
Uluslararası İleri Doğa

Bilimleri ve Mühendislik

Araştırmaları Dergisi

Sayı 7, S. 86-90, 3, 2023

© Telif hakkı IJANSER’e aittir

Araştırma Makalesi

https://as-proceeding.com/index.php/ijanser

 ISSN: 2980-0811

 International Journal of Advanced

Natural Sciences and Engineering

Researches

Volume 7, pp. 86-90, 3, 2023

Copyright © 2023 IJANSER

Research Article

86

On Implementation of Reconfigurable Cyclic Redundancy Check for EVS

Applications

Afaq Ahmad1*, Fahad Mohamed Senan2, Sayyid Samir Al-Busaidi3 and Ahmed Ammari4

1,2,3,4 Department of Electrical and Computer Engineering, Sultan Qaboos University, PO Box 33, Zip-code 123, Muscat,

Oman

*(afaq@squ.edu.om) Email of the corresponding author

(Received: 1 March 2023, Accepted: 7 April 2023)

(2nd International Conference on Scientific and Academic Research ICSAR 2023, March 14-16, 2023)

ATIF/REFERENCE: Ahmad, A., Senan, F. M. & Al-Busaidi, S. S. (2023). On Implementation of Reconfigurable Cyclic

Redundancy Check for EVS Applications. International Journal of Advanced Natural Sciences and Engineering Researches,

7(3), 86-90.

Abstract – The rising of Internet of Things (IoTs), Unmanned Aerial Vehicles (UAVs), 5G/6G

technologies, and many other technologies, render the need for high-speed, low footprint implementation

of Cyclic Redundancy Check (CRC) versions their Embedded Vision Systems (EVSs). However, the

performance of a CRC architecture need to be mapped in terms of Hamming Distance (HD), area, memory,

power dissipation and execution time. In addition, each of the terms depend on certain factors such as the

data word size, sparse and dense nature of the data, the CRC length, the seed, the CRC characteristic

polynomial and the operational frequency. In this paper, we investigate one specific factor that may

potentially affect the execution time. This factor is the selection of a characteristic polynomial for a CRC

implementation. The method used to investigate this aspect we developed an exhaustive code that iterates

over all the chosen CRC types, finds all the primitive connection polynomials, calculate the CRC of

different data word sizes against every determined characteristic polynomials and stamp the time. Then

finally analyze the results and present the concluded findings. A thorough investigation was carried out on

one of the performance factors i.e. the selection of CRC characteristic polynomial. Based on employed

methodology and algorithms we found that the execution time is doubled whenever the data word size is

doubled, the execution time increases whenever the CRC type increases, and most importantly, the

execution time of any characteristic polynomial within the same CRC type will most probably have the

same execution time.

Keywords – CRC, Hamming Distance, Characteristic Polynomial, Data Word Size, Execution Time

I. INTRODUCTION

A Cyclic Redundancy Check (CRC) is considered

as the most common, reliable and dependable error

checking protocol used to detect transmission

errors. However, the CRC codes do not have a built-

in error-correction capability. For the error-free

transmission of data frames, CRCs operations are

performed on each block of the data frames. When

the system detects an error in the message, it

acknowledges the sender to resend the message. In

CRCs, the check bits are redundant as it increases

the message devoid of additional bits of

information. With implementation of CRC through

the algorithmic centered approach their hardware

implementation has grown popularity due to their

ease of implementation and efficient analysis using

well established comprehensive mathematical

models [1] - [5].

https://as-proceeding.com/index.php/ijanser
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Algorithm

International Journal of Advanced Natural Sciences and Engineering Researches

87

A simple Shift Register (SR) circuit that performs

the computations by handling the data one bit at a

time (bit by bit) is used in the traditional hardware

implementation, which is known as Linear

Feedback Shift Register (LFSR) ([1], [3], [4], [5]).

In software implementations, we can handle the data

as bytes or words, which is more convenient and

faster. CRC algorithm can be easily implemented

using commonly used programming languages like

Java, C++, C or using the Hardware Description

Languages (HDL) like Verilog and VHDL or using

the popular technical computing language like

MATLAB ([3], [6]).

