https://as-proceeding.com/index.php/ijanser/issue/feedInternational Journal of Advanced Natural Sciences and Engineering Researches2025-08-31T00:00:00+03:00IJANSERinfoijanser@gmail.comOpen Journal Systems<p>International Journal of Advanced Natural Sciences and Engineering Researches (IJANSER) publishes regular research papers, reviews, letters, and communications covering all aspects of engineering and natural sciences. Our aim is to publish novel / improved methods/approaches of these field to benefit the community, open to everyone in need of them. There is no restriction on the length of the papers or colors used. The method/approach must be presented in detail so that the results can be reproduced.</p>https://as-proceeding.com/index.php/ijanser/article/view/2772Industry 4.0 and Industry 5.0: A Hybrid Paradigm for Sustainable and Human-Centric Manufacturing 2025-07-31T21:29:04+03:00Noor Hatemmohammed.abedlhafd@uobasrah.edu.iqMohammed Mustafa Abedlhafdmohammed.abedlhafd@uobasrah.edu.iqZaid Hatemmohammed.abedlhafd@uobasrah.edu.iq<p>Smart manufacturing is made up of two views. Industry 4.0 encourages digitization and <br>automation of processes, while Industry 5.0 focuses on systems that put people first. Climate change, <br>pandemics, hybrid and conventional warfare, and refugees were all issues that Industry 5.0 dealt with. To <br>bring people back into corporate decision-making, we need long-term and strong solutions. This study <br>suggests a mix of Industry 4.0 and Industry 5.0 for operations that are highly automated and focused on <br>value for people. The technology of many jobs improved during the industrial revolutions. "Softwarization" <br>and digitalization are speeding up. To keep up with digital technology, Industry 4.0 needs to become <br>Industry 5.0 by combining its strengths. Over the past ten years, Industry 4.0 has made things better and <br>fixed a lot of problems. Now, Industry 5.0 is possible and needed. Smart manufacturing makes things work <br>better, but Industry 4.0 doesn't help society very much. This paper talks about the good and bad things about <br>Industry 5.0 and suggests that more research needs to be done. Industry 5.0 is more about people and <br>machines working together than it is about technology. In this new industrial revolution, customizing goods <br>and services will make customers happier and businesses more successful. The paper says that smart cities <br>and villages should use the latest technology to make Industry 5.0 and Society 5.0. We want to show <br>business leaders, decision-makers, and researchers how technology can help us reach the SDGs.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2773Novel Vinyl Substituted N-Heterocyclic Carbene Silver(I) Complex: Synthesis and Structural Characterization2025-07-31T21:35:34+03:00Emine Özge KARACAemine.ozcan@inonu.edu.tr<p>Transition metal complexes of N-heterocyclic carbenes (NHCs) containing benzimidazole have <br>been at the center of intensive research in organometallic chemistry and homogeneous catalysis over the <br>years [1]. The electronic and steric properties of NHC complexes can be easily modified. This makes <br>carbene complexes indispensable in homogeneous catalysis. These complexes also have greater stability <br>against air, moisture and heat compared to their phosphine analogues [2]. In addition to catalysis, M-NHC <br>complexes are also widely used in the medical field. In addition to their antimicrobial effects, these <br>compounds have also been shown to be active against cancer. Research on the antimicrobial and anticancer <br>properties of silver has continued to increase in recent years and there are now many different silver <br>complexes that exhibit a wide spectrum of antimicrobial and anticancer activity [3]. The current research <br>work aims to provide alternatives to some products. In this study, a new 1-(4-vinylbenzyl)-3-(alkyl)-5,6<br>dimethylbenzimidazol-2-ylidene]silver(I) complexes were synthesized. The structures of all compounds <br>were characterized by 1H NMR, 13C NMR and IR spectroscopy techniques.properties.