Enhancing sensitivity of dye-sensitized photovoltaics across low illumination conditions through TiCl4 treatment
Abstract views: 54 / PDF downloads: 39
Keywords:
Low Illumination, Photovoltaics, Dye-SensitizedAbstract
This study investigates the effect of TiCl4 treatment on the fabrication of Dye-Sensitized Photovoltaics (DSPs) structures using Ruthenizer 535-4TBA (N-712) dye. DSPs are known for their sensitivity to low light levels, making them suitable for sensor applications in environments with reduced illumination. The research compares DSP structures treated with TiCl4 during fabrication to those that did not undergo this treatment. The study aims to analyze the impact of these fabrication methods on energy conversion efficiency and sensor performance.
Electrical measurements were conducted under both standard illumination conditions and gradually reduced low-light conditions across 13 steps as 1000, 500, 250, 100, 50, 25, 10, 5, 2, 1, 0,5, 0,3 and 0,1 W/m2. Results show that DSP efficiency significantly increases under low-light conditions, with the TiCl4-treated sample exhibiting an efficiency of 9.33% under 1000 W/m2 illumination, which rises to 27.5% under 0.1 W/m2. Additionally, electrochemical properties were analyzed using Electrochemical Impedance Spectroscopy (EIS). Parameters such as electron lifetime, rise time, and fall time were determined to characterize the sensors. Response times of approximately 4.1 nanoseconds for T-N712 and 5.3 nanoseconds for N712 were recorded.
In summary, the study demonstrates the potential of TiCl4 treatment in enhancing the sensitivity and performance of DSPs, particularly under low-light conditions. The research provides valuable insights into optimizing DSP fabrication processes for improved energy conversion efficiency and sensor capabilities. These findings contribute to the ongoing development of DSPs for various applications, including sensing in environments with limited illumination.
Downloads
References
O. Jogunola, C. Morley, I. J. Akpan, Y. Tsado, B. Adebisi and L. Yao, Energy consumption in commercial buildings in a post-COVID-19 world, IEEE Eng. Manag. Rev., 2022. 50 (1), pp. 54-64, 1st Quart..
L. Li, J. Lin, N. Wu, S. Xie, C. Meng, Y. Zheng, et al., Review and outlook on the international renewable energy development, Energy Built Environ., 2022. 3 (2), pp. 139-157.
G. Li, M. Li, R. Taylor, Y. Hao, G. Besagni and C. N. Markides, Solar energy utilisation: Current status and roll-out potential, Appl. Thermal Eng., 2022. 209.
S. A. Olaleru, J. K. Kirui, D. Wamwangi, K. T. Roro and B. Mwakikunga, Perovskite solar cells: The new epoch in photovoltaics, Sol. Energy, 2020. 196, pp. 295-309.
O. I. Francis and A. Ikenna, Review of dye-sensitized solar cell (DSSCs) development, Natural Sci., 2021. 13(12), pp. 496–509.
J. Yan, T. J. Savenije, L. Mazzarella, and O. Isabella, Progress and challenges on scaling up of perovskite solar cell technology, Sustain. Energy Fuels, 2022. 6 (2), pp. 243–266.
P. Semalti and S. N. Sharma, Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: A review, J. Nanosci. Nanotechnol.,2020. 20(6), pp. 3647–3658.
S. De Sousa, S. Lyu, L. Ducasse, T. Toupance, and C. Olivier, Tuning isible-light absorption properties of Ru-diacetylide complexes: Simple access to colorful efficient dyes for DSSCs, J. Mater. Chem. A, 2015. 3(35), pp. 18256–18264.
X. Xie, Y. Zhang, Y. Ren, L. He, Y. Yuan, J. Zhang, and P. Wang, Semitransparent dye-sensitized solar cell with 11% efficiency and photothermal stability, J. Phys. Chem. C, 2022. 126(27), pp. 11007–11015.
S. Yun, P. D. Lund, and A. Hinsch, Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells, Energy Environ. Sci., 2015. 8(12), pp. 3495–3514.
U. Mehmood, A. Al-Ahmed, F. A. Al-Sulaiman, M. I. Malik, F. Shehzad, and A. U. H. Khan, Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review, Renew. Sustain. Energy Rev., 2017. 79, pp. 946–959.
B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991. 353(6346), pp. 737–740.
P.R. Schol, W.S. Zhang, T. Scharl, A. Kunzmann, W. Peukert, R.R. Schröder, D.M. Guldi, Intrinsic and extrinsic incorporation of indium and single-walled carbon nanotubes for improved ZnO-based DSSCs. Adv. Energy Mater. 2022. 12(13), 2103662.
K.S. Keremane, A. Planchat, Y. Pellegrin, D. Jacquemin, F. Odobel, A.V. Adhikari, Push-pull phenoxazine-based sensitizers for p-type DSSCs: Effect of acceptor units on photovoltaic performance. Chem. Sustain. Energy Mater. 2022. 15, 1–14.
