Numerical performance of some positivity preserving methods for the diffusion equation where the diffusion coefficient depends on both time and space


Abstract views: 19 / PDF downloads: 51

Authors

  • Husniddin Khayrullaev University of Miskolc
  • Endre Kovács University of Miskolc

Keywords:

Diffusion, Heat Conduction Unconditionally Stable Numerical Methods, Positivity Preserving Schemes

Abstract

The transient diffusion equation is solved, where the diffusion coefficient itself depends
simultaneously on space and time. A nontrivial analytical solution containing the Whittaker functions is
reproduced by 15 explicit numerical time integrators, most of which unconditionally preserve the positivity
of the solutions. The accuracy of the methods is extensively examined, and it is found that these algorithms
give very good results even in those cases where the standard explicit Runge-Kutta methods are hopeless
due to the extreme stiffness of the problem.

Downloads

Download data is not yet available.

Author Biographies

Husniddin Khayrullaev, University of Miskolc

Institute of Physics and Electrical Engineering, 3515 Miskolc, Hungary

Endre Kovács , University of Miskolc

Institute of Physics and Electrical Engineering, 3515 Miskolc, Hungary

References

H. Yu et al., ‘The Moisture Diffusion Equation for Moisture Absorption of Multiphase Symmetrical Sandwich Structures’, Mathematics, vol. 10, no. 15, p. 2669, Jul. 2022, doi: 10.3390/math10152669.

L. Mátyás and I. F. Barna, ‘General Self-Similar Solutions of Diffusion Equation and Related Constructions’, Romanian J. Phys., vol. 67, p. 101, 2022.

I. F. Barna and L. Mátyás, ‘Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations’, Mathematics, vol. 10, no. 18, p. 3281, Sep. 2022, doi: 10.3390/math10183281.

M. Saleh, E. Kovács, I. F. Barna, and L. Mátyás, ‘New Analytical Results and Comparison of 14 Numerical Schemes for the Diffusion Equation with Space-Dependent Diffusion Coefficient’, Mathematics, vol. 10, no. 15, p. 2813, Aug. 2022, doi: 10.3390/math10152813.

M. Saleh, E. Kovács, and I. F. Barna, ‘Analytical and Numerical Results for the Transient Diffusion Equation with Diffusion Coefficient Depending on Both Space and Time’, Algorithms, vol. 16, no. 4, p. 184, Mar. 2023, doi: 10.3390/a16040184.

E. Kovács, J. Majár, and M. Saleh, ‘Unconditionally Positive, Explicit, Fourth Order Method for the Diffusion- and Nagumo-Type Diffusion–Reaction Equations’, J. Sci. Comput. 2024 982, vol. 98, no. 2, pp. 1–39, Jan. 2024, doi: 10.1007/S10915-023-02426-9.

S. M. Savović and A. Djordjevich, ‘Numerical solution of diffusion equation describing the flow of radon through concrete’, Appl. Radiat. Isot., vol. 66, no. 4, pp. 552–555, 2008, doi: 10.1016/j.apradiso.2007.08.018.

O. A. Jejeniwa, H. H. Gidey, and A. R. Appadu, ‘Numerical Modeling of Pollutant Transport: Results and Optimal Parameters’, Symmetry, vol. 14, no. 12, p. 2616, Dec. 2022, doi: 10.3390/sym14122616.

S. Essongue, Y. Ledoux, and A. Ballu, ‘Speeding up mesoscale thermal simulations of powder bed additive manufacturing thanks to the forward Euler time-integration scheme: A critical assessment’, Finite Elem. Anal. Des., vol. 211, p. 103825, Nov. 2022, doi: 10.1016/j.finel.2022.103825.

L. Beuken, O. Cheffert, A. Tutueva, D. Butusov, and V. Legat, ‘Numerical Stability and Performance of Semi-Explicit and Semi-Implicit Predictor–Corrector Methods’, Mathematics, vol. 10, no. 12, Jun. 2022, doi: 10.3390/math10122015.