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2774Geri Dönüştürülmüş Plastik Atık Malzemeler ile Beton Üretimi: Yapısal Performans ve Sürdürülebilirlik 2025-07-31T21:38:54+03:00Yasemin KILIÇ ERDİMa.yavuzsahin@gmail.comAhmet Yavuz ŞAHİNa.yavuzsahin@gmail.com<p>Günümüzde yapı malzemelerinde çevresel sürdürülebilirlik arayışı, özellikle çimento esaslı <br>ürünlerde alternatif hammadde kullanımını ön plana çıkarmaktadır. Bu doğrultuda, geri dönüştürülmüş <br>plastik atıkların çimento esaslı harçlarda değerlendirilmesi, hem doğal kaynak tüketiminin azaltılması <br>hem de atık yönetimine katkı sağlanması açısından önem taşımaktadır. Bu çalışmada, geri dönüştürülmüş <br>(PET) plastik atık malzeme çimento harcına ince agrega yerine hacimce %1 , %1.5 , %5 ve %10 <br>oranlarda ikame edilerek, yapısal performans üzerindeki etkileri incelenmiştir. <br>Deneysel çalışmada, TS EN 196-1 standardına uygun olarak 40×40×160 mm boyutlarında prizma harç <br>numuneleri üretilmiş ve 28 günlük kür süreci sonrasında mekanik ve fiziksel testlere tabi tutulmuştur. <br>Sertleşmiş numuneler üzerinde eğilme dayanımı ve ardından kırılan parçalarda basınç dayanımı (her ikisi <br>TS EN 196-1’e göre) uygulanmıştır. Ayrıca, farklı atık türleri ve ikame oranlarının harçların dayanıklılık <br>özellikleri üzerindeki etkileri karşılaştırmalı olarak değerlendirilmiştir. <br>Elde edilen bulgular, düşük ve orta düzeydeki ikame oranlarında geri dönüştürülmüş plastik ve atık <br>malzemelerin harç dayanımında kabul edilebilir seviyelerde performans sergileyebileceğini <br>göstermektedir. Bu çalışma, inşaat sektöründe sürdürülebilir ve çevre dostu harç tasarımlarının mümkün <br>olabileceğini gösterecek ve döngüsel ekonomiye yönelik uygulamalara bilimsel katkı sunmayı <br>amaçlamaktadır.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2775Energy Infrastructure-Based Fire Risk: The Impact of Electric Transmission Lines on Forest Ecosystems and Social Policy with Prevention Strategies2025-07-31T21:43:56+03:00Lect. İzzet Yavuzizyavuz@gelisim.edu.trAssist. Prof. Dr. Kaan Koçaliizyavuz@gelisim.edu.tr<p>In recent years, the rising frequency and intensity of forest fires globally have been driven not <br>only by climate change-related natural factors but also by human-induced infrastructure vulnerabilities. <br>Among the most at-risk areas are forested and rural regions intersected by power transmission lines. In <br>arid, windy, and low-humidity environments, technical issues such as poor maintenance, equipment <br>failure, inadequate insulation, or collapsed poles can generate sparks that ignite fires. These fires <br>endanger ecosystems and also disrupt livelihoods, essential services, and social well-being in affected <br>communities. This study investigates the relationship between energy transmission infrastructure and <br>forest fires from an integrated perspective encompassing engineering, environmental safety, and social <br>policy. Numerous international incidents, particularly in countries like the USA and Australia, highlight <br>faulty power infrastructure as a critical cause of large-scale fires. Accordingly, such fires should be <br>regarded not only as environmental disasters but also as technological and social crises. To mitigate these <br>risks, the study proposes several technical strategies: routine and autonomous inspection of power lines <br>via unmanned aerial vehicles (UAVs); early fault detection using thermal imaging technologies at cables <br>and connectors; creation of protective zones of at least 