelet 

The SVM classifier achieved 

100% accuracy on 40 MRI 

images. Bior1.3 wavelet 

denoised with MSE: 6.0511, 

MSE, SNR, and PSNR are 

used for evaluation. 

The dataset contains 40 T2-

weighted MRI brain 

images, with 20 normal and 

20 abnormal images 

DWT for noise removal, 

Canny for edges, Otsu for 

segmentation, 

[9], 2017 SVM Classification 

of MRI Brain 

Images for 

Computer- 
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Calculator and software 

specifications used by 

the experiment 

Result with a number  metric  Dataset Method Reference Paper 

types/thresholding were 

used. 

SNR: 29.2336, PSNR: 

40.3124. 

featuring various brain 

diseases. 

morphological operations, 

and SVM with RBF kernel. 

Assisted Diagnosis 

The analysis and results 

were done using 

MATLAB . 

Image quality metrics 

used are PSNR and MSE. 

The method achieved 96% 

classification, with eight 

features, high noise removal, 

and improved system 

performance. 

PSNR measures signal power 

versus noise power  . 

MSE quantifies differences 

between predicted and 

observed values  . 

Real-time images from 

different databases are 

utilized .Both real-time and 

simulated images are 

included  . 

Wavelet denoising, median 

filter, Otsu binarization, K-

Means segmentation, and 

binary tree SVM. 

[10], 2017 A Machine 

Learning Approach 

for MRI Brain 

Tumor 

Classification 

Experiments were 

conducted on an Intel 

Core i3 processor (2.40 

GHz) with 2 GB of 

memory, running 

Windows 7 and 

MATLAB 7.6.0 

(R2008a). 

Training accuracy: 88.9%   

Validation accuracy: 94.9%  

Testing accuracy: 94.2%   

Overall accuracy: 91.8%   

ANN accuracy: 91.80%   

 

Accuracy  ,the Similarity 

index was used for results 

evaluation  . 

Extra fraction and overlap 

fraction were also utilized for 

evaluation  . 

The study used 70 MRI 

images: 25 normal and 45 

abnormal, divided into 

training, validation, and 

testing sets. 

Pre-processing for noise 

and skull removal, feature 

extraction with color 

moments, and classification 

using a neural network. 

[11], 2015 A simple and 

intelligent approach 

for brain MRI 

classification 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

The hybrid approach 

achieved 94.44%-98.14% 

accuracy and 91.9%-97.3% 

sensitivity, excelling in tumor 

classification. 

Sensitivity measures true 

positives, specificity 

measures true negatives, and 

accuracy measures overall 

classification correctness. 

The study used a dataset of 

83 brain MRI images: 29 

normal, 22 malignant 

tumors, and 32 benign 

tumors. 

A hybrid GA-SVM 

approach with SGLDM 

feature extraction, 2D 

wavelet transform, and GA 

for feature selection. 

[12], 2010 A Hybrid Approach 

for Automatic 

Classification of 

Brain MRI Using 

Genetic Algorithm 

and Support Vector 

Machine 

The provided contexts do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment 

Classification accuracy for 

metastases vs gliomas: 85%, 

sensitivity: 87%, specificity: 

79%. For high-grade vs low-

grade gliomas: accuracy: 

88%, sensitivity: 85%, 

specificity: 96%. 

ACC measures classification 

correctness, sensitivity shows 

the true positive rate, 

specificity shows the true 

negative rate, and AUC 

evaluates model 

performance. 

The study involved 98 

patients with 102 brain 

masses, including 

metastasis, meningiomas, 

and gliomas. 

The study uses pattern 

classification, automated 

analysis, SVM, and 

methods like LDA and kNN 

for tumor classification. 

[13], 2009 Classification of 

Brain Tumor Type 

and Grade Using 

MRI 

Texture and Shape 

in a Machine 

Learning Scheme 
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Table 4. Details of the reviewed studies for the conventional neural network stage 

Calculator and software 

specifications used by 

the experiment 

Result with a number metric Dataset method Reference Paper 

The provided contexts do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

The system classifies MRI 

images into Astrocytoma 

tumor grades .Results show a 

tumor region extracted from 

the outer skull . 

The system classifies MRI 

images into tumor grades, 

with results confirmed by 

cancer specialists from TMH, 

matching doctors' accuracy. 

Known MRI images from 

Tata Memorial Hospital 

(TMH) were used  .

Unknown MRI samples 

were also obtained from 

TMH for testing. 

MRI processing uses 

histogram equalization, 

segmentation, GLCM 

for features, and a 

Neuro Fuzzy Classifier 

for classification. 

