Biogas: A Sustainable Energy Solution for Reducing Greenhouse Gas Emissions


Abstract views: 63 / PDF downloads: 27

Authors

  • Sümeyye Arslan Çankırı Karatekin University
  • Zehra Gülten Yalçın Çankırı Karatekin University
  • Mustafa Dağ Çankırı Karatekin University

Keywords:

Biogas, Greenhouse Gas Emissions, Anaerobic Digestion, Renewable Energy

Abstract

One of the greatest challenges that societies face now and in the future is the reduction of
greenhouse gas emissions to mitigate climate change. Therefore, the preference for biogas over fossil
fuels is crucial. Biogas can be produced from various organic waste streams or as a byproduct of
industrial processes. It offers several advantages, including not only energy production but also the
decomposition of organic waste through anaerobic digestion, mitigation of odor emissions, prevention of
pathogen release, among others. Additionally, the nutrient-rich digested residues can be used as fertilizer
for recycling nutrients back into fields. However, the quantity of available organic materials for biogas
production is limited. Hence, there is a need for new substrates and advanced technologies for biogas
production worldwide. Significant advancements have been made in addressing these limitations through
the utilization of lignocellulosic biomass, the development of high-rate systems, and the application of
membrane technologies in the anaerobic digestion process. The breakdown of organic matter requires
synchronized movement of different groups of microorganisms with varying metabolic capacities. The
unsustainable use of fossil fuels underscores the environmental impact of greenhouse gases, prompting
research into renewable energy production from organic sources and waste. Global energy demand is
high, with the majority being derived from fossil sources. Recent studies highlight anaerobic digestion as
an efficient alternative that combines biofuel production with sustainable waste management.
Technological research efforts are ongoing to enhance biogas production and quality within the biogas
industry.

Downloads

Download data is not yet available.

Author Biographies

Sümeyye Arslan, Çankırı Karatekin University

Department of Chemical Engineering, Faculty of Engineering, 18100, Çankırı, Turkey.

Zehra Gülten Yalçın, Çankırı Karatekin University

Department of Chemical Engineering, Faculty of Engineering, 18100, Çankırı, Turkey.

Mustafa Dağ, Çankırı Karatekin University

Department of Chemical Engineering, Faculty of Engineering, 18100, Çankırı, Turkey.

References

Wang, H., Vuorela, M., Keränen, A-L., Lehtinen, T.M., Lensu, A., Lehtomäki, A., Rintala, J., 2010. Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production. FEMS Microbiol. Ecol. 72(3), 496-506.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A., 2002. The IWA Anaerobic Digestion Model No 1 (ADM 1). Water Sci. Technol. 45(10), 65-73.

Stucki M, Jungbluth N, Leuenberger M. Life cycle assessment of biogas production from different substrates. Final report. Bern: Federal Department of Environment, Transport, Energy and Communications, Federal Office of Energy; 2011 Dec.

Sustainable Energy Authority of Ireland. Gas yields table. Dublin: Sustainable Energy Authority of Ireland; 2002

ATV-DVWK. Thermische, chemische und biochemische Desintegrationsverfahren: 3. Arbeitsbericht der Arbeitsgruppe AK-1.6 “Klärschlammdesintegration”. Corresp Wastewater 2003;50:796–804. Germany.

Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B. Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 2006;31(14):2385–92

Philbrook A, Alissandratos A, Easton CJ. Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass, environmental biotechnology. In: Marian P, editor New approaches and prospective applications. Rijeka: InTech; 2013. p. 39–64.

Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem 2010;3(11):1227–35

Menon V, Rao M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Pror Energy Combust Sci 2012;38(4):522–50.

Ratnaweeraa DR, Saha D, Pingali SV, Labbé N, Naskar AK, Dadmun M. The impact of lignin source on its self-assembly in solution. RSC Adv 2015;5(82):67258–66.

Fengel D, Wegener G. Wood: Chemistry, ultrastructure, reactions. Berlin: De Gruyter; 1984.

] Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 1994;19(5):797–841.

Pecorini I, Baldi F, Carnevale EA, Corti A. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Manag 2016;56:143–50.

Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 2016;48:227–35

Colussi I, Cortesi A, Piccolo CD, Galloa V, Fernandeza ASR, Vitanza R. Improvement of methane yield from maize silage by a two-stage anaerobic process. Chem Eng Trans 2013;32:151–6.

US Environmental Protection Agency (EPA). Biosolids technology fact sheet: Multi-stage anaerobic digestion. Report. Washington, DC: Office of Water, EPA; 2006 Sep

Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 2011;111(3):312–9

Park Y, Hong F, Cheon J, Hidaka T, Tsuno H. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 2008;105(1):48–54.

Blonskaja V, Menert A, Vilu R. Use of two-stage anaerobic treatment for distillery waste. Adv Environ Res 2003;7(3):671–8.

Kim J, Novak JT, Higgins MJ. Multi-staged anaerobic sludge digestion processes. J Environ Eng 2011;137(8):0000372.

Nasr N, Elbeshbishy E, Hafez H, Nakhla G, El Naggar MH. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour Technol 2012;111:122–6

Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 2011;15(1):821–6.

Russo L, Ladisch M. Gaps in the research of 2nd generation transportation biofuels. Final report. Paris: IEA Bioenergy; 2008.

Kacprzak, A., Krzystek, L., Ledakowicz, S., 2010. Co-digestion of agricultural and industrial wastes. Chem. Pap. 64(2), 127-131.

Nielsen, L.H., Hjort-Gregersen, K., Thygesen, P., Christensen, J., 2002. Samfundsøkonomiske analyser af biogasf llesanlg. Fødevareøkonomisk Institut, Rapport, 136.

Al Seadi, T., 2002. Quality management of AD residues from biogas production. Proc. IEA Bioenergy, Task 24 - Energy from Biological Conversion of Organic Waste.

Hoornweg, D., Bhada-Tata, P., 2012. What a waste: a global review of solid waste management. World Bank.

Claassen, P.A.M., Van Lier, J.B., Contreras, A.M.L., Van Niel, E.W.J., Sijtsma, L et al., 1999. Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52(6), 741-755.

Hoornweg, D., Bhada-Tata, P., 2012. What a waste: a global review of solid waste management. World Bank.

Taherzadeh, M., Karimi, K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9(9), 1621-1651

Aslanzadeh, S., 2014. Pretreatement of cellulosic waste and high rate biogas production. University of Borås, Borås, Sweden.

Ylitervo, P., Akinbomia, J., Taherzadeha, M.J., 2013. Membrane bioreactors' potential for ethanol and biogas production: a review. Environ. Technol. 34(13-14), 1711-1723.

Youngsukkasem, S., Chandolias, K., Taherzadeh, M.J., 2015. Rapid bio-methanation of syngas in a reverse membrane bioreactor: membrane encased microorganisms. Bioresour. Technol. 178, 334- 340.

Youngsukkasem, S., Rakshit, S.K., Taherzadeh, M.J., 2012. Biogas production by encapsulated methane-producing bacteria. BioResources. 7(1), 56-65.

Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, et al. Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 2010;4(1):77–93.

Biyogaz Teknolojisi- Ahmet Karadağ Fen Fakültesi Kimya Bölümü

Bayrakçeken, H. (1997). Biyogaz Üretim Sistemi Tasarımı ve Uygulaması. Afyon Kocatepe Üniversitesi, Afyon.

Buğutekin, A. (2007). Atıklardan biyogaz üretiminin incelenmesi. Marmara Üniversitesi, İstanbul

Downloads

Published

2024-05-27

How to Cite

Arslan, S., Yalçın, Z. G., & Dağ, M. (2024). Biogas: A Sustainable Energy Solution for Reducing Greenhouse Gas Emissions. International Journal of Advanced Natural Sciences and Engineering Researches, 8(4), 43–57. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/1819

Issue

Section

Articles