Geçiş Metali Katalizörleriyle Karbon Modülasyonu
Abstract views: 130 / PDF downloads: 131
Keywords:
Karbon, Geçiş Metalleri, Katalizör, İnorganik Karbon Bileşikleri, KarbonlamaAbstract
Karbon içeren kaynakların dönüştürülmesi için yüksek verimliliğe sahip katalizörlerin geliştirilmesi, enerji ve çevre sorunlarının başlıca çözümlerinden biridir. Dönüştürme işlemleri sırasında karbon, yalnızca reaksiyonlarda anahtar element olması bakımından değil, aynı zamanda katalizörlerin kimyasal yapısının modifikasyonuna da neden olabilmesi açısından önemli bir rol oynar. Özellikle, katalitik malzemelerin yapı-performans ilişkisinin anlaşılması, katalizör geliştirmenin temelidir. Karbon içeren kaynakların dönüştürülmesi sırasında karbonun katalizör yapıları üzerindeki modüle edici rolü artan ilgiyi çekmiştir. Bu çalışmada, Fe-, Co-, Ni- ve Mo bazlı katalizörlerin karbonla modülasyonunu sistematik olarak incelenmiştir. Geçiş metali katalizörlerinin (Fe, Co, Ni, Mo ve diğer geçiş metalleri) aktif fazları, morfolojileri, yüzey yapıları, elektronik özellikleri ve katalitik performanslarına odaklanılarak, bu katalizörlerin karbon ile modülasyonu katalizör karbürizasyonu ve karbonla ilgili yüzey reaksiyonları açısından karbonun davranışının ayarlanması araştırılmıştır. Karbon içeren kaynakların dönüşümü için katalizörlerin daha fazla tasarlanması ve geliştirilmesi ve ayrıca aktif karbon bölgeleri ve midilli büyüklüğünde iyi sarılmış metal türleri dahil olmak üzere çok sayıda diğer aktif merkezin aktivite katkısı için sistematik ve temel bilgiler sağlamaktadır.
References
Hoffmann, R. Marginalia: Carbides. Am. Sci. 2002, 90 (4), 318− 320.
Hoffmann, R.; Meyer, H.-J. The Electronic Structure of Two Novel Carbides, Ca3Cl2C3 and Sc3C4, Containing C3 Units. Z. Anorg. Allg. Chem. 1992, 607 (1), 57−71.
Hoffmann, R.; Li, J.; Wheeler, R. A. Yttrium Cobalt Carbide (YCoC): A Simple Organometallic Polymer in the Solid State with Strong Cobalt-Carbon.pi. Bonding. J. Am. Chem. Soc. 1987, 109 (22), 6600−6602.
Williams, W. S., Thermal Conductivity of Transition Metal Carbides. In The Physics and Chemistry of Carbides, Nitrides and Borides; Freer, R., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 1990; pp 625−637.
Rundle, R. A New Interpretation of Interstitial Compounds-Metallic Carbides, Nitrides and Oxides of Composition MX. Acta Crystallogr. 1948, 1 (4), 180−187.
Wijeyesekera, S. D.; Hoffmann, R. Transition Metal Carbides. A Comparison of Bonding in Extended and Molecular Interstitial Carbides. Organometallics 1984, 3 (7), 949−961.
Jansen, S. A.; Hoffmann, R. Surface Chemistry of Transition Metal Carbides: A Theoretical Analysis. Surf. Sci. 1988, 197 (3), 474− 508.
Prats, H.; Piñero, J. J.; Viñes, F.; Bromley, S. T.; Sayós, R.; Illas, F. Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions. Chem. Commun. 2019, 55 (85), 12797−12800.
Levy, R. B.; Boudart, M. Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis. Science 1973, 181 (4099), 547−549.
Mittemeijer, E. J.; Slycke, J. T. Chemical Potentials and Activities of Nitrogen and Carbon Imposed by Gaseous Nitriding and Carburising Atmospheres. Surf. Eng. 1996, 12 (2), 152−162.
Khan, R. U. Vacuum Gas Carburizing - Fate of Hydrocarbons; KIT Scientific: 2008.
Zhao, S.; Liu, X.-W.; Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H. Determining Surface Structure and Stability of α-Fe2C, χ-Fe5C2, θ- Fe3C and Fe4C Phases under Carburization Environment from Combined DFT and Atomistic Thermodynamic Studies. Catal., Struct. React. 2015, 1 (1), 44−60.