[14], 2010 Classification of 

Brain Cancer 

using an Artificial 

Neural Network 

MATLAB 7.0.4 is used 

for feature calculations, 

with 'histeq' for 

histogram equalization 

and GLCM for feature 

extraction. 

The method uses ANFIS with 

49 fuzzy rules, classifying 

MRI images from GRADE I 

to IV, measured by 

sensitivity, specificity, and 

accuracy. 

Sensitivity is one of the 

evaluation metrics used . 

Specificity is another 

important evaluation metric. 

Accuracy is also measured 

for performance evaluation . 

 

The dataset includes MRI 

Astrocytoma images, 

categorized by grade and 

clustered into four regions: 

white matter, grey matter, 

CSF, and tumor. 

MRI processing uses 

histogram equalization, 

segmentation, GLCM 

features, and a Neuro 

Fuzzy Classifier. 

[15], 2012 Brian Tumor 

Segmentation 

using a hybrid 

Genetic 

Algorithm and an 

Artificial Neural 

Network Fuzzy 

Inference System 

(ANFIS) 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

PCA has 100% peak and 

78% average recognition, 

while WMEM has 96.7% 

peak and 88.2% average. 

Peak recognition rate is used 

for evaluation . 

Average recognition rate is 

also considered . 

Norm error measures 

reconstruction accuracy. 

The dataset includes 30 

head MRI cases (3 types), 

15 gadolinium-enhanced 

slices per case. 

Multi-Layer Perceptron 

(MLP) for 

classification . 

Principal Component 

Analysis (PCA) for 

feature extraction. 

WMEM algorithm for 

image segmentation . 

[16], 2012 Brain Tumor 

Diagnosis 

Systems Based on 

Artificial Neural 

Networks and 

Segmentation 

Using MRI 

The image processing 

algorithm is based on a 

modified Canny edge 

detection algorithm and 

implemented using 

MATLAB 

The classification accuracy 

varies across different 

datasets. 

The paper does not specify 

evaluation metrics. 

The study uses proton 

Magnetic Resonance 

Spectroscopy images . 

Different datasets yield 

varying classification 

accuracy results. 

The study uses feature 

sets, modified Canny, 

neural networks, and 

learning vector 

quantization for tumor 

classification and 

detection. 

[17], 2013 Brain Tumor 

Detection Using 

Neural Network 

The contexts provided do 

not contain information 

regarding the calculator 

The paper compares tumor 

segmentation methods, 

Sensitivity is used for 

evaluating model 

performance . 

The dataset consists of MRI 

images of astrocytoma 

tumors . 

The study uses GLCM 

for feature extraction, 

Genetic Algorithm for 

[18], 2013 Brain Tumor 

Segmentation 
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Calculator and software 

specifications used by 

the experiment 

Result with a number metric Dataset method Reference Paper 

and software 

specifications used in the 

experiment. 

highlighting ANFIS for 

Astrocytoma grades I-IV. 

 

Specificity is another key 

evaluation metric . 

Accuracy is also considered 

for assessment. 

Images are categorized by 

tumor grades I to IV . 

The images were collected 

from web resources . 

selection, ANFIS for 

segmentation, and 

compares segmentation 

techniques. 

Using Genetic 

Algorithm and 

Artificial Neural 

Network Fuzzy 

Inference System 

(ANFIS) 

MATLAB version 7.6.0 

was used for algorithm 

development . 

 

A similarity index S of 80 

indicates excellent similarity. 

Higher S, lower FPVF, and 

FNVF yield better 

segmentation results. 

Similarity index (S) measures 

segmentation quality, FPVF 

and FNVF assess 

misclassification and lost 

pixels, and the Jaccard index 

evaluates volume overlap. 

Brain tumor (MRI image) 

 

 

The study uses MRI, 

image enhancement, 

watershed 

segmentation, and 

neural networks for 

brain tumor detection. 

[19], 2013 An Artificial 

Neural Network 

Approach for 

Brain Tumor 

Detection Using 

Digital Image 

Segmentation 

No specific calculator or 

software specifications 

are mentioned in the 

context. 

Twenty MR images were 

evaluated, with histogram 

equalization and 

segmentation improving 

tumor assessment. 

TP: Correctly identified 

cancer, TN: Correctly 

identified normal, FP: 

Incorrect cancer, FN: 

Incorrect normal. 

The study used twenty brain 

MR images . 

MR images included 

normal and abnormal brain 

tissues. 

The method uses 

neural networks, 

GLCM features, MLP 

classification, and 

thresholding/edge 

detection for brain 

tumor detection. 