Y. Ji and Y. Xing, ‘Highly Accurate and Efficient Time Integration Methods with Unconditional Stability and Flexible Numerical Dissipation’, Mathematics, vol. 11, no. 3, p. 593, Jan. 2023, doi: 10.3390/math11030593.

P. Fedoseev, D. Pesterev, A. Karimov, and D. Butusov, ‘New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers’, Algorithms, vol. 15, no. 8, p. 275, Aug. 2022, doi: 10.3390/a15080275.

N. Ndou, P. Dlamini, and B. A. Jacobs, ‘Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–Reaction Equations’, Mathematics, vol. 10, no. 15, p. 2639, Jul. 2022, doi: 10.3390/math10152639.

M. H. Holmes, Introduction to Numerical Methods in Differential Equations. New York: Springer, 2007. doi: 10.1007/978-0-387-68121-4.

B. M. Chen-Charpentier and H. V. Kojouharov, ‘An unconditionally positivity preserving scheme for advection-diffusion reaction equations’, Math. Comput. Model., vol. 57, pp. 2177–2185, 2013, doi: 10.1016/j.mcm.2011.05.005.

A. R. Appadu, ‘Performance of UPFD scheme under some different regimes of advection, diffusion and reaction’, Int. J. Numer. Methods Heat Fluid Flow, vol. 27, no. 7, pp. 1412–1429, 2017, doi: 10.1108/HFF-01-2016-0038.

B. Drljača and S. Savović, ‘Unconditionally positive finite difference and standard explicit finite difference schemes for power flow equation’, Univ. Thought - Publ. Nat. Sci., vol. 9, no. 2, pp. 75–78, 2019, doi: 10.5937/univtho9-23312.

N. Ndou, P. Dlamini, and B. A. Jacobs, ‘Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–Reaction Equations’, Mathematics, vol. 10, no. 15, Art. no. 15, Jan. 2022, doi: 10.3390/math10152639.

Á. Nagy, I. Omle, H. Kareem, E. Kovács, I. F. Barna, and G. Bognar, ‘Stable, Explicit, Leapfrog-Hopscotch Algorithms for the Diffusion Equation’, Computation, vol. 9, no. 8, p. 92, 2021.

E. Kovács, ‘New Stable, Explicit, First Order Method to Solve the Heat Conduction Equation’, J. Comput. Appl. Mech., vol. 15, no. 1, pp. 3–13, 2020, doi: 10.32973/jcam.2020.001.

E. Kovács, ‘A class of new stable, explicit methods to solve the non-stationary heat equation’, Numer. Methods Partial Differ. Equ., vol. 37, no. 3, pp. 2469–2489, 2020, doi: 10.1002/num.22730.

E. Kovács, Á. Nagy, and M. Saleh, ‘A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation’, Mathematics, vol. 9, no. 18, p. 2284, Sep. 2021, doi: 10.3390/math9182284.

E. Kovács, Á. Nagy, and M. Saleh, ‘A New Stable, Explicit, Third‐Order Method for Diffusion‐Type Problems’, Adv. Theory Simul., 2022, doi: 10.1002/adts.202100600.

E. Kovács and Á. Nagy, ‘A new stable, explicit, and generic third‐order method for simulating conductive heat transfer’, Numer. Methods Partial Differ. Equ., vol. 39, no. 2, pp. 1504–1528, Nov. 2023, doi: 10.1002/num.22943.

H. K. Jalghaf, E. Kovács, J. Majár, Á. Nagy, and A. H. Askar, ‘Explicit stable finite difference methods for diffusion-reaction type equations’, Mathematics, vol. 9, no. 24, 2021, doi: 10.3390/math9243308.

Downloads

Published

2024-03-13

How to Cite

Khayrullaev, H., & Kovács , E. (2024). Numerical performance of some positivity preserving methods for the diffusion equation where the diffusion coefficient depends on both time and space. International Journal of Advanced Natural Sciences and Engineering Researches, 8(2), 284–292. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/1722

Issue

Section

Articles