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Abstract – This paper introduces a new inertial implicit projection method to solve quasivariational 

inequalities with strongly monotone and Lipschitz continuous operators in real Hilbert spaces. We analysed 

the convergence of a method with varying stepsizes under suitable conditions and also discussed the 

complexity bound of the proposed algorithm. 
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1. INTRODUCTION 

Variational inequalities are essential for solving 

problems related to mechanics, optimization, 

transportation, economics, elasticity, etc.. Due to 

their applications, variational inequalities have been 

used in many ways. Here we study about 

quasivariational inequality(QVI) problem, which is 

extension of classical variational inequality problem 

of Fichera [17] and Stampacchia [35]. For more 

details on variational inequalities, quasi-variational 

inequalities and their applications, we refer to 

[18,23,26,29,31]. 

Quasi-variational inequality states that the feasible 

set of a problem changes according to an explicit or 

implicit rule. For example, in many applications, the 

feasible set is defined as a 'moving set' with a closed 

and convex core set replaced by a single-valued 

mapping: see for example [1, 24, 28, 29, 31]. In such 

a setting, the problem is often called 'moving set' 

quasi-variational inequality. Quasi-variational 

inequalities are used to model various problems in 

pure and applied sciences, and Bensoussan and 

Lions [9] have shown that impulse control problems 

can be formulated as quasi-variational inequality 

problems. Quasi-variational inequalities benefit 

from cross-fertilization between functional analysis, 

convex analysis, numerical analysis and physics. 

From these interactions so many numerical 

techniques have been developed to solve quasi-

variational inequalities and optimization problems, 

see[ 14 − 2022 ]and references therein. 

Quasi-variational inequalities can be solved using 

various techniques; for example, very 

recent,Antipin et al. [11] developed gradient 

projection and extragradient methods for solving 

quasi-variational inequalities. The main 
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disadvantage of the extragradient method with 

respect to the classical gradient method, is that it has 

a doubled number of orthogonal projections and 

mapping evaluations per iteration. Meanwhile in the 

context of variational inequalities, extragradient 

method guarantees convergence under weaker 

assumptions than strong monotonicity of associated 

mapping, but extragradient method has no 

advantage over gradient projection for quasi-

variational inequalities. 

Mijajlovie et al.[25] developed a gradient projection 

method for solving quasivariational inequalities as: 

𝑠0  ∈ 𝒢

𝑠𝑚+1  = (1 − 𝛿𝑚)𝑠𝑚 + 𝛿𝑚𝑃𝑁(𝑠𝑚)[𝑠𝑚 − 𝛾𝑀(𝑠𝑚)]
 

where 0 < 𝛿𝑚 ≤ 1 and 𝛾 > 0 can be choosen on 

different ways. This method has great potential for 

practical applications. 

In (2018), Antipin et al.[1] represented the standard 

gradient projection method for solving quasi-

variational inequalities in the case 𝑁(𝑠) = 𝑘(𝑠) +

𝑁0 as 

𝑠𝑚+1 = 𝑃𝑁(𝑠)[𝑠𝑚 − 𝛾𝑀(𝑠𝑚)]

= 𝑘(𝑠𝑚) + 𝑃𝑁0
[𝑠𝑚 − 𝑘(𝑠𝑚) − 𝛾𝑀(𝑠𝑚)] 

where 𝑠0 is the initial point and 𝛾 > 0 is a parameter 

of the method, 𝑁0 ⊂ 𝒢 is a nonempty closed convex 

set in a Hilbert space 𝒢, 𝑘: 𝒢 → 𝒢 is the Lipschitz 

continuous function, and 𝑁: 𝒢 → 2𝒢 is a set-valued 

mapping of the form 𝑁(𝑠) = 𝑘(𝑠) + 𝑁0, 𝑠 ∈ 𝒢. 

They proved convergence of method under suitable 

conditions, with wider choice of parameters. Some 

well known existing methods for solving quasi-

variational inequalities are found in[ 

2,20,27,30,32]. 

