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Abstract – Load forecasting has been an important aspect of power system operations and with the increase 

in integration of renewable energy resources in the main grid, the procedure is now more vital than ever. 

The methods developed to forecast the load of an area have also been improved with the use of artificial 

intelligence. This study proposes a forecasting training method using Gated Recurrent Units and compares 

it with the most widely used long-short term memory. The test systems are made of the historical load data 

from publicly available load data through PJM data miner 2 without the inclusion of weather parameters 

which reduces the training time of the models along with the reduction in data acquisition cost. The study 

also considers the impact of predicting future load without access to weather data. 
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I. INTRODUCTION 

Load forecasting is an important aspect in many of 

the parts of the power system including planning, 

unit commitment, economic dispatch, storage 

management, power plant maintenance, power 

system supply design, and electricity market [1]. 

When the power system is mainly based on 

renewable energy resources (RERs), the forecasting 

of load on an hourly basis becomes much more 

significant due to the expensive and difficult 

solution of storage systems.  

Forecasting has been classified into four types 

based on  the duration of the forecast, this includes 

very short-term load forecasting which ranges from 

a few seconds to a few minutes, short term load 

forecasting ranging from hours to a few weeks, 

medium-term load forecasting which ranges from 

weeks to a few months and long term load 

forecasting which is the forecast in years or longer 

[2]. This study focuses on short-term load 

forecasting (STLF). Modern power system has 

smart metering in place which has made short-term 

forecasting of residential loads possible and 

implemented optimized load shaving along with the 

intelligent demand response [3]. The STLF is 

achieved using two different categories of methods 

namely traditional and intelligent, traditional 

methods involve statistical methods including 

regression and auto smoothing [4]. The intelligent 

methods include metaheuristics optimizations [5], 

artificial neural networks [6], and hybrid methods 
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[7][8]. These artificially intelligent methods enable 

forecasting with multiple input and output variables 

[9]. Load data is always a time series dataset whose 

specific statistical properties can be exploited as in 

[10] to transform the dataset into a form which 

exploited the advantages of the Convolutional 

Neural Networks (CNN). 

Hybrid techniques comprise a combination of 

multiple machine learning techniques which 

integrate the merits of different models just as GRU-

CNN [8] which showed improved results compared 

to both GRU and CNN separately. A similar case 

was observed in [7] where a hybrid of LSTM and 

CNN was proposed which showed improved better 

average prediction accuracy. Recently, deep 

learning, which is also part of the intelligent 

computational method, has become an active 

technology in load forecasting studies. It refers to 

stacking multiple layers of neural networks 

comprising nonlinear network layers which enable 

the nonlinear mapping and complication feature 

abstraction of the data and relies on stochastic 

optimization to achieve the computation.   

Powerful machine learning techniques like 

recurrent neural networks (RNNs) have been proved 

to be much more effective in long term forecasting 

but LSTM and GRU which are types of RNNs have 

been employed increasingly in short-term 

forecasting scenarios in recent years because of the 

increase in computational capabilities of the 

available technologies [2][11]. 

A typical load forecast involves the following 

process: 

• Obtain the historical load data and the 

weather data of a certain area. 

• Get the weather prediction of the area and 

use a forecasting algorithm to forecast a load of that 

area depending on the weather [11]. 

 Data preprocessing is also an important 

factor in getting accurate predictions from a model 

[12]. There are many techniques used to achieve the 

optimal data for the model to work on including 

longitudinal filling, regression prediction filling and 

normal interval filling all of which require the gap 

between the available data and missing data to be 

minimum. The data obtained in this study are 

precleaned and does not require any filling methods 

to be applied before passing it to the model for 

training. 

 For some areas, getting the historical 

weather can be an expensive step, and predicting the 

weather before the load forecast can create an extra 

computational cost. When achieving a short-term 

load forecast, sometimes only the daily weather of 

the area is available which is insufficient for the 

forecast to be accurate. Some studies achieve the 

forecast without access to the weather of the area 

[13].  Due to these problems, in this study, only the 

historical load of the areas is used which does not 

increase the cost of the forecasting while keeping 

the forecast accuracy reasonable. 