10 meters along power line routes; and <br>deployment of AI-powered spark detection sensors and smart grids equipped with fast-acting circuit <br>breakers. The study also explores the broader impacts of power outages during wildfires. These outages <br>can severely hinder emergency response capabilities, disrupt communication systems and healthcare <br>services, and destabilize supply chains for food and basic needs. Such disruptions tend to exacerbate <br>social inequalities, particularly in rural areas marked by high vulnerability. In conclusion, forest fires <br>represent a complex interplay between environmental risks, infrastructure safety, and social resilience. <br>Managing these risks effectively requires a multidisciplinary approach that incorporates disaster risk <br>reduction, rural development, and climate justice-oriented social policies. Key priorities should include <br>continuous monitoring of energy infrastructure, legal enforcement of maintenance responsibilities, and <br>targeted infrastructure investment in socially disadvantaged regions to ensure sustainable disaster <br>preparedness and response.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2776Optimization of Laser Micromachining using Advanced Predictive Deep Learning2025-07-31T21:48:58+03:00Aroosa Bibiengineeraroosabibi@gmail.comMamoona Khalidengineeraroosabibi@gmail.com<p>Ultrashort pulse laser micromachining is a transformative technology for precision <br>manufacturing, enabling intricate microchannel fabrication across diverse applications such as <br>semiconductors and microfluidics. This research presents a novel Deep Neural Network (DNN)-based <br>simulator designed to autonomously predict optimal laser processing parameters, enhancing energy <br>efficiency and precision. Implemented in Python within a Jupyter Note- book environment, the simulator <br>leverages critical inputs, including microchannel dimensions, refractive index, optical absorption <br>coefficient, and propagation loss, to optimize laser settings for materials like fluorides, germanates, and <br>silicates. The model achieves high predictive accuracy, with R² scores exceeding 0.98 for pulse duration, <br>repetition rate, and speed, and 0.93 for pulse energy, as validated through metrics like Mean Absolute <br>Error (MAE) and Mean Squared Error (MSE). This work establishes a robust framework for automated <br>parameter optimization, reducing experimental trials and advancing smart manufacturing. Future <br>enhancements include real-time parameter adjustment and expanded material compatibility, positioning <br>the simulator as a pivotal tool for industrial and academic applications.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2777Türkçe Metinlerde Duygu Tespiti: NLP ve Makine Öğrenmesi Yaklaşımı 2025-07-31T21:53:45+03:00Süleyman Özdemirozdemirsuleyman112@gmail.comBashar Alhajahmadbashar.aptech@gmail.com<p>Bu çalışma, Türkçe metinlerde insan duygularının otomatik olarak tespitine yönelik doğal dil <br>işleme (NLP) ve makine öğrenmesi tekniklerinin uygulanmasını ve değerlendirilmesini amaçlamaktadır. <br>Duygu tespiti; sosyal medya analizi, müşteri geri bildirimi, ruh sağlığı takibi ve insan-bilgisayar <br>etkileşimi gibi birçok alanda kritik bir rol oynamaktadır. Bu kapsamda, çalışmada Logistic Regression, <br>Naive Bayes ve Support Vector Machine (SVM) algoritmaları kullanılarak kapsamlı bir karşılaştırmalı <br>analiz gerçekleştirilmiştir. Modelin eğitimi ve test süreçleri, Kaggle platformundan temin edilen TREMO <br>veri kümesi üzerinde yürütülmüş; TF-IDF tabanlı özellik çıkarımı ile birlikte hiperparametre <br>optimizasyonu uygulanmıştır. Elde edilen sonuçlar, özellikle Logistic Regression algoritmasının %79,7 <br>doğruluk oranı ile en yüksek performansı sergilediğini ortaya koymuştur. Bu bulgular, klasik makine <br>öğrenmesi yöntemlerinin Türkçe duygu analizinde etkili çözümler sunabileceğini ve modellerin hangi <br>kelimeleri belirleyici olarak değerlendirdiğini göstermesi açısından önem arz etmektedir.