Caputo Fractional Operator on shallow water wave theory


Abstract views: 114 / PDF downloads: 85

Authors

  • Taylan Demir Ankara University
  • Shkelqim Hajrulla Epoka University
  • Özen Özer Kırklareli University
  • Selen Karadeniz Çankaya University
  • Oluwafemi Oluwaseyi James Kogi State Polytechnin Lokoja

Keywords:

Fractional operator, singular kernel, numerical simulation, water wave, acoustics

Abstract

In this section, we aim to introduce fractional operators that are applicable to real-world
scenarios, featuring both singular and nonsingular kernels. Given the extensive scope of fractional calculus,
which encompasses numerous mathematical and practical domains, we employ precise definitions
alongside shallow water wave theory models. This study offers numerical solutions for various wave theory
challenges, including wave height distribution across different depths, coastal engineering, and
electromagnetic wave phenomena. Numerical analysis and strategic approaches are crucial for obtaining
highly accurate estimates for barriers. The core of our numerical method lies in linearized wave equations,
focusing on variables such as particle velocity and surface elevation, derived from Eulerian motion and
continuity equations under the assumption of small amplitude in consistent water depth. We evaluate the
precision of discretization methods (e.g., finite difference or finite element techniques) based on step size
(h), noting that approaches where p > 2 often present higher error rates and are considered advanced.

Downloads

Download data is not yet available.

Author Biographies

Taylan Demir, Ankara University

Department of Mathematics, Turkey

Shkelqim Hajrulla, Epoka University

Department of Computer Engineering, Albanian

Özen Özer, Kırklareli University

Department of Mathematics, Turkey

Selen Karadeniz, Çankaya University

Department of Mathematics, Turkey

Oluwafemi Oluwaseyi James, Kogi State Polytechnin Lokoja

Department of Mathematics, Nigeria

References

Hajrulla, S., Uka, A., Ali, L., & Demir, T. (2023). Numerical Methods and Approximations for the Heat Transfer Problem. In Proceedings of The International Conference on Academic Research in Science, Technology and Engineering (Vol. 1, No. 1, pp. 21-31).

Hajrulla, S., Uka, A., Demir, T., Hoxha, F., Hajrulla, D., & Bezati, L. (2022). Unimodular matrix on shallow water wave theory. Unimodularity through matrix method. New Trends in Mathematical Sciences, 10(1), 25-31.

Hajrulla, S., Demir, T., Bezati, L., & Kosova, R. (2023). The impact of constructive learning applied to the teaching of numerical methods. CONSTRUCTIVE MATHEMATICS: FOUNDATION AND PRACTICE, 39.

Hajrulla, S., Demir, T., Lino, V., & Ali, L. (2023). An approach to solving real-life problems using normal distribution. Approximation of results using the Lagrange-Euler method. International Journal of Advanced Natural Sciences and Engineering Researches (IJANSER), 7(10), 18-25.

Hajrulla, S., Uka, A., & Demir, T. (2023). Simulations and Results for the Heat Transfer Problem. European Journal of Engineering Science and Technology, 6(1), 1-9.

Hajrulla, S., Demir, T., Bezati, L., Kosova, R., & Hajrulla, D. (2023). Unimodular Matrix On Compound Mathematical Structures Applications and Results. International Journal of Advanced Natural Sciences and Engineering Researches (IJANSER), 7(11), 244-250.

Hajrulla, S., Demir, T., Ali, L., & Souliman, N. (2023). Normal Distribution on Energy Saving Problem for the Wireless Sensor Network Life on the Vacation Period. Avrupa Bilim ve Teknoloji Dergisi, (47), 67-72.

Demir, Taylan & Hajrulla, Shkelqim. (2023). Discrete Fractional Operators and their applications. International Journal of Advanced Natural Sciences and Engineering Researches. 7. 289-294. 10.59287/as-ijanser.631.

Demir, T., Hajrulla, S., Bezati, L., & Hajrulla, D. (2023). Application of Numerical Methods in Design of Industrial Structures. International Journal of Advanced Natural Sciences and Engineering Researches (IJANSER), 7(11), 295-300.

Demir, T., Hajrulla, S., & Doğan, P. Using Special Functions on Grünwald-Letnikov and Riemann Liouville Fractional Derivative and Fractional Integral.

Demir, T., Hajrulla, S., & Doğan, P. Solutions of fractional-order differential equation on harmonic waves and linear wave equation.

