Providing Faulty Thread Detection in Tie Rod End Grease Fittings with Machine Learning Method “YOLO” algorithm and “Smart-VS”
Abstract views: 44 / PDF downloads: 34
Keywords:
YOLO, Deep Learning, Object Detection, Grease Fitting, LabelingAbstract
The tie rod end transmits the movement from the steering box to the wheels of the vehicle. The
joint in the tie rod ends ensures that the pushing motion is transmitted in a mobile way. These joints must
be lubricated with grease to reduce the friction force. In order to easily perform the lubrication process,
there are greases that have an oily ball at the end and can be easily disassembled. Manufacturer-induced
faults may occur in greasers. Frequently encountered tooth production errors can cause serious problems.
A greaser with a thread defect can be fitted with a tight fit and disconnected from the assembly under
fatigue. For this reason, greasers must be checked and separated during assembly. Defect control systems
used in industry are generally carried out manually. At the same time, manual control varies according to
operator competence and initiative. High efficiency, low cost and objectivity can be achieved with
machine learning-based systems. One of the machine learning techniques, the deep learning algorithm
YOLO (You Only Look Once) is extremely fast and sharp. In the supervised learning process, it is
necessary to obtain the data that is desired to be determined, and to label and train the data. In this study,
a detailed investigation of YOLO-based object detection with object detection methods designed in recent
years, the effect of data labeling on detection results and Smart-VS Smart sensor performance
comparisons were made.
Downloads
References
Budak, I. N. & Pekedis, M. (2021). Plastik Şekil Değişimine Uğramış Otomobil Rotunun Yorulma Davranışının Deneysel ve Sayısal Analizi . Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi , 23 (68) , 647-659 . DOI: 10.21205/deufmd.2021236826
L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Found. Trends® Signal Process., vol. 7, no. 3–4, pp. 197–387, 2014.
H. A. Song and S.-Y. Lee, “Hierarchical Representation Using NMF,” in International Conference on Neural Information Processing., 2013, pp. 466–473.
A. L. Blum and P. Langley, “Selection of relevant features and examples in machine learning,” Artif. Intell., vol. 97, no. 1–2, pp. 245–271, Dec. 1997.
Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and New Perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.
Güçlü, E. , Aydın, İ. , Şener, T. K. & Akın, E. (2022). Çelik Yüzeylerdeki Kusurların Tespiti için Derin Öğrenme Tabanlı Gömülü Sistem Tasarımı . EMO Bilimsel Dergi , 12 (2) , 27-33 . Retrieved from https://dergipark.org.tr/en/pub/emobd/issue/73772/1181470X
Duman, B. & Özsoy, K. (2021). Toz yatak füzyon birleştirme eklemeli imalatta kusur tespiti için öğrenme aktarımı kullanan derin öğrenme tabanlı bir yaklaşım . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 37 (1) , 361-376 . DOI: 10.17341/gazimmfd.870436X
KARADUMAN, G., Erhan, A. K. I. N., BİNAY, B., & DİLEKLİ, M. Katener Sistemlerindeki İzolatör Kusurlarının Derin Öğrenme ile Tespiti. Demiryolu Mühendisliği, (16), 185-195.X
M. Sevi, İ. Aydın, E. Akın, “Detection of rail surface defects based on ensemble learning of YOLOv5,” Demiryolu Mühendisliği, no. 17, pp. 115-132, Jan. 2023. doi: 10.47072/demiryolu.1205483
Aktaş, A. , Demir, Ö. & Doğan, B. (2020). Derin öğrenme yöntemleri ile dokunsal parke yüzeyi tespiti . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 35 (3) , 1685-1700 . DOI: 10.17341/gazimmfd.652101
Ozel, M. & Baysal, S. & Sahin, M. (2021). Derin Öğrenme Algoritması ile Dinamik Test Süresince Süspansiyon Parçalarında Çatlak Tespiti. Avrupa Bilim ve Teknoloji Dergisi, (26), 1-5.
Tim Dettmers, “Deep Learning in a Nutshell: Core Concepts,” 2015. [Online].Available :https://developer.nvidia.com/blog/deep-learning-nutshell-core-concepts/ [Accessed: 27- Sub-2023].
İnik, Ö. & Ülker, E. (2017). Derin Öğrenme ve Görüntü Analizinde Kullanılan Derin Öğrenme Modelleri . Gaziosmanpaşa Bilimsel Araştırma Dergisi , 6 (3) , 85-104 . Retrieved from https://dergipark.org.tr/en/pub/gbad/issue/31228/330663
Karadağ, B. & Arı, A. (2023). Akıllı Mobil Cihazlarda YOLOv7 Modeli ile Nesne Tespiti . Politeknik Dergisi , , 1-1 . DOI: 10.2339/politeknik.1296541
GÜNEŞ, A. T. (2006). Otomasyon İşlerinde Titreşimli Besleme Üniteleri. Mühendis ve Makina Dergisi, 44, 36-41.