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2778SPORCULARDA KARBONHİDRAT TÜKETİMİ2025-07-31T21:59:02+03:00Sinan AĞLARsinanaglarr@gmail.com<p>Sporcuların antrenmanlarda yüksek verim elde edebilmesi ve egzersiz sonrası yıpranmayı en aza <br>indirebilmesi için dengeli bir beslenme programı oldukça önemlidir. Bu programın en temel yapı <br>taşlarından biri de karbonhidratlardır. Karbonhidratlar, vücudun temel enerji kaynağı olarak yoğun <br>egzersizlerde kaslarda glikojen depolarını besleyerek sporcuların dayanıklılığını artırır. Antrenman <br>öncesinde yeterli miktarda karbonhidrat tüketilmesi, yorgunluk hissini geciktirirken performans <br>düşüşlerinin de önüne geçer. Antrenman ya da müsabaka sırasında karbonhidrat alımı, özellikle uzun <br>süren aktivitelerde enerjinin sürekliliğini sağlar. Antrenman bittikten sonra karbonhidrat alımının <br>proteinle birlikte yapılması ise hem enerji depolarının yeniden dolmasına katkıda bulunur hem de kas <br>dokusunun onarımını hızlandırır. Bu derlemede, sporcularda karbonhidrat tüketiminin farklı antrenman <br>evrelerindeki rolü, alınması gereken miktar ve hangi kaynaklardan sağlanabileceği gibi başlıklar ele <br>alınmaktadır. Ayrıca farklı spor branşlarında karbonhidrat planlamasının nasıl değiştiğine dair bilgiler <br>sunulmaktadır. Bu sayede antrenörlerin ve sporcuların antrenman ve müsabaka dönemlerinde doğru <br>karbonhidrat stratejileri geliştirmesi desteklenmektedir. Bilimsel bulgular, sporcunun yaşına, yaptığı spor <br>dalına ve antrenman yoğunluğuna göre karbonhidrat gereksiniminin değiştiğini göstermektedir. Bu <br>nedenle karbonhidrat tüketiminin planlanması, bireysel farklılıklar gözetilerek yapılmalıdır. Doğru bir <br>planlama ile sporcular hem performanslarını koruyabilir hem de sakatlanma riskini azaltabilir.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2779A Graph-Driven Machine Learning Framework for Biomedical Prediction and Spectral Network Modeling 2025-07-31T22:02:23+03:00Oltiana Toshkollarioltianatoshkollari@uamd.edu.alRinela Kapçiuoltianatoshkollari@uamd.edu.alRedjon Dedejoltianatoshkollari@uamd.edu.alEglantina Kalluçioltianatoshkollari@uamd.edu.al<p>The increasing intricacy of biomedical systems has necessitated the development of integrated <br>computational models that merge predictive precision with structural clarity. This article outlines the <br>creation and validation of a machine learning-based clinical decision support system for the early <br>evaluation of heart attack risk, enhanced by a conceptual network architecture relevant to broader <br>biological contexts, including microbiomes. A clinical dataset comprising nine cardiovascular markers <br>was used to assess three supervised algorithms: K-Nearest Neighbors, Naive Bayes, and Decision Tree. <br>The decision tree achieved an accuracy of 98%, validating its efficacy for structured health data. A <br>Python-based interface was developed, facilitating both manual and PDF data input for real-time clinical <br>use. <br>In addition to categorisation, each patient was represented as a node in a similarity network, facilitating <br>the conversion of flat data into a topological structure. The outputs of machine learning were interpreted <br>as node labels, serving as the foundation for subsequent applications in microbiome-host interaction <br>networks and gene co-expression research. This method facilitates the application of spectral graph <br>techniques, including Laplacian eigenvalue analysis and matrix functionals (e.g., exp(A), cosh(A)), to <br>investigate structural disturbances in biological systems. <br>This twin contribution—an accurate clinical prediction tool and a transferable graph-based modelling <br>framework—facilitates transdisciplinary applications in systems biology and computational <br>epidemiology. This study advances digital health initiatives by integrating machine learning with <br>topological reasoning, providing a reproducible basis for predictive modelling in biologically intricate, <br>network-structured fields.