Inertial-type algorithms have become increasingly 

popular for their convergence properties. This 

formulated thought is taken from the field of second 

order dissipative dynamical systems [3, 54. In 

(2019), Shehu et al. 36 developed an inertial-type 

algorithm with special parameters as: 

𝑡𝑚  = 𝑠𝑚 + Θ𝑚(𝑠𝑚 − 𝑠𝑚−1)

𝑠𝑚+1  = (1 − 𝛿𝑚)𝑡𝑚 + 𝛿𝑚𝑃𝑁(𝑡𝑚)(𝑡𝑚 − 𝛾𝑀(𝑡𝑚)).
 

and proved its strong convergence theorems. Inertial 

terms speed up existing algorithms, see for 

example,[ 6,7,11,12,37]. 

Motivated by research activities in this direction, we 

introduced a new inertial implicit iterative scheme 

for solving QVIs with the special choice of 

parametrs. 

The recapitulate of the paper is designed as: we 

mentioned fundamental results in terms of lemmas 

and definitions in section 2, which we require for the 

core result of the paper. Iterative method with 

inertial effect and special choice of parameters is 

presented and analysed in section 3. Complexity 

bound of the algorithm is found in section 4 and in 

the last section concluion given. 

2. Preliminaries 

We take symbol 𝒢 to represent real Hilbert space 

with its norm ∥.∥ 𝑎𝑛𝑑𝑖𝑛𝑛𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ⟨⋅,⋅⟩. Consider 

nonlinear operator 𝑀: 𝒢 → 𝒢 and set-valued 

mapping 𝑁: 𝒢 → 2𝒢 which associates a closed and 

convex set 𝑁(𝑠) ⊆ 𝒢 for any element 𝑠 ∈ 𝒢. With 

this information, we consider the following QVI, for 

which we are finding a point 𝑠 ∈ 𝑁(𝑠) and 

⟨𝑀(𝑠), 𝑡 − 𝑠⟩ ≥ 0 for all 𝑡 ∈ 𝑁(𝑠)           (2.1)                                                      

Clearly, if 𝑁(𝑠) = 𝑁 for all 𝑠 ∈ 𝒢, the problem 

reduces to the classical variational inequaity that 

finding 𝑠 ∈ 𝑁 such that 

⟨𝑀(𝑠), 𝑡 − 𝑠⟩ ≥ 0  for all 𝑡 ∈ 𝑁               (2.2)                                                         

The following notations and definitions are required 

to prove our result. 

Definition (2.1). Let 𝑀: 𝒢 → 𝒢 be a given mapping, 

then a mapping 𝑀 is called 𝑃-Lipschitz continuous 

if for any 𝑃 > 0 

∥ 𝑀(𝑠) − 𝑀(𝑡) ∥≤ 𝑃 ∥ 𝑠 − 𝑡 ∥   for all 𝑠, 𝑡 ∈ 𝒢 

Definition (2.2). The mapping 𝑀: 𝒢 → 𝒢 is called u-

strongly monotone, if for any 𝑢 > 0 

⟨𝑀(𝑠) − 𝑀(𝑡), 𝑠 − 𝑡⟩ ≥ 𝑢 ∥ 𝑠 − 𝑡 ∥2   for all 𝑠, 𝑡 ∈ 𝒢 

Definition (2.3). The mapping 𝑀: 𝒢 → 𝒢 is called 

monotone, if 
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⟨𝑀(𝑠) − 𝑀(𝑡), 𝑠 − 𝑡⟩ ≥ 0 for all 𝑠, 𝑡 ∈ 𝒢 

Let 𝑁 be a nonempty, closed and convex subset of 

𝒢. For each point 𝑠 ∈ 𝒢, there exist a unique nearest 

point in 𝑁, denoted by 𝑃𝑁(𝑠), such that 

∥∥𝑠 − 𝑃𝑁(𝑠)∥∥ ≤∥ 𝑠 − 𝑡 ∥   for all 𝑡 ∈ 𝑁.  