[20], 2014 Detection of 

Tumor in MRI 

Images Using 

Artificial Neural 

Networks 

The implementation used 

the Image Processing 

Toolbox under 

MATLAB Software . 

The experiments were 

conducted on real MRI 

images. 

The algorithm is flexible, 

efficient, fast, and accurate 

for tumor detection and 

segmentation. 

The paper does not specify 

evaluation metrics. 

The study uses real MRI 

brain images . 

T1 and T2-weighted MRI 

images are specifically 

utilized. 

Canny edge detection, 

histogram thresholding 

for segmentation, 

neural network 

classification, and 

feature 

extraction/selection to 

improve accuracy. 

[21], 2016 Edge Detection 

Algorithms Using 

Brain Tumor 

Detection and 

Segmentation 

Using Artificial 

Neural Network 

Techniques 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

Sensitivity: 98% 

Specificity: 100% 

Accuracy: 97.37% 

BER: 0.0294 

TP, TN, FP, and FN measure 

tumor classification; 

sensitivity is 98%, specificity 

is 100%, accuracy is 97.37%, 

and BER is 0.0294. 

The dataset includes 39 

brain MRI images for 

normal/tumor classification 

and 37 images for 

benign/malignant tumor 

stage classification. 

The paper uses region 

growing, SVM, and 

ANN for tumor 

classification, and 

TKFCM for 

segmentation. 

[22], 2017 Classification of 

tumors and it 

stages in brain 

MRI using 

support vector 
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Calculator and software 

specifications used by 

the experiment 

Result with a number metric Dataset method Reference Paper 

machine and 

artificial neural 

network 

The system was 

implemented using 

MATLAB. 

MATLAB provides 

powerful mathematical 

and image processing 

capabilities. 

The algorithm effectively 

detects tumors with edge 

detection, performing better 

on high-grade tumors across 

multiple images. 

Accuracy: Correct 

classifications. Sensitivity: 

True positives. Specificity: 

True negatives. TP, TN, FP, 

FN: Classification outcomes. 

The study utilized MRI 

brain images for analysis . 

Data was developed from 

scanning labs and 1.5T 

scanners. 

The method uses MRI, 

Canny edge detection, 

a Gaussian filter, 

Cellular Automata, and 

an ANN for brain 

tumor detection. 

[23], 2017 Brain Tumor 

Detection and 

Segmentation in 

MRI Images 

Using Neural 

Network 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

Identification precision 

recorded at 92.14% . 

Sensitivity achieved was 

89% . 

Specificity reached 94% . 

 

SSIM measures image 

similarity, PRI assesses 

segmentation accuracy, VoI 

quantifies information 

difference, and GCE 

evaluates segmentation 

consistency. 

A total of 200 MRI cases 

were utilized . 

Digitized medical MR 

images from standard 

challenge datasets were 

used . 

 

The study uses HOG 

features, neural 

networks, and 

supervised learning for 

segmentation and 

classification, 

evaluated against 

manual methods. 

[24], 2018 Fully automatic 

model-based 

segmentation and 

classification 

approach for MRI 

brain tumor using 

artificial neural 

networks 

The contexts provided do 

not contain information 

regarding the calculator 

and software 

specifications used in the 

experiment. 

Nearly 100% accuracy for 

the trained dataset . 

95 % accuracy for the tested 

dataset . 

 

PSNR evaluates image 

quality, MSE measures 

image fidelity, and accuracy 

indicates the correct tumor 

classification rate. 

The study used 650 samples 

from Diacom and 

radiologists, including 18 

infected tumor brain tissues 

and normal samples. 

The method uses 

GLCM features, DWT 

segmentation, 

morphological 

filtering, and a 

probabilistic neural 

network for tumor 

detection. 

[25], 2018 Identification and 

classification of 

brain tumor MRI 

images 

with feature 

extraction using 

DWT and 

probabilistic 

neural network 

No specific calculator or 

software specifications 

are mentioned in the 

context. 

Twenty brain MR images 

were evaluated, with 

histogram equalization 

improving image definition 

and segmentation enhancing 

tumor assessment. 

TP: Correct cancer 

identification, TN: Correct 

normal identification, FP: 

Incorrect cancer 

identification, FN: Missed 

cancer detection. 

The study used twenty brain 

MR images . 

MR images included 

normal and abnormal brain 

tissues . 

 

The method uses 

neural networks, 

GLCM features, MLP 

classification, and 

thresholding/edge 

detection for tumor 

detection. 