Demir, T., & Erikçi, G. Fractional-order derivatives on generalized functions and their applications.

Demir, T. Mittag-Leffler Function and Integration of the Mittag-Leffler Function.

Hajrulla, S., & Demir, T. THE ONE DIMENSIONAL WAVE EQUATIONS D’ALEMBERT’S SOLUTION.

Demir, T., & Erikçi, G. Laplace Transforms of the Fractional Differential Operators on Mathematical Modelling.

Demir, T., & Samei, M. E. Applications of q-Mittag Leffler function on q-fractional differential operators. In 6th International HYBRID Conference on Mathematical Advances and Applications (p. 191).

Demir, T., Cherif, M. H., Hajrulla, S., & Erikçi, G. Local Fractional Differential Operators on Heat Transfer Modelling.

Demir, T., & Hajrulla, S. Numerical methods on fractional Fourier transformation on Signal Processing.

Demir, T. (2023). Fractional Models on Surface Waves.

Demir, T. (2023). Wave Equations and Their Simulations.

Demir, T. Application of fractional-order Differential Equations on Diffusion and Wave Equations.

Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W., & Mamlok‐Naaman, R. (2004). Design‐based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.

Bezati, L., Hajrulla, S., & Hamzallari, B. Comparison of Numerical Methods for SWW Equations.

Kravitz, D. A., & Klineberg, S. L. (2000). Reactions to two versions of affirmative action action among Whites, Blacks, and Hispanics. Journal of Applied Psychology, 85(4), 597.

Kosova, R., Naço, A., Hajrulla, S., & Kosova, A. M. (2024). Addressing Missing Data in Surveys and Implementing Imputation Methods with SPSS. International Journal of Advanced Natural Sciences and Engineering Researches, 8(2), 40-50.

Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations that enhance learning. Science, 322(5902), 682-683.

Hajrulla, S., Abou Jaoudeh, G. M., Kosova, R., & Isufi, H. (2024). Optimization Problems through Numerical Methods and Simulations.

Jones, R., & Johnson, A. (2015). Advanced Techniques in Computer Graphics. IEEE Computer Graphics and Applications, 35(2), 56-68.

Ali, L., Hajrulla, S., & Souliman, E. N. Extending the Wireless Sensor Network’Life by Using Parallel Processing of the Classification Mechanism.

Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE transactions on neural networks and learning systems, 32(11), 4793-4813.

Hajrulla, S., Ali, L., & Souliman, N. (2023). NORMAL DISTRIBUTION ON ENERGY SAVING PROBLEMS FOR THE WIRELESS SENSOR NETWORK LIFE ON THE VACATION PERIOD. Journal of Natural Sciences and Mathematics of UT, 8(15-16), 292-298.

Ali, L., Hajrulla, S., & Souliman, N. Reducing the Wireless Sensor Networks' delay by reducing program’s complexity and by using parallel processing mechanism. EMSJ journal ISSN, 2522, 9400.

Kosova, R., Kapçiu, R., Hajrulla, S., & Kosova, A. M. (2023). The Collatz Conjecture: Bridging Mathematics and Computational Exploration with Python. International Journal of Advanced Natural Sciences and Engineering Researches (IJANSER), 7(11), 328-334.

Hajrulla, S., Osmani, D., Lino, V., Avdiu, D., & Hajrulla, D. (2022). A Statistical Method to Estimate An Unkonown Price in Financial Markets. PROCEEDINGS BOOK, 383.

Fox, L. (1950). The numerical solution of elliptic differential equations when the boundary conditions involve a derivative. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 242(849), 345-378.

S Hajrulla, G Hajrulla. “Applying Math Economics Instructions on International Relations e”, Procceding book 345.

Ali, L., & Hajrulla, S. Improving Information Retrieval Systems' Efficiency.

Pişkin, E., Uysal, T., & Hajrulla, S. (2018). Exponential Decay of Solutions for a Higher Order Wave Equation with Logarithmic Source Term.

Hajrulla, Shkelqim & Bezati, Leonard. (2024). Camassa-Holm equation on shallow water wave equation. International Journal of Scientific Research and Management (IJSRM). 5. 7758-7764.

R. Bonney , “Next steps for citizen science,” Science, vol. 343, no. 6178, pp. 1436–1437, 2014, doi: 10.1126/science.1251554.