The mapping 𝑃𝑁: 𝒢 → 𝑁 is called metric projection 

of 𝒢 onto 𝑁 and is characterized by the following 

two properties see, e.g., [19] as: 

𝑃𝑁(𝑠) ∈ 𝑁 

and 

⟨𝑠 − 𝑃𝑁(𝑠), 𝑃𝑁(𝑠) − 𝑡⟩ ≥ 0 for all 𝑠 ∈ 𝒢, 𝑡 ∈ 𝑁      (2.3)                                

and if 𝑁 is a hyperplane, then (2.2 becomes an 

equality. 

The theory about existence of solutions differ 

between variational and quasivariational 

inequalities. For example, variational inequality has 

a unique solution for strongly monotonicity and 

Lipschitz continuity of the operator 𝑀 on closed and 

convex set. But these conditions are not sufficient 

for existence and uniqueness of solutions for quasi-

variational inequalities. The following statement 

related to the existence of solutions of quasi-

variational inequaliites (2.1) is valid: 

Lemma (2.1). [27] Let the following assumptions 

holds 

(i) 𝑀: 𝒢 → 𝒢 be 𝜉-strongly monotone and 𝜏-

Lipschitz continuous, respectively. 

(ii) Also if there exists 𝒩 ≥ 0 

∥∥𝑃𝑁(𝑠)(𝑧) − 𝑃𝑁(𝑡)(𝑧)∥∥ ≤ 𝒩 ∥ 𝑠 − 𝑡 ∥,  𝑠, 𝑡, 𝑧 ∈ 𝒢   (2.4)                                 

whereN(.) is a set-valued mapping with nonempty, 

closed and convex values, 

(iii) 𝒩 + √1 −
𝜉2

𝜏2 < 1 

Then quasi-variational inequality (2.1) has unique 

solution. 

If 𝑁(𝑠) = 𝑁0 is free from 𝑠, then we may take 𝒩 =

0 in (2.4), and hence (iii) is satisfied. In this case 

problem (2.1) has a unique solution if (𝑖) is 

satisfied, which reduces to the result for variational 

inequalities. The assumption (2.4) is a strengthening 

of the contraction property for set-valued mapping 

𝑁(𝑠).In many applications the convex valued set 

𝑁(𝑠) is written as 𝑁(𝑠) = 𝑘(𝑠) + 𝑁0, where 𝑘(𝑠) is 

a Lipschitz continuous mapping with constant 𝒩 

and 𝑁0 is a closed convex set. In this case, (2.4) 

holds with the same value of 𝒩 see [26].  

Lemma (2.2).[26]  Let function 𝑘: 𝒢 → 𝒢 be 

Lipschitz continuous with Lipschitz constant 𝒩 and 

set 𝑁0 be a closed convex set. Then 

𝑁(𝑠) = 𝑘(𝑠) + 𝑁0                               (2.5) 

                                                                              

satisfies (2.4) with the same value of 𝒩. 

Lemma(2.3).[27] Let 𝑁(.)𝑏𝑒 𝑎 𝑠𝑒𝑡 −

𝑣𝑎𝑙𝑢𝑒𝑑 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦, 𝑐𝑙𝑜𝑠𝑒𝑑𝑎𝑛𝑑 

convex values in 𝒢. Then 𝑠 ∈ 𝑁(𝑠) is a solution of 

quasi-variational inequality (2.1) if and only if for 

any 𝛾 > 0 it holds that 

𝑠 = 𝑃𝑁(𝑠)(𝑠 − 𝛾𝑀(𝑠)).                    (2.6)                                                                             

Lemma (2.4). [13] Let {𝑠𝑛}𝑛=0
∞  be a sequence of 

nonnegative real numbers and let {𝑣𝑛}𝑛=0
∞  be a real 

sequence in [0,1] such that 

∑  

∞

𝑛=0

𝑣𝑛 = ∞ 

if there exists a positive integer 𝑛0 such that 

𝑠𝑛+1 ≤ (1 − 𝑣𝑛)𝑠𝑛 + 𝑣𝑛𝑤𝑛, for all 𝑛 ≥ 𝑛0, 

where 𝑤𝑛 ≥ 0 for all 𝑛 = 0,1,2, … and 𝑤𝑛 → 0 as 

𝑛 → ∞, then we have 

lim
𝑛→∞

 𝑠𝑛 = 0 
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3.  Iterative Algorithm 

In this section, inertial-implicit projection method 

with varying step sizes is introduced which 

establishes strong convergence theorem. Since 

Lemma (2.3) implies that quasi-variational 

inequality is equivalent to fixed point problem. With 

this formulation we propose an implicit iterative 

method for solving quasi-variational inequality. 