[26], 2021 Hippocampal 

Segmentation in 

Brain MRI 

Images 

Using Machine 

Learning 

Methods: A 

Survey 
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Table 5. Details of the reviewed studies for the deep learning stage 

Calculator and software 

specifications used by the 

experiment 

Result with a number metric dataset Method reference Paper 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

by the experiment. 

Sensitivity: 93.3% for the 

detection of 1p19q status . 

Specificity: 82.22% for the 

detection of 1p19q status. 

TPR, PPV, DSC, HD, and 

ASSD measure 

segmentation accuracy, 

overlap, boundary distance, 

and lesion detection 

precision. 

The study uses various 

datasets: BRATS, ISLES, 

mTOP, MSSEG, 

NeoBrainS12, and 

MRBrainS for brain tumor 

and lesion segmentation. 

The method uses CNN 

architectures, label fusion, 

skull stripping, bias 

correction, registration, 

and noise reduction for 

MR image processing. 

[27], 2017 Deep Learning for 

Brain MRI 

Segmentation: State 

of the Art 

and Future 

Directions 

The model, implemented in 

PyTorch, used the Adam 

optimizer (learning rate 

0.0001), a batch size of 16, 

and was trained for 100 

epochs. 

The proposed method 

outperforms CNN and 

hand-crafted features in 

both correlation and MAE 

on ACDC and UK Biobank 

datasets. 

The evaluation metric used 

is the Dice metric . 

Pearson correlation 

coefficient (r) is also 

reported . 

Mean absolute error (MAE) 

is calculated for 

predictions. 

UK Biobank dataset: 1,500 

subjects' short-axis cardiac 

images . 

ACDC dataset: 100 

subjects with normal and 

pathology groups. 

A VAE-based generative 

model is used for quality 

control, with iterative 

search and Dice metric 

evaluation. 

[28], 2020 Deep Generative 

Model-based Quality 

Control for Cardiac 

MRI Segmentation 

The provided contexts do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiment. 

Dice scores: 0.750 

(enhancing tumour), 0.906 

(whole tumour), 0.846 

(tumour core). 

Dice scores: 0.750 

(enhancing), 0.906 (whole), 

0.846 (core), compared 

with state-of-the-art 

methods. 

The BraTS 2019 dataset 

includes 335 glioma 

patients: 259 high-grade, 76 

low-grade, and 125 

unknown-grade cases. 

An ensemble of 3D CNN 

and U-Net with patch-

based inference and data 

augmentation is used for 

segmentation. 

[29], 2020 Brain Tumour Image 

Segmentation 

Using Deep 

Networks 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiment. 

The question is not relevant 

to the research paper's 

content. 

The Dice coefficient is a 

common segmentation 

metric, while IoU loss 

optimizes object category 

segmentation. 

The contexts do not specify 

any datasets used in the 

study. 

The paper categorizes loss 

functions, explores types, 

and provides 

implementations. 

[30], 2020 Segmentation Loss 

Odyssey 
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Calculator and software 

specifications used by the 

experiment 

Result with a number metric dataset Method reference Paper 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiment. 

Dice scores: enhancing 

tumour 0.750, whole 

tumour 0.906, tumour core 

0.846, with patient-specific 

scores of 0.930, 0.949, and 

0.927. 

The Dice scores are 0.750, 

0.906, and 0.846 for 

different tumour regions, 

with a comparison to state-

of-the-art methods. 

The study used the BraTS 

2019 dataset with 335 

glioma patients, including 

259 high-grade and 76 low-

grade cases. 

An ensemble of 3D CNN 

and U-Net is used for 

segmentation with patch-

based inference and data 

augmentation. 

[31], 2020 Brain Tumour Image 

Segmentation 

Using Deep 

Networks 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiment. 

Average Dice Score: 0.92 

Accuracy: 94.27% for 

glioma 

Cohen's kappa: 0.843 

(training), 0.872 (testing ) 

AUC values: 0.93 

(training), 0.94 (testing 

Dice Score, Rand Index, 

VOI, GCE, BDE, PSNR, 

and MAE assess similarity, 

accuracy, consistency, 

boundary, quality, and 

error. 

The study used a T1-

weighted MRI brain tumor 

dataset with 233 patients 

and 3064 images, focusing 

on meningioma and glioma, 

excluding pituitary tumor 

images. 

CNN is used for 

classification, Faster R-

CNN for tumor 

localization, and Chan-

Vese for tumor 

segmentation. 

[32], 2021 A Systematic 

Approach for MRI 

Brain Tumor 

Localization and 

Segmentation Using 

Deep Learning and 

Active Contouring 

The model was 

implemented on a Dell 

laptop with a Core 

i7cpu,8GB RAM, and 4GB 

Nvidia GPU. 