Longuet-Higgin MS, Cokelet ED (1978) The deformation of steep surface waves on water II. Growth of normal-mode instabilities. Proc R Soc Lond A 364:1–28

V. Singh and N. Gu, “Towards an integrated generative design framework,” Des. Stud., vol. 33, no. 2, pp. 185–207, 2012, doi: 10.1016/j.destud.2011.06.001.

Foley, J. D. (1996). Computer graphics: principles and practice (Vol. 12110). Addison-Wesley Professional.

Hughes, J. F. (2014). Computer graphics: principles and practice. Pearson Education.

Sh, H., Bezati, L., & Hoxha, F. Water Wave Equation Arising On Logarithmic Quantum Mechanics.

Peachey, D. R. (1986). Modeling waves and surf. ACM Siggraph Computer Graphics, 20(4), 65-74.

PEACHEY, D. (1990). Modeling Waves and Surf. Computer Graphics (SIGGRAPH'86), 20(4), 405-413.

Jones, R., & Johnson, A. (2015). Advanced Techniques in Computer Graphics. IEEE Computer Graphics and Applications, 35(2), 56-68.

Hajrulla, S., Bezati, L., & Hoxha, F. (2017). Camassa-Holm equation on shallow water wave equation. International Journal of Scientific Research and Management (IJSRM), 5(12), 7758-7764.

Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. J., & Parrish, J. K. (2014). Next steps for citizen science. Science, 343(6178), 1436-1437.

Hajrulla, S., Ali, L., Sari, B., & Kosova, R. (2024). Numerical Method Evaluation on Leveraging Machine-Learning Innovations for Improved Patient Care. Comparison of Numerical Results.

Kang, M., Fedkiw, R. P., & Liu, X. D. (2000). A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing, 15, 323-360.

Hajrulla, S., Bezati, L., & Hoxha, F. (2018). Application of Initial Boundary Value Problem on Logarithmic Wave Equation in Dynamics.

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems (Vol. 49, No. 1). Washington, DC: NBS.

Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on pure and applied mathematics, 5(3), 243-255.

Chen, J. X., & da Vitoria Lobo, N. (1995). Toward interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations. Graphical Models and Image Processing, 57(2), 107-116.

Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869.

Peachey, D. R. (1986). Modeling waves and surf. ACM Siggraph Computer Graphics, 20(4), 65-74.

Podlubny, I. (1999). Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers. IEEE Transactions on automatic control, 44(1), 208-214.

Podlubny, I., Petráš, I., Vinagre, B. M., O'Leary, P., & Dorčák, Ľ. (2002). Analogue realizations of fractional-order controllers. Nonlinear dynamics, 29, 281-296.

Podlubny, I. (1997). The Laplace transform method for linear differential equations of the fractional order. arXiv preprint funct-an/9710005.

Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., & Jara, B. M. V. (2009). Matrix approach to discrete fractional calculus II: partial fractional differential equations. Journal of Computational Physics, 228(8), 3137-3153.

Magin, R., Ortigueira, M. D., Podlubny, I., & Trujillo, J. (2011). On the fractional signals and systems. Signal Processing, 91(3), 350-371.

Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U. T. K. U., & Gonzalez, F. I. (2009). Validation and verification of tsunami numerical models. Tsunami Science Four Years after the 2004 Indian Ocean Tsunami: Part I: Modelling and Hazard Assessment, 2197-2228.

Baleanu, D., & Fernandez, A. (2018). On some new properties of fractional derivatives with Mittag-Leffler kernel. Communications in Nonlinear Science and Numerical Simulation, 59, 444-462.

Abdeljawad, T., & Baleanu, D. (2016). Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. arXiv preprint arXiv:1607.00262.

Jarad, F., Abdeljawad, T., & Baleanu, D. (2017). On the generalized fractional derivatives and their Caputo modification.

Baleanu, D., Hasanabadi, M., Vaziri, A. M., & Jajarmi, A. (2023). A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach. Chaos, Solitons & Fractals, 167, 113078.

Peter, O. J., Shaikh, A. S., Ibrahim, M. O., Nisar, K. S., Baleanu, D., Khan, I., & Abioye, A. I. (2021). Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator.

Jajarmi, A., & Baleanu, D. (2018). A new fractional analysis on the interaction of HIV with CD4+ T-cells. Chaos, Solitons & Fractals, 113, 221-229.