Iterative Algorithm 3.1. Select arbitrary starting 

points 𝑠0, 𝑠1 ∈ 𝒢 

Iterative step: Given the iterates 𝑠𝑚 and 𝑠𝑚−1, 

compute the next iterate 𝑠𝑚+1 as follows: 

𝑡𝑚  = 𝑠𝑚 + Θ𝑚(𝑠𝑚 − 𝑠𝑚−1)

𝑠𝑚+1  = (1 − 𝛿𝑚)𝑡𝑚 + 𝛿𝑚𝑃𝑘(𝑡𝑚) [
𝑠𝑚+𝑡𝑚

2
− 𝜌𝑀 (

𝑠𝑚+𝑡𝑚

2
)]

        

(3.1)                   

0 ≤ Θ𝑚 ≤ Θ𝑚
− , Θ𝑚

− =

{
min {

𝑚−1

𝑚+𝜂−1
,

𝜖𝑚

∥∥𝑠𝑚−𝑠𝑚−1∥∥
, if 𝑠𝑚 ≠ 𝑠𝑚−1}

𝑚−1

𝑚+𝜂−1
,   if 𝑠𝑚 = 𝑠𝑚−1

   (3.2) 

for some 𝜂 ≥ 3 and 𝜖𝑚 ∈]0, ∞[. We observe that in 

this case, algorithm generates a sequence such that 

∑𝑚=1
∞  Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ < ∞, because for every 

𝑚 ≥ 1 we get Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ ≤ 𝜖𝑚 when 𝑠𝑚 ≠

𝑠𝑚−1 and Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ = 0 when 𝑠𝑚 = 𝑠𝑚−1. 

4. Main Result 

Theorem (3.1). Consider the QVI (2.1) with 𝑀 

being 𝜉-strongly monotone and 𝜏-Lipschitz 

continuous and if there exist 𝒩 ≥ 0 such that (2.4) 

holds. Let {𝑠𝑚} be generated by algorithm (3.1) with 

the updating rule (3.2). In addition that for 𝜌 ≥ 0, 

the condition 

|𝜌 −
𝜉

𝜏
| <

√𝜉2−𝜌2𝒩

𝜏2                    (3.3)                                                                                     

where 𝜏 = ((1 − 𝛿𝑚) + 𝛿𝑚𝒩 + 𝛿𝑚𝛽), 𝜂 = 𝒩 +

2𝛽, 𝛽 = (
1−2𝜌𝜉+𝜌2𝜏2

2
), sequence {𝛿𝑚} ⊆ ]0, 1] 

satisfies ∑𝑚=1
∞  𝛿𝑚 = ∞ and {𝜖𝑚} satisfies 

∑𝑚=1
∞  𝜖𝑚 < ∞, then {𝑠𝑚} generated by (3.1) 

converges strongly to the unique solution 𝑠 ∈ 𝑁(𝑠) 

of the problem (2.1). 

Proof. We know that 

𝑠 = (1 − 𝛿𝑚)𝑠 + 𝛿𝑚𝑃𝑁(𝑠) [
𝑠 + 𝑠

2
− 𝜌𝑀 (

𝑠 + 𝑠

2
)] 

Now 

∥∥𝑠𝑚+1 − 𝑠∥∥ =  ∥ (1 − 𝛿𝑚)𝑡𝑚+ 

                    𝛿𝑚𝑃𝑁(𝑡𝑚) [
𝑠𝑚+𝑡𝑚

2
− 𝜌𝑀 (

𝑠𝑚+𝑡𝑚

2
)] – 

                    [(1 − 𝛿𝑚)𝑠 + 𝛿𝑚𝑃𝑁(𝑠) (
𝑠+𝑠

2
− 𝜌𝑀 (

𝑠+𝑠

2
))] ∥ 

                   ≤  ∥∥(1 − 𝛿𝑚)(𝑡𝑚 − 𝑠)∥∥ + 

                     𝛿𝑚 ∥ 𝑃𝑁(𝑡𝑚) [
𝑠𝑚+𝑡𝑚

2
− 𝜌𝑀 (

𝑠𝑚+𝑡𝑚

2
)]  - 

                     𝑃𝑁(𝑠) [
𝑠+𝑠

2
− 𝜌𝑀 (

𝑠+𝑠

2
− 𝜌𝑀 (

𝑠+𝑠

2
))] 