II. RNN APPROACHES 

In this section, the RNN methods used in this study 

are introduced. The models used here are LSTM and 

GRU, and are presented in sections III-A and 

section III-B respectively both of which are 

extensions of RNN architecture.  

A.  Long Short-Term Memory 

This In applications, traditional RNNs were found 

to perform worst when the time intervals were long 

because of their inability to memorize previous 

information well because of the gradient vanishing 

problem [2]. To solve this problem, LSTM was 

introduced which combines the short-term memory 

of the traditional RNN with long-term memory 

through gate control. The internal structure of 

LSTM is presented in Fig. 1. 

 

Fig. 1. LSTM internal structure 

LSTM cells have a memory cell which is a special 

neuron structure with the capability to store 

information over an arbitrary time. There are three 

gate controls in the cell referred to as input, output, 

and forget gate. 

Input gate it and forget gate ft are expressed as 

follows: 

 it=σ (wi×[y
t-1, xt

]+bi) (1) 
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 ft=σ (wf×[y
t-1,   xt

]+bf) (2) 

where σ, the sigmoid activation function, is the 

variance whose values range between 0 and 1, wi 

and wf are the weight matrices, xt is input while y
t
 

is the output of the previous cell and bi and bf are 

the bias vectors. The cell state ct is updated in the 

next step and is computed as follows: 

 ct=ft× ct-1+it×(tanh(wc×[y
t-1, xt

]+bc)) (3) 

where bc is the bias vector of previous cell.  

The output gate and final output y
t
 are expressed as: 

 ot=σ (wo×[ht-1,  xt
]+bc) (4) 

 y
t
=σt×tanh(ct) (5) 

B. Gated Recurrent Unit 

The GRU is considered a variant of LSTM first 
introduced in [14]. The computation of GRU is 
simpler compared to LSTM which in turn creates 
less computational time while training [15]. The 
internal structure of GRU is shown in Fig. 2. There 
are two gate controls in GRU namely reset gate rt 
and update gate ut.  

The mathematical equations which represent the 
gates in GRU are as follows: 

 rt=σ (wr.[yt-1
, xt]) (6) 

 ut=σ (wu.[y
t-1

, xt]) (7) 

 

The output gate y
t
 and ŷ which is the candidate state 

to determine the amount of information after the 
reset gate is presented as: 

 y
t
=(1-ut)⊗y

t-1
+y

t
⊗ŷ

t
 (8) 

 ŷ
t
=tanh(wy.[rt⊗y

t-1
, xt]) (9) 

 

where wr, wu and wy are the weight parameters while 

σ and tanh are activation functions. 

 

Fig. 2. GRU internal structure 

III. EXPERIMENTAL SETUP 

A. Data description 

In this study, the dataset is the historical load of 

2016-2021 obtained from Pennsylvania-New 

Jersey-Maryland (PJM) [16] public API which 

includes the data of substations in the area. The 

dataset consists of the time of the reading, the load 

areas, and the power recorded in MW. Among the 

data for years 2016-2021 the selected substations 

are the ones which data available, only 6 substations 

are which are present in all the datasets to be tested 

which are given in Table 1. The data are divided into 

training, and testing data with 95% to 5% 

respectively. 

Table 1. Load Areas in Test Cases 

No. Load Area Abbreviation 

1 Allegheny Power Systems AP 

2 
Dayton Power and Light 

Co. 
DAY 

3 
Duke Energy Ohio and 

Kentucky Corp. 
DEOK 

4 
East Kentucky Power 

Cooperative 
EKPC 

5 
Potomac Electric Power 

Co. 
PEPCO 

6 Rockland Electric Co. RECO 

B. Evaluation metrics 

The results obtained by training and testing the 

algorithms are evaluated by their root-mean-square 

error (RMSE), and mean absolute percentage error 

(MAPE). 

RMSE is defined as a measure of the distance 

between the prediction of a point with its true value. 