He, Z.; Maurice, J.-L.; Gohier, A.; Lee, C. S.; Pribat, D.; Cojocaru, C. S. Iron Catalysts for the Growth of Carbon Nanofibers: Fe, Fe3C or Both? Chem. Mater. 2011, 23 (24), 5379−5387.
Storch, H. H. The Fischer−Tropsch and Related Processes for Synthesis of Hydrocarbons by Hydrogenation of Carbon Monoxide; Academic Press: 1948; Vol. 1, pp 115−156.
Raupp, G. B.; Delgass, W. N. Mössbauer Investigation of Supported Fe and FeNi Catalysts: II. Carbides Formed Fischer−Tropsch Synthesis. J. Catal. 1979, 58 (3), 348−360.
Schulz, H.; Vein Steen, E.; Claeys, M., Selectivity and Mechanism of Fischer−Tropsch Synthesis with iron and Cobalt Catalysts. In Studies in Surface Science and Catalysis; Curry-Hyde, H. E., Howe, R. F., Eds.; Elsevier: 1994; Vol. 81, pp 455−460.
Weststrate, C. J.; van Helden, P.; van de Loosdrecht, J.; Niemantsverdriet, J. W. Elementary Steps in Fischer−Tropsch Synthesis: CO Bond Scission, CO Oxidation and Surface Carbiding on Co(0001). Surf. Sci. 2016, 648, 60−66.
Lin, Q.; Liu, B.; Jiang, F.; Fang, X.; Xu, Y.; Liu, X. Assessing the Formation of Cobalt Carbide and its Catalytic Performance under Realistic Reaction Conditions and Tuning Product Selectivity in a Cobalt-Based FTS Reaction. Catal. Sci. Technol. 2019, 9 (12), 3238−3258.
Claeys, M.; Dry, M. E.; van Steen, E.; du Plessis, E.; van Berge, P. J.; Saib, A. M.; Moodley, D. J. Insitu Magnetometer Study on the Formation and Stability of Cobalt Carbide in Fischer−Tropsch Synthesis. J. Catal. 2014, 318, 193−202.
Zhong, L.; Yu, F.; An, Y.; Zhao, Y.; Sun, Y.; Li, Z.; Lin, T.; Lin, Y.; Qi, X.; Dai, Y.; Gu, L.; Hu, J.; Jin, S.; Shen, Q.; Wang, H. Cobalt Carbide Nanoprisms for Direct Production of Lower Olefins from Syngas. Nature 2016, 538 (7623), 84−87.
Diccianni, J.; Lin, Q.; Diao, T. Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization. Acc. Chem. Res. 2020, 53 (4), 906−919.
Kleiderer, E. C.; Kornfeld, E. C. Raney Nickel as An Organic Oxidation-Reduction Catalyst1. J. Org. Chem. 1948, 13 (3), 455−458. (116) Fan, M.-S.; Abdullah, A. Z.; Bhatia, S. Catalytic Technology for Carbon Dioxide
Reforming of Methane to Synthesis Gas. ChemCatChem 2009, 1 (2), 192−208.
Fan, M.-S.; Abdullah, A. Z.; Bhatia, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem 2009, 1 (2), 192−208.
Alvarez-Galvan, C.; Melian, M.; Ruiz-Matas, L.; Eslava, J. L.; Navarro, R. M.; Ahmadi, M.; Roldan Cuenya, B.; Fierro, J. L. G. Partial Oxidation of Methane to Syngas Over Nickel-based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method. Front. Chem. 2019, 7, 104.
Adkins, H.; Cramer, H. I. The Use of Nickel as A Catalyst for Hydrogenation. J. Am. Chem. Soc. 1930, 52 (11), 4349−4358.
Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. J. Am. Chem. Soc. 2010, 132 (5), 1468−1469.
Julia-Hernandez, F.; Moragas, T.; Cornella, J.; Martin, R. Remote Carboxylation of Halogenated Aliphatic Hydrocarbons with Carbon Dioxide. Nature 2017, 545 (7652), 84−88.
Enger, B. C.; Holmen, A. Nickel and Fischer−Tropsch Synthesis. Catal. Rev.: Sci. Eng. 2012, 54 (4), 437- 488.
Chen, Z.; Yan, Y.; Elnashaie, S. S. E. H. Catalyst Deactivation and Engineering Control for Steam Reforming of Higher Hydrocarbons in a Novel Membrane Reformer. Chem. Eng. Sci. 2004, 59(10), 1965−1978.