                    ≤  (1 − 𝛿𝑚)∥𝑡𝑚 − 𝑠∥ + 

                       𝛿𝑚 ∥ 𝑃𝑁(𝑡𝑚) [
𝑠𝑚+𝑡𝑚

2
− 𝜌𝑀 (

𝑠𝑚+𝑡𝑚

2
)] –  

                      𝑃𝑘(𝑠) [
𝑠𝑚+𝑡𝑚

2
− 𝜌𝑀 (

𝑠𝑚+𝑡𝑚

2
)] ∥ +𝛿𝑚 

∥
∥
∥

𝑃𝑁(𝑠) [
𝑠𝑚 + 𝑡𝑚

2
− 𝜌𝑀 (

𝑠𝑚 + 𝑡𝑚

2
)]

− 𝑃𝑁(𝑠) [
𝑠 + 𝑠

2
− 𝜌𝑀 (

𝑠 + 𝑠

2
)]

∥
∥
∥
 

 

≤ (1 − 𝛿𝑚)∥𝑡𝑚 − 𝑠∥ + 

𝛿𝑚𝒩∥𝑡𝑚 − 𝑠∥ + 𝛿𝑚 ∥
𝑠𝑚 + 𝑡𝑚

2
−

𝑠 + 𝑠

2
 

−𝜌 (𝑀 (
𝑠𝑚+𝑡𝑚

2
) − 𝑀 (

𝑠+𝑠

2
)) ∥                        (𝟑. 𝟒) 

Now, since 𝑀 is 𝜉-strongly monotone and 𝜏-

Lipschitz continuous, we have 

∥
∥
∥
∥𝑠𝑚 + 𝑡𝑚

2
−

𝑠 + 𝑠

2
− 𝜌 (𝑀 (

𝑠𝑚 + 𝑡𝑚

2
) − 𝑀 (

𝑠 + 𝑠

2
))

∥
∥
∥
∥

2

 

= ∥
∥𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2 ∥
∥

2

 –  

2𝜌 ⟨𝑀 (
𝑠𝑚+𝑡𝑚

2
) − 𝑀 (

𝑠+𝑠

2
) ,

𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2
⟩  

+𝜌2

∥
∥
∥

𝑀 (
𝑠𝑚 + 𝑡𝑚

2
) − 𝑀 (

𝑠 + 𝑠

2
)

∥
∥
∥

2

 

≤ ∥
∥𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2 ∥
∥

2

− 2𝜌𝜉 ∥
∥𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2 ∥
∥

2

  

+𝜌2𝜏2
∥
∥𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2 ∥
∥

2

  

= (1 − 2𝜌𝜉 + 𝜌2𝜏2) ∥
∥𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2 ∥
∥       (3.5) 

Now 

∥
∥𝑠𝑚+𝑡𝑚

2
−

𝑠+𝑠

2 ∥
∥ ≤

1

2
∥𝑠𝑚 − 𝑠∥ +

1

2
∥𝑡𝑚 − 𝑠∥(𝟑. 𝟔)     

 

Using (3.6) in (3.5), we have 
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∥
𝑠𝑚 + 𝑡𝑚

2
−

𝑠 + 𝑠

2
− 𝜌(𝑀 (

𝑠𝑚 + 𝑡𝑚

2
) − 𝑀 (

𝑠 + 𝑠

2
)) ∥2 

≤ (1 − 2𝜌𝜉 + 𝜌2𝜏2) [
1

2
∥𝑠𝑚 − 𝑠∥ +

1

2
∥𝑡𝑚 − 𝑠∥] 