The hybrid CNN-SVM 

model achieved 98.4959% 

accuracy . 

SVM accuracy was 

72.5536% . 

CNN accuracy was 

97.4394%. 

Accuracy, True Positive 

Value, and texture features 

assess image classification 

and properties. 

The dataset used is from 

BRATS 2015. 

It includes 110 training 

cases and 220 testing cases. 

A hybrid CNN-SVM 

model for tumor detection 

uses the BRATS 2015 

dataset, with CNN for 

feature extraction and 

SVM for classification. 

[33], 2021 AHybrid CNN-SVM 

Threshold 

Segmentation 

Approach for Tumor 

Detection and 

Classification of 

MRI Brain Images 

The model used 2x Titan 

GPUs, ADAM optimizer, 

128x128 images, and 

Albumentations for 

augmentation. 

Validation Dice coefficient: 

0.96 (training), 0.92 

(testing); Pixel accuracy: 

0.996; F1 score: 0.81; 

MCC: 0.81. 

Pixel accuracy can be 

misleading; better metrics 

include IoU, Dice 

coefficient, F1 score, and 

MCC for evaluation. 

The study used the TCGA-

LGG dataset with 3,929 

FLAIR MRI slices, 1,373 

labeled abnormalities, 

annotated by experts. 

DNNs for tumor 

segmentation, using data 

augmentation, encoders, 

and trained on TCGA-

LGG for 200 epochs. 

[34], 2022 Znet: Deep Learning 

Approach for 2D 

MRI Brain 

Tumor Segmentation 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

by the experiment. 

0.869 Dice similarity 

coefficient score achieved 

in prostate image 

segmentation 

F-beta, ROC, Dice, 

accuracy, sensitivity, and 

Jaccard assess performance 

in segmentation and 

classification. 

Public datasets from 

GitHub and Kaggle are 

used, with medical image 

datasets being smaller. 

DL for medical image 

analysis includes 

segmentation, 

classification, 

augmentation, feature 

extraction (GLCM/LBP), 

and PCA. 

[35], 2022 A holistic overview 

of the deep learning 

approach in medical 

imaging 

Training used TensorFlow 

Keras 2.2.0 with a 3D U-

Net architecture, 32-GB 

DLM method AUC: 0.76 

(95% CI: 0.66-0.85 ) 

AUC compared DLM and 

manual segmentation, with 

sensitivity and specificity 

The study used a 

multicenter dataset of 930 

patients . 

DLM VOI segmentation 

is compared with expert 

manual segmentation, 

[36], 2022 A deep learning 

masked segmentation 

alternative to manual 
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Calculator and software 

specifications used by the 

experiment 

Result with a number metric dataset Method reference Paper 

V100 GPU, Adam 

optimizer (learning rate 1e-

4), batch size of 1, and up 

to 400 epochs. 

Manual segmentation 

AUC: 0.62 (95% CI: 0.52-

0.73 ) 

Time reduction: over 97% 

compared to manual 

segmentation 

evaluated for the best 

model. 

Data was collected from 9 

different medical centers . 

Included 2 tertiary care 

academic institutions and 7 

non-academic institutions. 

using ROC analysis for 

performance and iMRMC 

for model comparison. 

segmentation in 

biparametric MRI 

prostate cancer 

radiomics 

The contexts do not include 

details on the calculator and 

software specifications 

used. 

Accuracy: Havaei 0.88, 

Hussain 0.80, Pereira 0.85, 

Ranjbarzadeh 0.92, Wang 

0.90. 

Evaluation metrics include 

accuracy, sensitivity, and 

specificity for assessing 

segmentation performance. 

The study uses BraTS 

2013, 2018, 2019, and 2020 

datasets. 

Segmentation methods: 

conventional, supervised, 

unsupervised, CNN-

based, hybrid, and FCM 

clustering. 

[37], 2023 A survey of methods 

for brain tumor 

segmentation-based 

MRI images 

MATLAB was used to 

simulate segmentation 

algorithms on the BRATS 

2018 dataset, with a CNN 

response time of 2.519 

seconds. 

Otsu: 71.42%, Watershed: 

78.26%, Level set: 80.45%, 

K-means: 84.34%, DWT: 

86.95%, CNN: 91.39% 

accuracy, CNN response 

time: 2.519s. 

Recall, precision, F-

measure, and accuracy 

assess model performance. 

The study used the BRATS 

dataset-2018 for 

simulations . 

Otsu's method, 

Watershed, Level set, K-

means, HAAR DWT, and 

CNN are used for image 

segmentation and 

analysis. 