Kumar, D., Singh, J., Al Qurashi, M., & Baleanu, D. (2019). A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations, 2019(1), 1-19.

Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. elsevier.

M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophys. J. R. Astr. Soc., vol. 13, 1967, pp. 529-539.

M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.

El-Sayed, A. M., & Ibrahim, A. G. (1995). Multivalued fractional differential equations. Applied Mathematics and Computation, 68(1), 15-25.

El-Sayed, A. M. (1995). Fractional order evolution equations. J. of Frac. Calculus, 7, 89-100.

L.R., "Transverse Waves". Ingersoll Physics Museum. Retrieved 2024-03-06.

"Explainer: Understanding waves and wavelengths". 2020-03-05. Retrieved 2024-03-06.

"Transverse Waves". www.memphis.edu. Retrieved 2024-03-06.

"Physics Tutorial: The Anatomy of a Wave". www.physicsclassroom.com. Retrieved 2024-03-06.

Giancoli, D. C. (2009) Physics for scientists & engineers with modern physics (4th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall.

https://en.wikipedia.org/wiki/Transverse_wave

https://en.wikipedia.org/wiki/Matter_wave

https://en.m.wikipedia.org/wiki/Sound#Waves

https://en.wikipedia.org/wiki/Ultraviolet#:~:text=Ultraviolet%20(UV)%20light%20is%20electromagnetic,radiation%20output%20from%20the%20Sun.

Subrahmanyam, N. (2009). Waves And Oscillations 2Ed. Vikas Publishing House.

Georgi, H. (1993). The physics of waves (pp. 294-297). Englewood Cliffs, NJ: Prentice Hall.

https://en.wikipedia.org/wiki/Longitudinal_wave

https://en.wikipedia.org/wiki/Seismic_wave

Shearer, Peter M. (2009). Introduction to Seismology. Cambridge University Press. ISBN 978-0-521-88210-1.

https://en.wikipedia.org/wiki/Diffraction

https://en.wikipedia.org/wiki/Light

CIE (1987). International Lighting Vocabulary Archived 27 February 2010 at the Wayback Machine. Number 17.4. CIE, 4thed.. ISBN 978-3-900734-07-7.By the International Lighting Vocabulary, the definition of light is: "Any radiation capable of causing a visual sensation directly."

Pal, G.K.; Pal, Pravati (2001). "chapter 52". Textbook of Practical Physiology (1st ed.). Chennai: Orient Blackswan. p. 387. ISBN 978-81-250-2021-9. Archived from the original on 8 October 2022. Retrieved 11 October 2013. The human eye has the ability to respond to all the wavelengths of light from 400–700 nm. This is called the visible part of the spectrum.

Buser, Pierre A.; Imbert, Michel (1992). Vision. MIT Press. p. 50. ISBN 978-0-262-02336-8. Retrieved 11 October 2013. “Light is a special class of radiant energy embracing wavelengths between 400 and 700 nm (or mμ), or 4000 to 7000 Å”.

Gregory Hallock Smith (2006). Camera lenses: from box camera to digital. SPIE Press. p. 4. ISBN 978-0-8194-6093-6. Archived from the original on 8 October 2022. Retrieved 15 November 2020.

Narinder Kumar (2008). Comprehensive Physics XII. Laxmi Publications. p. 1416. ISBN 978-81-7008-592-8.

Uzan, J-P; Leclercq, B (2008). The Natural Laws of the Universe: Understanding Fundamental Constants. Translated by Robert Mizon. Springer-Praxis, Internet Archive: 2020-06-14 AbdzexK uban. pp. 43–44. Bibcode:2008nlu..book.....U. doi:10.1007/978-0-387-74081-2 (inactive 28 July 2024). ISBN 978-0-387-73454-5.

https://en.wikipedia.org/wiki/Refraction

The Editors of Encyclopaedia Britannica. "Refraction". Encyclopaedia Britannica. Retrieved 2018-10-16.

http://electron9.phys.utk.edu/optics421/modules/m1/emwaves.htm

Dance D, Christofides S, Maidment A, McLean I, Ng K, eds. (2014). "12: Physics of Ultrasound". Diagnostic Radiology Physics: A Handbook for Teachers and Students. Vienna, Austria: International Atomic Energy Agency. p. 291. ISBN 978-92-0-131010-1.

https://en.wikipedia.org/wiki/Ultrasound

Novelline R (1997). Squire's Fundamentals of Radiology (5th ed.). Harvard University Press. pp. 34–35. ISBN 978-0-674-83339-5.

https://en.wikipedia.org/wiki/Gamma_ray

https://en.wikipedia.org/wiki/Microwave

https://en.wikipedia.org/wiki/Waves_and_shallow_water

The Maury Project: Shallow-Water Ocean Waves. The American Meteorological Society. 2018.

Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics.

LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics.

Smith, G. D. (1985). Numerical solution of partial differential equations: finite difference methods. Oxford university press.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of computation, 19(90), 297-301.

MIT OpenCourseWare: Numerical Methods for Partial Differential Equations

Coursera: Introduction to Computational Thinking

Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.

Evans, L. C. (2022). Partial differential equations (Vol. 19). American Mathematical Society.

MIT OpenCourseWare: Partial Differential Equations

Coursera: Introduction to Partial Differential Equations

Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.

Evans, L. C. (2022). Partial differential equations (Vol. 19). American Mathematical Society.

MIT OpenCourseWare: Partial Differential Equations

Chasnov, J. R. (2009). Introduction to Differential Equations. Lecture notes for MATH. The Hong Kong University of Science and Technology.

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The Finite Element Method: Its Basis and Fundamentals (7th ed.). Elsevier.

Hughes, T. J. R. (1987). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications.

Babuska, I., & Aziz, A. (1976). "On the Angle-Bisection Algorithm for the Finite Element Method." Numerische Mathematik, 26(3), 331-348.

Liu, W. K., & Mahadevan, S. (2003). "Computational Methods for Dynamic Systems." Journal of Computational and Applied Mathematics, 159(1), 141-156.

MIT OpenCourseWare: Finite Element Analysis.

Coursera: Introduction to Finite Element Analysis.

Zhu, J. Z. (2013). The finite element method: its basis and fundamentals. Elsevier.

Hughes, T. J. (2003). The finite element method: linear static and dynamic finite element analysis. Courier Corporation.

Babuška, I., & Osborn, J. E. (1989). Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Mathematics of computation, 52(186), 275-297.

Hughes, T. J., & Hulbert, G. M. (1988). Space-time finite element methods for elastodynamics: formulations and error estimates. Computer methods in applied mechanics and engineering, 66(3), 339-363.

MIT OpenCourseWare: Finite Element Analysis

Coursera: Introduction to Finite Element Analysis

Podlubny, I. (1999). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier.

Mainardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press.

Sun, H., & Wu, J. (2011). Numerical Methods for Fractional Calculus. CRC Press.

Cao, X., & Xu, C. (2016). The L1 Scheme for Fractional Differential Equations: Error Analysis and Efficient Implementation. SIAM Journal on Scientific Computing.

Zayernouri, M., & Karniadakis, G. E. (2013). Fractional Spectral Collocation Method. SIAM Journal on Scientific Computing.

Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer.

Jin, B., Lazarov, R., & Zhou, Z. (2015). Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations. SIAM Journal on Numerical Analysis.

C. B. Vreugdenhil (1994). Numerical Methods for Shallow-Water Flow. Springer.

G. K. Batchelor (2000). An Introduction to Fluid Dynamics. Cambridge University Press.

R. J. LeVeque (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

P. L.-F. Liu (2008). Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Springer.

R. S. Johnson (1997). A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.

A. T. Chwang & T. Y. Wu (1975). Hydrodynamics of Nonlinear Shallow-Water Waves. Journal of Fluid Mechanics, 67(1), 33-71.

I. Podlubny (1999). Fractional Differential Equations. Academic Press.

K. S. Miller & B. Ross (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley.

S. C. W. Wong & B. E. R. M. W. Ko (2011). Fractional Differential Equations in Fluid Mechanics: An Overview. Journal of Computational Physics, 230(14), 5862-5877.

H. M. M. Oliveira & D. M. Silva (2019). Numerical Solutions for Fractional Differential Equations. Springer.

Downloads

Published

2024-08-29

How to Cite

Demir, T., Hajrulla, S., Özer, Özen, Karadeniz, S., & James, O. O. (2024). Caputo Fractional Operator on shallow water wave theory . International Journal of Advanced Natural Sciences and Engineering Researches, 8(7), 1–41. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/1965

Issue

Section

Articles