Determination of Cutting Tool Performance Characteristics in Machining Nickel Based Super Alloys
Abstract views: 30 / PDF downloads: 107
DOI:
https://doi.org/10.59287/icaens.1031Keywords:
Machining, Optimization, Wear, Surface Roughness, Cutting ForceAbstract
Cutting tool materials often undergo severe mechanical stresses and thermal changes when machining nickel-based superalloys. The stresses and temperatures that arise when machining nickel-based superalloys greatly increase the blunting and wear rate of the cutting tool. As a result, tool life is adversely affected. It is seen from important studies that adhesion and abrasion wear mechanisms are more dominant in the processing of Inconel 718. The work material adheres to the cutting edge, forming a BUE. Depending on the cutting conditions, stable BUE is not always formed and this layer is sometimes repeatedly removed with the chips. Notching in the depth of cut, wear on the tool nose and coating layer is caused by the presence of hard particles in Inconel 718 and causes severe flank wear. Flank wear and notch are the main factors limiting tool life, and oxidation and diffusion occur as a result of high temperatures.