[38], 2023 Study and analysis of 

different 

segmentation 

methods 

for brain tumor MRI 

application 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiment 

Mean patients: 148.6, 

median: 60.5; 1p19q 

codeletion prediction 

accuracy: 92%, algorithms 

>80-90% accuracy. 

AI segmentation is 

evaluated using Dice Score, 

Hausdorff distance, and 

annotation averaging to 

reduce human error. 

The BraTS and TCIA 

datasets are used for 

training DL algorithms, 

with multi-institutional 

databases proposed for 

future research. 

DL for MRI 

segmentation, ML for 

tumor classification, 

Grad-CAM for 

interpretability, STAPLE 

for averaging, and data 

selection for training. 

[39], 2024 Deep Learning for 

MRI Segmentation 

and Molecular 

Subtyping 

in Glioblastoma: 

Critical Aspects from 

an Emerging Field 
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Table 6.  Details of the reviewed studies for the attention and enhanced networks stage 

Calculator and software 

specifications used by the 

experiment 

Result with a number metric Dataset method Reference Paper 

The provided contexts do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiment. 

EnigmaNet achieved a Dice 

score of 0.8965 (FLAIR), 

sensitivity 0.8776, 

specificity 0.9866; a Dice 

score of 0.8423 (DWI), 

sensitivity 0.8452, 

specificity 0.9754. 

Dice score, sensitivity, 

specificity, accuracy, and 

AUC-ROC assess 

segmentation and classifier 

performance. 

The study used the ISLES-

2015 public dataset. 

It includes 64 sub-acute 

ischemic stroke cases. 

MRI sequences were skull-

stripped and co-registered. 

The dataset is divided into 

training and testing cases. 

EnigmaNet uses a 

modified loss function, 

DWI/FLAIR MRI, 

Genesis-k blocks, and 

dual-headed attention 

for lesion detection. 

[40], 2024 EnigmaNet: A 

Novel Attention-

Enhanced 

Segmentation 

Framework for 

Ischemic 

Stroke Lesion 

Detection in 

Brain MRI 

The model was trained in 

PyTorch on a Tesla T4 

GPU with SGD, 224x224 

images, batch size 8, and 

400 epochs. 

The model increased the 

Dice score by 2.26, with a 

highest score of 10.90 in 

HD, and an average 

performance of 90.73 on 

the DSC metric. 

The primary evaluation 

metric used is the DSC 

metric. 

The method achieved a 

DSC performance of 90.73. 

The Synapse dataset from 

the MICCAI 2015 

challenge. 

The ACDC dataset from 

100 MRI patients 

A deep attention 

network for 

segmentation uses 

DCSegHead, attention 

decoder, CNN-Swin 

pyramids, and feature 

fusion. 

[41], 2024 Deep attention-

enhanced 

networks for 

medical image 

segmentation 

The model was 

implemented in Python 

with PyTorch, trained for 

100 epochs using the Lion 

optimizer and a weight 

decay of 0.01. 

Dice scores: WT = 0.889, 

TC = 0.866, ET = 0.828. 

Jaccard means not 

specified. 

The IoU is the Jaccard 

Index, and the Dice 

coefficient is the Dice-

Sorensen coefficient, 

measuring discrepancies 

between segmentation and 

ground truth. 

The BraTS 2020 dataset 

includes 3D MRI scans 

from 369 patients with 

gliomas (LGG and HGG), 

manually annotated by 

neuroradiologists. 

The 3D Attention U-Net 

uses dense encoders, 

residual decoders, 

attention layers, and 

BCE-Dice loss, trained 

on BraTS 2020. 

[42], 2023 Multimodal MRI 

Brain Tumor 

Segmentation 

using 

3D Attention 

UNet with Dense 

Encoder Blocks 

and 

Residual Decoder 

Blocks 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiments. 

Mean Dice score for left 

ventricle: 0.947. 

Mean Dice score for right 

ventricle: 0.919. 

Mean Dice score for 

myocardium: 0.907. 

Dice similarity coefficient 

(DSC), Jaccard similarity 

index (JC), and Hausdorff 

distance (HD) are used for 

performance evaluation. 

The ACDC 2017 dataset 

has 100 training and 50 test 

subjects, while the MM 

challenge dataset includes 

375 patients from three 

countries. 

A deep learning method 

for cardiac MRI uses 

IRA-Unet with GAN, 

attention, and a 

discriminator for 

improved segmentation. 