= 𝛽[∥𝑠𝑚 − 𝑠∥ + ∥𝑡𝑚 − 𝑠∥]                  (𝟑. 𝟕) 
 

where 𝛽 =
(1−2𝜌𝜉+𝜌2𝜏2)

2
 

Using (3.7) in (3.4), we have 

∥∥𝑠𝑚+1 − 𝑠∥∥ ≤ ((1 − 𝛿𝑚) + 𝛿𝑚𝒩 +

                   𝛿𝑚𝛽)∥𝑡𝑚 − 𝑠∥ + 𝛿𝑚𝛽∥𝑠𝑚 − 𝑠∥      (3.8) 

                                             

Now 

∥𝑡𝑚 − 𝑠∥  = ∥∥𝑠𝑚 + Θ𝑚(𝑠𝑚 − 𝑠𝑚−1) − 𝑠∥∥

 ≤ ∥𝑠𝑚 − 𝑠∥ + Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥  (𝟑. 𝟗) 
 

Using (𝟑. 𝟗) in (𝟑. 𝟖), we obtain 

∥∥𝑠𝑚+1 − 𝑠∥∥ ≤ ((1 − 𝛿𝑚) + 𝛿𝑚𝒩 + 𝛿𝑚𝛽) 

(∥𝑠𝑚 − 𝑠∥ + Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥) +𝛿𝑚𝛽∥𝑠𝑚 − 𝑠∥ 

= [(1 − 𝛿𝑚) + 𝛿𝑚𝒩 + 2𝛿𝑚𝛽]∥𝑠𝑚 − 𝑠∥ +  

((1 − 𝛿𝑚) + 𝛿𝑚𝒩 + 𝛿𝑚𝛽) Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ 

=   [(1 − 𝛿𝑚) + 𝛿𝑚(𝒩 + 2𝛽)]∥𝑠𝑚 − 𝑠∥+ 

   𝜁𝑛Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ 

= [(1 − 𝛿𝑚(1 − (𝒩 + 2𝛽))]∥𝑠𝑚 − 𝑠∥ +
          𝜁𝑛Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥  

=  [(1 − 𝛿𝑚(1 − 𝜔))]∥𝑠𝑚 − 𝑠∥
+ 𝜁𝑛Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ (𝟑. 𝟏𝟎) 

 
where 𝜁𝑛 = ((1 − 𝛿𝑚) + 𝛿𝑚𝒩 + 𝛿𝑚𝛽), 𝜔 = 𝒩 + 2𝛽. 

observe that by condition (3.3), we have 0 < 𝜔 <

1, since ∑𝑚=1
∞  Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ < ∞, using 

Lemma(2.4), we get 𝑠𝑚 → 𝑠, as 𝑚 → ∞. 

Remark (3.1). However our Theorem (3.1) still 

holds if in (3.2) the term 
𝑚−1

𝑚+𝛿−1
 is replaced with 

some constant in [0,1[. The idea of using such 

inertial term was actually introduced in [8,10] and 

interest for taking 𝜂 ≥ 3 lies in the fact that was 

actually used by Attouch and Peypouquet [8] and 

Attouch et al. [7], in which they proved the fast 

convergence for this hypothesis. 

In the next section we present the complexity bound 

of Algorithm(3.1) with the updating rule (3.2 ). 

5. Complexity bound of the algorithm 

Theorem (4.1). Consider the QVI (2.1) with the 

same assumptions as in theorem (3.1) above. Let 

{𝑠𝑚} be generated by (3.1) with the updating rule 

(3.2) and let 𝑠 ∈ 𝑁(𝑠) be the unique solution of the 

QVI(2.1) . Let 𝛿𝑚 = 𝛿 and 𝜖𝑚 = 𝜖 be constant. 