To remove the case where the prediction of two 
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points is equal and opposite to their true values, a 

square is placed so that the sum may not add up to 

zero. RMSE is represented as: 

 

RMSE (y,y
predicted

) =√∑
(y

predictedi
− 𝑦𝑖 )

2

n

n

i=0

 
(10

) 

      MAPE is the evaluation of regression loss in 

prediction problems and is represented as: 

 

MAPE (y,y
predicted

) =
1

n
∑

|y
i
-y

predictedi
|

max(ϵ, |y
i
|)

n-1

i=0

 (11) 

where y is the test data to be validated by y
predictedi

 , 

n is number of observations (8760 for each load in a 

single year). 

C. Training of LSTM model 

LSTM is dependent on the data being clear in 

making the patterns because of its fundamental 

nature of learning from long-term and short-term 

data. This property can cause prediction losses when 

the data is incomplete or is not headed towards an 

incorrect path. For example, training the model on 

summer load data and testing it to predict load in 

winter. Because of that, the model for the yearly 

forecast is trained on 95% of the year’s data. 

Following are the parameters on which the model is 

trained: 

• Number of units = 256 

• Optimizer = adam 

• Number of dense layers = 2 

• Number of epochs = 2 

D. Training of GRU model 

GRU is built to have the advantages of LSTM while 

removing the disadvantages of higher 

computational time and complexity while also 

providing the benefit of higher performance in the 

case of sequential data. The problem with GRU is 

its inability to perform when dealing with multiple 

dimensions but in this study, the data is of a single 

dimension. 

Following are the parameters on which the model is 

trained: 

• Number of units = 256 

• Optimizer = adam 

• Number of dense layers = 2 

• Number of epochs = 2 
 

 

(a) 
 

 

(b) 

Fig. 3. Forecast using LSTM for 1-year data                                       

(x-axis: hours, y-axis: MW)                                                                                

(a) AP (b) DAY 

.

Table 2. Detailed results of LSTM and GRU with 1-year and 5-year data 

Load 

Areas 

1-year data 5-year data 

LSTM GRU LSTM GRU 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

AP 173.17 
0.068 160.06 0.062 103.91 0.044 103.28 0.046 

DAY 39.53 
0.037 39.80 0.037 36.37 0.032 35.00 0.032 

DEOK 56.69 
0.044 52.27 0.044 65.14 0.034 64.86 0.038 
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(a) 

 

(b) 

Fig. 4. Forecast using GRU for 1-year data                                            

(x-axis: hours, y-axis: MW)                                                                                

(a) DEOK (b) EKPC 

 

(a) 

 

 

(b) 

Fig. 5. Forecast using LSTM for 5-year data                                         

(x-axis: hours, y-axis: MW)                                                                                 

(a) PEPCO (b) RECO 

(a) 

 

(b) 

Fig. 6. Forecast using GRU for 5-year data                                           

(x-axis: hours, y-axis: MW)                                                                                

(a) PEPCO (b) RECO 

IV. RESULTS AND DISCUSSION 

The systems are tested for two cases, one with 

one-year data while the second is trained for 5 

years of data. From the results, we can see the 

prediction of both systems is very near to each 

other. The results from GRU surpass LSTM in 3 

out of 6 load areas while in the case of 5-year data, 

GRU showed a significant improvement 

compared to LSTM. Both methods have 

presented similar values even with increasing the 

amount of data five folds. Fig. 3 and Fig. 4 show 

the forecast from LSTM and GRU respectively 

for different load areas for the 1-year test data. In 

Load 

Areas 

1-year data 5-year data 

LSTM GRU LSTM GRU 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

EKPC 54.42 
0.071 55.78 0.072 52.75 0.065 49.06 0.063 

PEPCO 76.09 
0.021 78.21 0.022 75.95 0.018 80.48 0.019 

RECO 3.76 
0.061 3.77 0.062 5.67 0.034 5.75 0.033 
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Fig. 5 and Fig. 6, the 5-year data from LSTM and 

GRU respectively is presented. The detailed 

results of all areas are shown in Table 2 

V. CONCLUSION 

This paper compares two state-of-the-art used 

intelligent forecasting techniques and presents the 

results on publicly available historical load data. 

The study showed a minimum difference in results 

even with the increase in the data 5 folds. The 

number of LSTM and GRU units being 256 caused 

the training time of the models to be higher. The 

study presented a method to reliably forecast a load 

of an area without the weather forecast being present 

which is to increase the units of the machine 

learning model.  
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