[43], 2023 IRA-Unet: 

Inception 

Residual 

Attention Unet in 

Adversarial 

Network for 
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Calculator and software 

specifications used by the 

experiment 

Result with a number metric Dataset method Reference Paper 

Cardiac MRI 

Segmentation 

Models were implemented 

in Keras with TensorFlow, 

using an SGD optimizer, 

PReLU activation, and 

executed on a PC with a 

GeForce GTX 1080 GPU. 

AGU-Net and AGResU-

Net outperform U-Net and 

ResU-Net in tumor 

segmentation, with 

attention gates boosting 

core tumor accuracy. 

DSC measures overlap, 

Hausdorff distance 

estimates surface distance, 

and Hausdorff95 measures 

the 95th quantile. 

BraTS 2017 dataset with 

285 glioma patients. 

BraTS 2018 dataset for 

model evaluation. 

BraTS 2019 dataset for 

additional experiments 

AGResU-Net uses 

Attention Gates, DSC, 

Hausdorff distance, z-

score normalization, and 

Gaussian regularization. 

[44], 2020 Attention Gate 

ResU-Net for 

Automatic 

MRI Brain Tumor 

Segmentation 

The model was trained with 

SGD, momentum 0.99, 

learning rate 0.001, and 

categorical cross-entropy 

loss, using Keras for 

experiments. 

The proposed method 

achieved a Dice similarity 

coefficient of 0.93, 

outperforming U-Net by 

3% and SegNet by over 

10%. 

The evaluation metrics 

include Dice similarity 

coefficient (DSC), Jaccard 

index (JI), Hausdorff 

distance (HD), and mean 

squared error (MSE). 

The OASIS dataset was 

used for experiments. 

The Internet Brain 

Segmentation Repository 

(IBSR) dataset was also 

utilized. 

The paper proposes a 

patch-wise U-Net for 

improved segmentation, 

compared to the U-Net 

and SegNet. 

[45], 2020 Automatic 

segmentation of 

brain MRI using a 

novel patch-wise 

U-net deep 

architecture 

No information on 

calculator specifications is 

provided. 

No information on software 

specifications is provided. 

MSCDA achieved stable 

performance with DSC 

89.2, outperforming other 

methods with fewer source 

subjects. 

The main evaluation metric 

is DSC, with auxiliary 

metrics including JSC, 

precision, and sensitivity. 

Dataset 1: 11 healthy 

female volunteers' MRI 

images and masks. 

Dataset 2: 134 patients with 

invasive breast cancer MRI 

images and masks. 

The MSCDA 

framework uses 

contrastive learning and 

cross-domain sampling 

for breast MRI 

segmentation. 

[46], 2023 MSCDA: Multi-

level semantic-

guided contrast 

improves 

unsupervised 

domain 

adaptation for 

breast MRI 

segmentation in 

small datasets 

The provided contexts do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiments. 

CNN AT achieved 90.48% 

accuracy on HCP data and 

80.30% on VERIO data. 

Dice scores indicate 

prediction accuracy. 

Accuracy is measured 

across the brain, for tissue 

boundaries, and non-

boundary regions, with PSI 

for WM, GM, and CSF. 

The study uses MRI data 

from multiple sources: 

HCP, CAP, VERIO, 

MultiCenter, and 

SUDMEX. 

DDSeg uses CNN for 

diffusion MRI 

segmentation, 

integrating DKI 

parameters and 

comparing with other 

methods. 

[47], 2021 Deep learning-

based 

segmentation of 

brain tissue from 

diffusion MRI 

Operating System: 

Windows 10 

CPU: Intel Core i9-9900KF 

3.6GHz 

STHarDNet achieved a 

Dice value of 0.5547. 

STHarDNet achieved IoU 

value of 0.4185. 

Dice measures similarity 

between predicted and 

actual values. 

The study used the ATLAS 

dataset for MRI 

segmentation. 

The study proposes the 

STHarDNet model 

structure. 

[48], 2022 STHarDNet: 

Swin Transformer 

with HarDNet for 
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Calculator and software 

specifications used by the 

experiment 

Result with a number metric Dataset method Reference Paper 

GPU: NVIDIA GeForce 

RTX 2080Ti 

RAM: 112GB 

Storage: 1TB SSD 

Language: Python 3.7 

Framework: PyTorch 1.5 

STHarDNet achieved a 

precision value of 0.6764. 

STHarDNet achieved a 

recall value of 0.5286. 

 

IoU refers to the 

intersection over union area 

ratio. 

Precision indicates the 

percentage of accurately 

predicted pixels. 

Recall measures the 

model's detection of ground 

truths. 

The ATLAS dataset 

includes 189 MRI scan 

images. 

It consists of 43,281 

annotated slices. 

Data from 177 patients 

were utilized. 