A. Atli, A. Atilgan, C. Altinkaya, K. Ozel, A. Yildiz, St. Lucie cherry, yellow jasmine, and madder berries as novel natural sensitizers for dye-sensitized solar cells. Int. J. Energy Res. 2019. 43(8), 3914–3922.
B. Atilgan, A. Yildiz, Ni-doped TiO2/TiO2 homojunction photoanodes for efficient dye-sensitized solar cells. Int. J. Energy Res. 2022. 46, 14558.
Y. Kocak, A. Atli, A. Atilgan, A. Yildiz, Extraction method dependent performance of bio-based dye-sensitized solar cells (DSSCs). Mater. Res. Express. 2019. 6(9), 095512.
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013. 499(7458), 316–319.
M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, Materials interface engineering for solution-processed photovoltaics, Nature, 2012. vol. 488(7411), pp. 304–312.
M. Younas, M. A. Gondal, M. A. Dastageer, and K. Harrabi, Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode, Sol. Energy, 2019. 188, pp. 1178–1188.
M. Filipič, M. Berginc, F. Smole, and M. Topič, Analysis of electron recombination in dye-sensitized solar cell, Current Appl. Phys.,2012. 12(1), pp. 238–246.
Zhu, K., Kopidakis, N., Neale, N. R., Van De Lagemaat, J., & Frank, A. J. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. The Journal of Physical Chemistry B, 2006. 110(50), 25174-25180.
Lee, S. W., Ahn, K. S., Zhu, K., Neale, N. R., & Frank, A. J. Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. The Journal of Physical Chemistry C, 2012. 116(40), 21285-21290.
Marchioro, A., Dualeh, A., Punzi, A., Grätzel, M., & Moser, J. E.. Effect of posttreatment of titania mesoscopic films by TiCl4 in solid-state dye-sensitized solar cells: a time-resolved spectroscopy study. The Journal of Physical Chemistry C, 2012. 116(51), 26721-26727.
Adhikari, S. G., Shamsaldeen, A., & Andersson, G. G. The effect of TiCl4 treatment on the performance of dye-sensitized solar cells. The Journal of Chemical Physics, 2019. 151(16), 16470.
Ostapchenko, V., Huang, Q., Zhang, Q., & Zhao, C. Effect of TiCl4 treatment on different TiO2 blocking layer deposition methods. International Journal of Electrochemical Science, 2017. 12(3), 2262-2271.
Choi, H., Nahm, C., Kim, J., Moon, J., Nam, S., Jung, D. R., & Park, B. The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Current Applied Physics, 2012. 12(3), 737-741.
Sommeling, P. M., O'Regan, B. C., Haswell, R. R., Smit, H. J. P., Bakker, N. J., Smits, J. J. T., ... & Van Roosmalen, J. A. M. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. The Journal of Physical Chemistry B, 2006. 110(39), 19191-19197.
Cojocaru, L., Uchida, S., Sanehira, Y., Nakazaki, J., Kubo, T., & Segawa, H. Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chemistry Letters,2015. 44(5), 674-676.
Murakami, T. N., Miyadera, T., Funaki, T., Cojocaru, L., Kazaoui, S., Chikamatsu, M., & Segawa, H. Adjustment of conduction band edge of compact TiO2 layer in perovskite solar cells through TiCl4 treatment. ACS applied materials & interfaces, 2017. 9(42), 36708-36714.
Tang, Q., Zhang, H., Meng, Y., He, B., & Yu, L. Dissolution engineering of platinum alloy counter electrodes in dye‐sensitized solar cells. Angewandte Chemie International Edition, 2015. 54(39), 11448-11452.
Sun, W., Choy, K. L., & Wang, M. The role of thickness control and interface modification in assembling efficient planar perovskite solar cells. Molecules, 2019. 24(19), 3466.
B.C. O’ Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J. Phys. Chem. 2007. 111(37), 14001–14010.
Liu, M., Endo, M., Shimazaki, A., Wakamiya, A., & Tachibana, Y. Excitation wavelength dependent interfacial charge transfer dynamics in a CH3NH3PbI3 perovskite film. Journal of Photopolymer Science and Technology,2018. 31(5), 633-642.
Makuta, S., Liu, M., Endo, M., Nishimura, H., Wakamiya, A., & Tachibana, Y. Photo-excitation intensity dependent electron and hole injections from lead iodide perovskite to nanocrystalline TiO 2 and spiro-OMeTAD. Chemical Communications, 2016. 52(4), 673-676.
Wang, E., Chen, P., Yin, X., Gao, B., & Que, W. Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl4 treatment. Journal of Advanced Dielectrics, 2018. 8(02), 18500098.
Liu, Z., Chen, Q., Hong, Z., Zhou, H., Xu, X., De Marco, N., ... & Yang, Y. Low-temperature TiO x compact layer for planar heterojunction perovskite solar cells. ACS Applied Materials & Interfaces, 2016. 8(17), 11076-11083.