Ding, R. G.; Yan, Z. F.; Qian, L., Studies on Carbon Deposition of the Nickel-based Catalysts for Carbon Dioxide Reforming of Methane. Financial support by the Young Scientists Award Foundation of Shandong Province and China National Petroleum Corporation are appreciated. In Studies in Surface Science and Catalysis; Spivey, J. J., Roberts, G. W., Davis, B. H., Eds.; Elsevier: 2001; Vol. 139, pp 101−108.
Ji, K.; Meng, F.; Xun, J.; Liu, P.; Zhang, K.; Li, Z.; Gao, J. Carbon Deposition Behavior of Ni Catalyst Prepared by Combustion Method in Slurry Methanation Reaction. Catalysts 2019, 9 (7), 570.
Li, X.; Liu, S. S.; Chen, W.; Wang, L.-S. The Electronic Structure of MoC and WC by Anion Photoelectron Spectroscopy. J. Chem. Phys. 1999, 111 (6), 2464−2469.
Cruz-Olvera, D.; Calaminici, P. Investigation of Structures and Energy Properties of Molybdenum Carbide Clusters: Insight from Theory. Comput. Theor. Chem. 2016, 1078, 55−64.
Elliott, J. A.; Shibuta, Y.; Wales, D. J. Global Minima of Transition Metal Clusters Described by Finnis−Sinclair Potentials: A Comparison with Semi-Empirical Molecular Orbital Theory. Philos. Mag. 2009, 89 (34−36), 3311−3332.
Liu, X.; Salahub, D. R. Application of Topological Analysis of the Electron Localization Function to the Complexes of Molybdenum Carbide Nanoparticles with Unsaturated Hydrocarbons. Can. J. Chem. 2016, 94 (4), 282−292.
Gardner, B. M.; Kefalidis, C. E.; Lu, E.; Patel, D.; McInnes, E. J. L.; Tuna, F.; Wooles, A. J.; Maron, L.; Liddle, S. T. Evidence for Single Metal Two Electron
Oxidative Addition and Reductive Elimination at Uranium. Nat. Commun. 2017, 8 (1), 1898.
Wen, X.-D.; Rudin, S. P.; Batista, E. R.; Clark, D. L.; Scuseria, G. E.; Martin, R. L. Rotational Rehybridization and the High-Temperature Phase of UC2. Inorg. Chem. 2012, 51 (23), 12650−12659.
Janbroers, S.; Louwen, J. N.; Zandbergen, H. W.; Kooyman, P. J. Insights into the Nature of Iron-based Fischer−Tropsch Catalysts from Quasi in Situ TEM-EELS and XRD. J. Catal. 2009, 268 (2), 235−242.
Böller, B.; Durner, K. M.; Wintterlin, J. The Active Sites of a Working Fischer−Tropsch Catalyst Revealed by Operando Scanning Tunnelling Microscopy. Nat. Catal. 2019, 2 (11), 1027−1034.
de Smit, E.; Swart, I.; Creemer, J. F.; Karunakaran, C.; Bertwistle, D.; Zandbergen, H. W.; de Groot, F. M. F.; Weckhuysen, B. M. Nanoscale Chemical Imaging of the Reduction Behavior of a Single Catalyst Particle. Angew. Chem., Int. Ed. 2009, 48 (20), 3632−3636.
Greeley, J. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. Annu. Rev. Chem. Biomol. Eng. 2016, 7 (1), 605−635.
Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the Computational Design of Solid Catalysts. Nat. Chem. 2009, 1 (1), 37−46.
Cao, J.; Song, N.; Chen, W.; Cao, Y.; Qian, G.; Duan, X.; Zhou, X. Role of C-Defective Sites in CO Adsorption over ϵ-Fe2C and η-Fe2C Fischer−Tropsch Catalysts. Chem. - Asian J. 2020, 15 (23), 4014−4022.
Min, E.; Guo, X.; Liu, Q.; Zhang, G.; Cui, J.; Long, J. A Survey of Clustering with Deep Learning: From the Perspective of Network Architecture. IEEE Access 2018, 6, 39501−39514.
Zhu, J.; M., Shichun. Active site engineering of atomically dispersed transition metal–heteroatom–carbon catalysts for oxygen reduction. Chem. Commun., 2021, 57, 7869–7881.