II. CONSTRUCTION OF CRC

Cyclic Redundancy Check is a check code of 𝑛

binary digits that is appended to a message of 𝑘

binary digits for preserving the integrity of the

message. This check code is the reminder resulted

from dividing the message (the dividend) by a

divisor of 𝑛 + 1 binary digits, in the 𝐺𝐹(2). If a

receiver of this encoded message of 𝑘 + 𝑛 binary

digits, divides it by the same divisor, and resulted in

a zero reminder, then the received message is error

free, otherwise the received message is erroneous.

In other words, an error is detected.

The check code using CRC process is calculated

by dividing the message polynomial by the CRC

characteristic polynomial after shifting left the

characteristic polynomial n times where n is the

number of bits in the CRC to be calculated.

Given below is the algorithm for the modulo-2

division process.

 Let the width of the CRC be n

 Assign the uppermost n+1 bits of the

message as the remainder

 Starting with the Most Significant Bit

(MSB) in the original message and for each

bit position that follows, look at the n+1 bit

remainder

 If the MSB of the remainder is a one, the

divisor will be divided into it and we

should indicate a successful division in

the appropriate bit position in the

quotient and then compute the new

remainder. So if the MSB is one

o Set the appropriate bit in the quotient to

a one, and

o XOR the remainder with the divisor

and store the result back to the

remainder

 If the MSB is not a one:

o Set the appropriate bit in the quotient to

a zero, and

 Left-shift the remainder, shifting in the

next bit of the message. The bit that's

shifted out will always be a zero, so no

information is lost.

 The final value that is getting stored in of the

remainder is the CRC bits of the given

message.

As the information contained in the quotient is

not important in the calculation of CRC, no need to

store the quotient. As the result of each XOR

operation with the characteristic polynomial is a

reminder that has zero in its MSB, We hardly lose

any information when the next message frame (M)

bit is shifted into the remainder. To ease to

readership we present below the examples to

elaborate the algorithm.

Most CRC specifications tend to drop the MSB

from the characteristic polynomial (P) in binary

representation. For example if𝑃 = 01011, which

can be rewritten in hexadecimal as0𝑥𝐵. The

examples shown in Figures 1 and 2 describe the

binary and polynomial divisions’ processes of CRC

implementations respectively. In example, the data

M = 10110011 = 0 𝑥𝐵3 = 𝑥7 + 𝑥5 + 𝑥4 + 𝑥1 + 𝑥0.

The value of P = 101011 = 0𝑥2𝐵 = 𝑥5 + 𝑥3 + 𝑥 + 1.
Thereby, k = 8 and n = 5.

10011000

101011 1011001100000

101011

 111110

 101011

 101010

 101011

 1000

Fig. 1 Binary division process

III. CRC IMPLEMENTATION USING LFSR

A CRC circuit is implemented using an SIPO

(Serial Input Parallel Output) Galois LFSR. Various

structures and controlling parameters of LFSRs are

discussed in research work ([7] - [9]).

International Journal of Advanced Natural Sciences and Engineering Researches

88

Figure 3 demonstrates the LFSR based

implementation of CRC described through Figures

2 and 3. In Figure 3, it is to be noted that I = M.

𝑥7 + 𝑥4 + 𝑥3

𝑥5 + 𝑥3 + 𝑥 + 1 𝑥12 + 𝑥10 + 𝑥9 + 𝑥6 + 𝑥5

𝑥12 + 𝑥10 + 𝑥8 + 𝑥7
𝑥9 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5

𝑥9 + 𝑥7 + 𝑥5 + 𝑥4
𝑥8 + 𝑥6 + 𝑥4
𝑥8 + 𝑥6 + 𝑥4 + 𝑥3

𝑥3

Fig. 2 Polynomial division process

Fig. 3 Implementation of CRC using LFSR

The state equations and the table (see Table 1) of

the CRC circuit shown in Figure 3 can be deduced

from the figure, are:

 𝑠0(𝑡 + 1) = 𝑠4(𝑡) ⊕ 𝐼(𝑡)
 𝑠1(𝑡 + 1) = 𝑠0(𝑡) ⊕ 𝑠4(𝑡) ⊕ 𝐼(𝑡)
 𝑠2(𝑡 + 1) = 𝑠1(𝑡)
 𝑠3(𝑡 + 1) = 𝑠2(𝑡) ⊕ 𝑠4(𝑡) ⊕ 𝐼(𝑡)
 𝑠4(𝑡 + 1) = 𝑠3(𝑡)