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2780Influence of Ditch Width and Depth on Velocity Distribution in Irrigation Canals: A Case Study Using ANSYS Fluent 2025-07-31T22:10:17+03:00Tamjeed Attaullahmuhammadtamjeed26@gmail.comNaveed Anjummuhammadtamjeed26@gmail.com<p>With an emphasis on a section of the Abbasia Canal in southern Punjab, Pakistan, this study <br>investigates how ditch width and depth affect flow behaviour in organized irrigation canals. Three distinct <br>ditch shapes were assessed using Computational Fluid Dynamics (CFD) modelling in ANSYS Fluent to <br>see how they affected energy dissipation, turbulence intensity, and velocity distribution. The realizable k-ε <br>turbulence model was utilized to simulate flow structures and energy losses, while the Volume of Fluid <br>(VOF) approach was utilized to capture free surface flow behaviour. In order to replicate real-world field <br>circumstances, each simulation included a perpendicular ditch that was attached to the main canal and <br>varied in size. The findings show that ditch shape affects hydraulic efficiency by substantially changing <br>both longitudinal and lateral velocity profiles. With its consistent velocity distribution and low turbulence, <br>the configuration in Case 2 (3 m broad, 0.75 m deep) showed the best performance, increasing discharge <br>capacity. However, Case 3 (6 m wide, 1.5 m deep) increased the possibility for sediment deposition and <br>decreased flow momentum while successfully lowering peak flow velocities and wasted energy. A <br>moderate balance between these impacts was provided by Case 1. In addition to offering practical advice <br>for maximizing water delivery, reducing erosion, and promoting sustainable canal infrastructure in semi<br>arid areas, these findings highlight the significance of ditch design in irrigation canal management.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2781Derin Öğrenme Uygulamaları ile Kötü Amaçlı Yazılım Tespitinde Model Performans Karşılaştırılması 2025-07-31T22:16:20+03:00Abdulhak ALASULUaalasulu73@gmail.comBashar ALHAJAHMADbashar.aptech@gmail.com<p>Bu çalışmada, günümüzün hızla artan dijitalleşme ve mobil cihaz kullanımıyla paralel olarak <br>yükselen kötü amaçlı yazılım tehditlerine karşı derin öğrenme tabanlı yaklaşımların etkinliği incelenmiştir. <br>Kötü amaçlı yazılım tespiti amacıyla, yaygın makine öğrenimi algoritması olan Uzun Kısa Vadeli Bellek <br>(LSTM) ile derin öğrenme mimarilerinden Tekrarlayan Sinir Ağı (RNN) ve Derin Sinir Ağı (DNN) <br>modelleri test edilmiştir. <br>Deneylerde, gerçek dünya kötü amaçlı yazılım senaryolarını yansıtan ve %50 kötü amaçlı, %50 iyi huylu <br>bellek dökümlerinden oluşan CIC-MalMem-2022 veri seti kullanılmıştır. Modellerin performansı, <br>doğruluk (accuracy) ve F1 skoru metrikleri üzerinden değerlendirilmiştir. <br>Elde edilen bulgular, derin öğrenme modelleri olan Derin Sinir Ağı (DNN) ve Tekrarlayan Sinir Ağı (RNN) <br>nın, Uzun Kısa Vadeli Bellek (LSTM)’e kıyasla kötü amaçlı yazılım tespitinde önemli ölçüde daha başarılı <br>olduğunu göstermiştir. Her iki derin öğrenme modeli de %100'e yakın doğruluk oranları ve 0.9998'lik F1 <br>skorları ile üstün performans sergilemiştir. Uzun Kısa Vadeli Bellek (LSTM)de yüksek performans gösterse <br>de, derin öğrenme modellerinin çok daha az yanlış sınıflandırma yaparak daha güvenilir sonuçlar ürettiği <br>belirlenmiştir. <br>Bu çalışma, derin öğrenme tabanlı yaklaşımların kötü amaçlı yazılım tespitinde son derece etkili olduğunu <br>ve siber güvenlik sistemlerinin güçlendirilmesinde kritik bir rol oynayabileceğini ortaya koymaktadır. Bu <br>bulgular ışığında, gelecekte daha güvenli bilişim sistemleri oluşturmak için derin öğrenme uygulamalarının <br>siber güvenlik alanına entegrasyonu büyük önem taşımaktadır.