Then for any 𝜒 ∈]0, 𝛿(1 − (𝒩 + 2𝛽)[, for any 

𝑚 ≥ 𝑚‾ = [log(1−𝜒) ((
𝜖

∥∥𝑠0−𝑠∥∥
) (

1−𝛿(1−(𝒩+𝛽))

𝛿(1−(𝒩+2𝛽))−𝜒
))]     (4.1)                                         

assuming 𝑚‾ ≥ 0, it holds that 

∥𝑠𝑚 − 𝑠∥ ≤ [
1−𝛿(1−(𝒩+𝛽))

𝛿(1−(𝒩+2𝛽))−𝜒
+ (1 − 𝛿(1 − (𝒩 + 𝛽))]𝜖       

(4.2)                                                                                                                 

Proof. From the proof of the theorem (3.1) above, 

for any 𝑚 ≥ 1, we get 

∥∥𝑠𝑚+1 − 𝑠∥∥  ≤ (1 − 𝛿(1 − (𝒩 + 2𝛽)))∥𝑠𝑚 − 𝑠∥ + 

                      (1 − 𝛿(1 − (𝒩 + 𝛽)))Θ𝑚∥∥𝑠𝑚 − 𝑠𝑚−1∥∥ 

                    ≤ (1 − 𝛿(1 − (𝒩 + 2𝛽))) ∥𝑠𝑚 − 𝑠∥ 

                     + (1 − 𝛿(1 − (𝒩 + 𝛽))) 𝜖        (𝟒. 𝟑) 

because, (1 − 𝛿(1 − (𝒩 + 2𝛽))) ≥ 0, without 

loss of generality, assume that for 𝑚 < 𝑚‾ , we get 

∥𝑠𝑚 − 𝑠∥ ≥ 𝜖
(1−𝛿(1−(𝒩+𝛽)))

𝛿(1−(𝒩+2𝛽))−𝜒
                    (4.4) 

 

from (4.3 )and (4.4), we obtain for every 𝑚 < 𝑚‾  

∥∥𝑠𝑚+1 − 𝑠∥∥ ≤ (1 − 𝜒)∥𝑠𝑚 − 𝑠∥             (4.5) 
 

therefore by definition of 𝑚‾ , it holds that 

∥∥𝑠𝑚‾ − 𝑠∥∥ ≤ (1 − 𝜒)𝑚‾ ∥∥𝑠0 − 𝑠∥∥

≤ 𝜖
1 − 𝛿(1 − (𝒩 + 𝛽))

𝛿(1 − (𝒩 + 2𝛽)) − 𝜒
 

for any 𝑚 > 𝑚‾ , there are two possiblities if 

∥∥𝑠𝑚−1 − 𝑠∥∥ ≤ 𝜖
1 − 𝛿(1 − (𝒩 + 𝛽))

𝛿(1 − (𝒩 + 2𝛽)) − 𝜒
 

then by (4.3) and recalling that 

(1 − 𝛿(1 − (𝒩 + 2𝛽))) ≤ 1, we get 
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∥𝑠𝑚 − 𝑠∥ ≤ [
1 − 𝛿(1 − (𝒩 + 𝛽))

𝛿(1 − (𝒩 + 2𝛽)) − 𝜒
+ (1 − 𝛿(1

− (𝒩 + 𝛽)))] 𝜖 

otherwise if 

1−𝛿(1−(𝒩+𝛽))

𝛿(1−(𝒩+2𝛽))−𝜒
≤ ∥∥𝑠𝑚−1 − 𝑠∥∥ ≤  

𝜖 (
1−𝛿(1−𝛿(𝒩+𝛽))

𝛿(1−(𝒩+2𝛽))−𝜒
+ (1 − 𝛿(1 − (𝒩 + 𝛽)))           

 

then, 

∥𝑠𝑚 − 𝑠∥ ≤ (1 − 𝜒)∥∥𝑠𝑚−1 − 𝑠∥∥ ≤ ∥∥𝑠𝑚−1 − 𝑠∥∥ 

 and hence the desired result holds. 

6. CONCLUSION 

In this paper, we proposed an implicit projection 

method for solving QVIs in real Hilbert spaces. We 

proved convergence of the inertial implicit 

projection method under suitable conditions. The 

complexity bound of an algorithm determines how 

fast it will run and how much memory it will 

require, we have found the complexity bound of the 

proposed algorithm. Researchers can use Noor's 

techniques [33] to analyze quasi-variational 

inequalities using error estimates and sensitivity 

analysis as well. 
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