Table 1. CRC Execution Using LFSR<5,0xB> and I=0xB3

t I s4s3s2s1𝑠0 t I s4s3s2s1𝑠0

0 1 00000 6 1 11010

1 0 01011 7 1 10100

2 1 10110 8 01000

3 1 01100

4 0 10011

5 0 01101

IV. STUDY

In order to carry out the investigation and

somehow end up with a relative comparable and

examinable results, all other factors that affect the

execution time must be fixed. So, in our study the

factors were fixed as follows:

 An arbitrary data word has been chosen as

an input, and its sizes were fixed to the

following: 128b, 256b, 512b and 1Kb.

 The CRC types (a.k.a. CRC lengths, or

polynomial degrees) were limited to the

following: {1, 2, 3, 4, 5, 7, 8, 16, 32}.

 The seed is set to zero.

 The implementation was designed as a

software. It means, it gets to be executed by

a microprocessor, not by a dedicated

hardware accelerator. In additions, only two

algorithms were implemented: {Bit-Shift,

State-Space}.

 The microprocessor that was used is “Intel®

Core™ i5-9400T CPU @ 1.80GHz, 1800

MHz, 6 Core(s), 6 Logical Processor(s)”.

Hence, the frequency is fixed.

A. Procedure

High Level Procedure

The proposed method employs the following

high-level procedure:

Inputs:

 Data Word

 Data Word Sizes

 CRC Types

 Algorithm

 Run Times

Outputs:

 Total Execution Time

 For every primitive connection polynomial,

there is:

o CRC Type

o Connection Polynomial (in Binary,

Hexadecimal, and Decimal)

o CRC Execution Time

o Function Execution Time

o CRC

 1: Iterate Manually by Data Word Sizes {

 2: Iterate by CRC Types {

 3: find all primitive connection polynomials

International Journal of Advanced Natural Sciences and Engineering Researches

89

 4: Iterate by primitive connection polynomials

{

 5: calculate CRC (data word,

 6: primitive connection polynomial,

 7: run times,

 8: algorithm)

 9: }

10: }

11: }

B. Output

At the end, the results (the outputs) are tabulated

and saved as .mat files. So that they can be easily

plotted or retrieved later.

C. Finding All Primitive Connection Polynomials

For an LFSR of length𝑛, there are 2𝑛−1 applicable

connection polynomials, and out of those, there are

∅(2𝑛 − 1)/𝑛 polynomials that can generate an n-

sequence, where ∅ is the Euler’s totient function. In

other words, out of the applicable connection

polynomials, there are at least ∅(2𝑛 − 1)/𝑛

primitive connection polynomials.

V. RESULTS

The overall execution time is recorded and

depicted in Figure 4. The shows the overall

execution time for the 128b, 256b and 512b data

word.

Fig. 4 Overall Execution Time for 128b, 256b and 512b

Data Word

VI. DISCUSSION

This should explore the significance of the results

of the work, not repeat them. The results should be

drawn together. The results need to be compared

with prior work and/or theory and interpreted to

present a clear step forward in scientific

understanding of CRC. Combined Results and

Discussion sections comprising a list of results and

individual interpretations in isolation are

particularly discouraged. Also, in semiconductor

devices testing is a bottleneck [10].

VII. CONCLUSION

Through this work, we comprehensively

summarized the science and the mathematics behind

CRC, in a clear and very concise way, including the

state-space equations and state table with their

matrices description. The report also visited some of

the main conclusions of the study should be

summarized in a short in this section.

Latest software and hardware CRC algorithms

and implementations. Although, there seems to be

an obvious progress in these algorithms and

implementations, the researchers are consistently

enhancing them so they can keep coping with the

high requirements imposed by the rapid

advancement of technology.

Furthermore, a thorough investigation was

carried out on one of the performance factors. That’s

the selection of CRC connection polynomial based

on its execution time and the potential possibility

that different connection polynomials from the same

CRC type will have different execution times. We

can conclude, considering the employed

methodology and algorithms, that the total

execution time is doubled whenever the data word

size is doubled, the execution time increases

whenever the CRC type increases, and most

importantly, the execution time of any connection

polynomial within the same CRC type will most

probably have the same execution time. So, it is safe

to say that, based on the execution time, it does not

matter which connection polynomial is selected, and

such a possibility is ruled out.