80 images were used for 

training, 52 for validation. 

It combines HarDNet 

with Swin Transformer 

for MRI segmentation. 

Four performance 

metrics are used: Dice, 

IoU, precision, and 

recall. 

The ATLAS dataset is 

utilized for model 

evaluation 

MRI 

Segmentation 

The experiment used 

TensorFlow 1.13.1, Intel 

Core i7-9750H CPU, 32GB 

RAM, Nvidia GeForce 

RTX 2080 GPU, Windows 

10, PyCharm, and Python 

3.6.9. 

Dice: 0.68-0.85. 

Sensitivity: 0.83. 

Specificity: 0.99. 

Hausdorff95: 8.96. 

Dice measures accuracy, 

specificity, true negatives, 

sensitivity, true positives, 

and Hausdorff95 boundary 

distance. 

The study uses the BraTS 

2020 dataset with 369 

training and 125 validation 

cases of LGG and HGG, 

featuring T1, T1-CE, T2, 

and FLAIR images. 

AGSE-VNet uses SE for 

feature enhancement, 

AG for noise 

suppression, skip 

connections, and multi-

modal MRI images for 

segmentation. 

[49], 2022 3D AGSE‑VNet: 

an automatic 

brain tumor 

MRI data 

segmentation 

framework 

The provided contexts do 

not contain information 

regarding the 

calculator and software 

specifications used in the 

experiment 

The average overlap IoU of 

the proposed method is 

96.8%. Precision reached 

98.35, and Recall reached 

98.38. 

F Score increased to 98.36 

Precision, recall, IoU, and 

F-Score assess prediction 

accuracy and overlap. 

The study uses 3000 UAV 

aerial images from the 8th 

Teddy Cup, with insulator 

labels, enhanced through 

image processing 

techniques. 

Improved U-Net with 

ECA-Net attention for 

insulator segmentation, 

evaluated using 

Precision, Recall, and 

IoU. 

[50], 2021 Improved U-Net-

based insulator 

image 

segmentation 

method based 

on attention 

mechanism 

MATLAB software was 

used for the proposed 

strategy. 

The system had a Core 2 

Duo code configuration. 

The accuracy and confusion 

matrix results are shown in 

Figures 15 and 16 

Jaccard, Dice: measure 

similarity; sensitivity, 

specificity: assess 

classification; accuracy: 

overall correctness. 

The dataset includes MRI 

brain images from 66 

patients: 22 normal and 44 

abnormal, with T2-

weighted 256x256 pixel 

images. 

Tumor segmentation, 

feature extraction, 

genetic algorithm, and 

classification with 

SVM, Naive Bayes, and 

CNN. 

[51], 2023 Retracted: Brain 

Tumor Detection 

and Classification 

by MRI 

Using 

Biologically 

Inspired 

Orthogonal 

Wavelet 

Transform and 
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Calculator and software 

specifications used by the 

experiment 

Result with a number metric Dataset method Reference Paper 

Deep Learning 

Techniques 

Experiments on RTX 

2080ti GPU with PyTorch, 

Adam optimizer, batch size 

16, and cross-entropy loss. 

Evaluation metrics: OA, 

AA, Kappa, mIoU, F1-

score. The search does not 

contain numerical results. 

 

Evaluation uses OA, AA, 

Kappa, mIoU, and F1-

score. 

The Fine Gaofen Image 

Dataset (GID) has 10 RGB 

images, 15 classes, and is 

split into 7280 patches for 

training, validation, and 

testing. 

The paper proposes a 

linear attention 

mechanism using a first-

order Taylor expansion 

to reduce memory and 

computational costs. 

[52], 2021 Linear Attention 

Mechanism: An 

Efficient 

Attention for 

Semantic 

Segmentation 

The contexts provided do 

not contain information 

regarding the calculator and 

software specifications used 

in the experiments. 

TransAttUnet achieved an 

IoU score of 84.98. 

Improvement of 0.91 over 

previous models. 

Highest score on almost all 

evaluation metrics 

Metrics used: DICE for 

similarity, IoU for 

segmentation accuracy, 

ACC for overall 

correctness, REC for true 

positives, PRE for true vs. 

predicted positives. 

Datasets used: ISIC-2018, 

JSRT, Montgomery, 1NIH, 

Clean-CC-CCII, Data 

Science Bowl, GlaS. 

TransAttUnet uses 

multi-level attention, 

skip connections, and a 

unified loss function for 

segmentation. 

[53], 2022 TransAttUnet: 

Multi-level 

Attention-guided 

U-Net 

with Transformer 

for Medical 

Image 

Segmentation 
 

 

 