Vesce, L., Riccitelli, R., Soscia, G., Brown, T. M., Di Carlo, A., & Reale, A. Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment. Journal of Non-crystalline solids, 2010. 356(37-40), 1958-1961.
Miranda-Gamboa, R. A., Baron-Jaimes, A., Millán-Franco, M. A., Pérez, O., Rincon, M. E., & Jaramillo-Quintero, O. A. Understanding the effect of TiCl4 treatment at TiO2/Sb2S3 interface on the enhanced performance of Sb2S3 solar cells, 2024. Materials Research Express, 11(2), 025003.
Karaoğlan, G. K., Hışır, A., Maden, Y. E., Karakuş, M. Ö., & Koca, A. Synthesis, characterization, electrochemical, spectroelectrochemical and dye-sensitized solar cell properties of phthalocyanines containing carboxylic acid anchoring groups as photosensitizer. Dyes and Pigments, 2022. 204, 110390.
Mehmood, U., Hussein, I. A., Harrabi, K., Tabet, N., & Berdiyorov, G. R. Enhanced photovoltaic performance with co-sensitization of a ruthenium (II) sensitizer and an organic dye in dye-sensitized solar cells. RSC Adv. 2016. 6, 7897–7901.
Mahajan, U., Prajapat, K., Sahu, K., Ghosh, P., Shirage, P. M., & Dhonde, M. Unveiling the impact of TiCl4 surface passivation on dye-sensitized solar cells: enhancing charge transfer kinetics and power conversion efficiency. Journal of Materials Science: Materials in Electronics, 2023. 34(31), 2108.
Ilgün, C., Sevim, A. M., Cakar, S., Özacar, M., & Gül, A. Novel Co and Zn-Phthalocyanine dyes with octa-carboxylic acid substituents for DSSCs. Solar Energy, 2021. 218, 169-179.
Sebuso, D. P., Kuvarega, A. T., Lefatshe, K., King'ondu, C. K., Numan, N., Maaza, M., & Muiva, C. M. Corn husk multilayered graphene/ZnO nanocomposite materials with enhanced photocatalytic activity for organic dyes and doxycycline degradation. Materials Research Bulletin, 2022. 151, 111800.
Bardizza, G., Pavanello, D., Galleano, R., Sample, T., & Müllejans, H. Calibration procedure for solar cells exhibiting slow response and application to a dye-sensitized photovoltaic device. Solar Energy Materials and Solar Cells,2017. 160, 418-424.
Bilen, K. E. M. A. L., & Yildiz, Y. U. S. U. F. Synergistic effect of Ga (NO3) 3 & TiCl4 post-treatment on photovoltaic performance of dye-sensitized solar cells. Applied Physics A, 2023. 129(4), 310.
Srivastava, A., Satrughna, J. A. K., Tiwari, M. K., Kanwade, A., Yadav, S. C., Bala, K., & Shirage, P. M. Effect of Ti 1− x Fe x O 2 photoanodes on the performance of dye-sensitized solar cells utilizing natural betalain pigments extracted from Beta vulgaris (BV). Energy Advances, 2023. 2(1), 148-160.
S.W. Lee, K.S. Ahn, K. Zhu, N.R. Neale, A.J. Frank, Effects of TiCl 4 treatment of nanoporous TiO 2 films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. J. Phys. Chem. C 2012. 116, 21285–21290.
P.R. Schol, W.S. Zhang, T. Scharl, A. Kunzmann, W. Peukert, R.R. Schröder, D.M. Guldi, Intrinsic and extrinsic incorporation of indium and single-walled carbon nanotubes for improved ZnO-based DSSCs. Adv. Energy Mater. 2022. 12(13), 2103662.
Elboughdiri, N., Lakikza, I., Boublia, A., Aouni, S. I., Hammoudi, N. E. H., Georgin, J., ... & Benguerba, Y. Application of statistical physical, DFT computation and molecular dynamics simulation for enhanced removal of crystal violet and basic fuchsin dyes utilizing biosorbent derived from residual watermelon seeds (citrullus lanatus). Process Safety and Environmental Protection 2024. 186, 995-1010.
Q.M. Fu, D.C. He, Z.C. Yao, J.L. Peng, H.Y. Zhao, H. Tao, Z. Chen, Y.F. Tu, Y. Tian, D. Zhou, G. Zheng, Z.B. Ma, Self-powered ultraviolet photodetector based on ZnO nanorod arrays decorated with sea anemone-like CuO nanostructures, Mater. Lett. 2018. 222, 74–77.
S. Sharma, R. Khosla, D. Deva, H. Shrimali, S.K. Sharma, Fluorine-Chlorine codoped TiO2/CSA doped Polyaniline based high performance Inorganic/Organic hybrid heterostructure for UV photodetection applications, Sensor Actuator Phys. 2017. 261, 94–102.