There are many performance indicators that a

CRC can be measured by. Perhaps, the most mature

of them all, is the hamming distance (HD).

However, such investigation should be carried out

on each one of them, and if any of them were to

influence the selection of CRC connection

polynomials, then it must be approached

mathematically and scientifically. Moreover, a

founded mathematical tool must be developed, so it

would aid a one on the selection. It is one of our aims

for the future work.

International Journal of Advanced Natural Sciences and Engineering Researches

90

Let alone, that our main aim is to design and

implement a reconfigurable and optimized CRC

architecture, and have those investigations guide us

on achieving such an aim. We will continue to

conduct experiments on All Programmable System-

on-Chip (APSoC) FPGAs for the sake of developing

a novelty algorithm or implementation that meets

the requirements of the embedded network systems

and vision systems. Further, investigations need to

be carried out in context to automobiles, where

FPGAs are extensively used.

ACKNOWLEDGMENT

The acknowledgements are due to authorities of

Sultan Qaboos University (Sultanate of Oman) for

providing generous research support grants and

environments for carrying out the research works.

This research work was supported by the internal

grant of Sultan Qaboos University (number

IG/ENG/ECED/20/01)

REFERENCES

[1] S. W. Golomb, Shift Register Sequences, Aegean Park

Press, Leguna Hills - U.S.A., 1982.

[2] W. W. Peterson, and J. J. Weldon, Error Correcting

Codes. MIT Press, Cambridge, London, 1972.

[3] A. Ahmad, “A Simulation experiment on a built-in self-

test equipped with pseudorandom test pattern generator

and multi-input shift register (MISR),” International

Journal of VLSI Design & Communication

Systems(VLSICS), vol. 1, no. 4, pp. 1-12, December

2010.

(8 Apr 2021) The SSRN website. [Online]. Available:

https://ssrn.com/abstract=3811385.

[4] A. Ahmad, A Ahmad, D Al-Abri, S. S. Al-Busaidi,

“Adding pseudo-random test sequence generator in the

test simulator for DFT approach,” Computer Technology

and Application, vol. 3, no. 7, pp. 463-470, July 2012.

[5] L.T. Wang and E.J. McCuskey, “Linear Feedback Shift

Register Design Using Cyclic Codes,” IEEE

Transactions on Computers, vol. C-37, no. 10, pp. 1302-

1306, 1987.

[6] Development of digital logic design teaching tool using

MATLAB & SIMULINK,” IEEE Education Society

Students Activities Committee (EdSocSAC), vol. 8, no. 1,

pp. 7-12, March, 2013.

[7] A. Ahmad, N. K. Nanda, K. Garg, “The use of irreducible

characteristic polynomials in an LFSR based testing of

digital circuits,” in Proc. Fourth IEEE Region 10

International Conference TENCON, pp. 494-496. 1989.

(August 2002) Available: IEEE Xplore website [Online].

[8] N. K. Nanda, A. Ahmad and V. C. Gaindhar, “Brief

Communication Shift Register Modification for

Multipurpose use in Combinational Circuit Testing,”

International Journal of Electronics, vol. 66, no. 6, pp.

875-878, 1989.

(26 April 2007) Available: Taylor & Francis website

[Online].

[9] A. Ahmad, N. K. Nanda, “Effectiveness of Multiple

Compressions of Multiple Signatures,” International

Journal of Electronics, vol. 66, no. 5, pp. 775-787, 1989.

(6 April 2007) Available: Taylor & Francis website

[Online].

[10] A. Ahmad, “Testing of complex integrated circuits (ics)

– the bottlenecks and solutions,” Asian Journal of

Information Technology, vol. 4, no. 9, pp. 816-822, 2005.

[11] A. Ahmad, "Automotive Semiconductor Industry -

Trends, Safety and Security Challenges," in Proc. 8th

International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions) (ICRITO 2020), pp. 1373-1377, 2020.

(15 September 2020) Available: IEEE Xplore website

[Online].