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2782Statistical Analysis of the Effect of Waste Polymer and Carbon Additives on Porosity in Cementitious Composites 2025-07-31T22:21:19+03:00Mücahit UĞURm.ugur@karatekin.edu.tr<p>Concrete is a building material that has been used extensively throughout human history and has <br>played a fundamental role in the formation of civilizations. The strength, durability, and longevity of <br>concrete are affected by many factors, and among these factors, porosity plays a critical role in determining <br>concrete quality. In recent years, advances in nanotechnology have highlighted the use of nanomaterials, <br>which impart different properties to building materials, particularly in the construction industry. However, <br>improper disposal of waste polymers poses a serious problem for the ecosystem. Therefore, the use of waste <br>polymers as aggregates in cement composites is considered an environmentally friendly approach. <br>However, considering that the use of polymer alone can lead to a loss of mechanical properties, this study <br>aimed to achieve synergistic effects by using graphene oxide, reduced graphene oxide, and graphene <br>nanopellet additives. A total of nine experiments were conducted using the Taguchi method using a <br>statistical experimental design and an L9(3⁴) orthogonal array. The experimental plan specified the type and <br>amount of nanomaterial, and the type and amount of polymer as parameters. It was determined that all <br>parameters had an impact on the porosity of the cement composite, with the polymer type being the most <br>influential parameter.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researcheshttps://as-proceeding.com/index.php/ijanser/article/view/2783Siber Tehditlerin Tanımlanmasında Model Performanslarının Karşılaştırılması: CNN, MLP ve Random Forest 2025-07-31T22:24:36+03:00Hatice Bathaticekahraman0138@gmail.comBashar Alhajahmadbashar.ahmad@siirt.edu.tr<p>Siber güvenlik alanında, özellikle ağ trafiği üzerindeki anomali tespiti, artan saldırı çeşitliliği ve <br>karmaşıklığı nedeniyle her geçen gün daha kritik hâle gelmektedir. Bu çalışma, KDDTest+ veri seti <br>üzerinde Convolutional Neural Network (CNN), Multi-Layer Perceptron (MLP) ve Random Forest <br>algoritmalarının anomali tespit performanslarını karşılaştırmalı olarak incelemektedir. Modeller; doğruluk <br>oranı, F1 skoru, ROC eğrisi ve öznitelik önem değerleri gibi metrikler üzerinden değerlendirilmiştir. <br>Random Forest modeli, %99 genel doğruluk ve yüksek F1 skorları ile öne çıkarken, özellikle src_bytes ve <br>dst_bytes gibi veri aktarımını temsil eden öznitelikler karar verme sürecinde belirleyici olmuştur. CNN <br>modeli %96,7 doğrulukla başarılı sonuçlar üretmiş; ancak eğitim süresi diğer modellere kıyasla daha uzun <br>olmuştur. MLP modeli ise daha sade bir yapıya sahip olmasına rağmen %97 doğruluk ve yüksek F1 skoru <br>ile hızlı ve etkili bir performans sergilemiştir. Sonuçlar, her üç modelin de ağ tabanlı siber saldırıların <br>tespitinde etkili olduğunu göstermektedir. Model seçimi, uygulama alanına ve veri yapısına göre değişiklik <br>gösterebilir. Gelecekte bu modellerin hibrit yaklaşımlarla birleştirilmesi, daha güvenli ve proaktif ağ <br>güvenliği çözümlerine katkı sağlayabilir.</p>2025-07-31T00:00:00+03:00Copyright (c) 2025 International Journal of Advanced Natural Sciences and Engineering Researches