Some Results of Ideal Convergence of Double Sequences in Topological Spaces
Abstract views: 11 / PDF downloads: 13
Keywords:
Ideal Convergence, Strong Convergence, Statistical Convergence, Topological SpaceAbstract
Here, we provide statistical UI2-strong convergence and UT
I2-strong convergence, which, via a
certain class of special functions, expand UI2-strong convergence in Hausdorff topological spaces.
Furthermore, we give a characterization of UI2-statistical convergence and draw linkages between UI2
statistical convergence and UT
I2-strong convergence.
Downloads
References
R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics, World Scientific, 1995.
J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, 2000.
H. Cakalli and M. K. Khan , “Summability in topological spaces,” Appl. Math. Lett., vol. 24, no. 3, pp. 348-352, 2011.
J. S. Connor, “The statistical and strong p-Cesaro convergence of sequences,” Analysis, vol. 8, pp. 47-63, 1988.
J. S. Connor, “On strong matrix summability with respect to a modulus and statistical convergence,” Canad. Math. Bull., vol. 32, no. 2, pp. 194-198, 1989.
J. S. Connor, “Two valued measures and summability,” Analysis, vol. 10, no. 4, pp. 373-385, 1990.
S. Dutta and R. Ghosh, “Strong ideal convergence in topological spaces,” to appear.
H. Fast, “Sur la convergence statistique,” Colloq. Math., vol. 2, pp. 241-244, 1951.
J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, pp. 301-313, 1985.
O. H. H. Edely and M. Mursaleen, “On statistical A-summability,” Math. Comp. Model., vol. 49, no. 8, pp. 672-680, 2009.
M. K. Khan and C. Orhan, “Characterization of strong and statistical convergences,” Publ. Math. Debrecen, vol. 76, no. 1-2, pp. 77-88, 2010.
E. Kolk, “Matrix summability of Statistically convergent sequences,” Analysis, vol. 13, pp. 77-83, 1993.
E. Kolk, “maps into the space of statistically convergent bounded sequences,” Proc. Estonia Acad. Sci. Phys. Math., vol. 45, pp. 192-197, 1996.
P. Kostyrko, T. Šalát, W. Wilczyński, “I-convergence,” Real Anal. Exchange, vol. 26, no. 2, pp. 669-685, 2000/2001.
B. K. Lahiri and P. Das, “I and I^*-convergence in topological spaces,” Math. Bohemica, vol. 130, pp. 153-160, 2005.
G. Di Maio and L. D. R. Koc̃inac, “Statistical convergence in topology,” Topology Appl., vol. 156, no. 1, pp. 28-45, 2008.
M. Mursaleen and A. Alotaibi, “Statistical summability and approximation by de la Vallepoussin mean,” Appl. Math. Lett., vol. 24, pp. 672-680, 2011.
E. Savaş, P. Das, and S. Dutta, “A note on strong matrix summability via ideals,” Appl. Math. Lett., vol. 25, pp. 733-738, 2012.
E. Savaş, P. Das, and S. Dutta, “A note on some generalized summability methods,” Acta Math. Univ. Comenian.(N.S.), vol. 82, no. 2, pp. 297-304, 2013.
L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1970.
Z. Tang and F. Lin, “Statistical versions of sequential and Frechet-Urysohn spaces,” Adv. Math. (China), vol. 44, no. 6, pp. 945-954, 2015.
M. Unver and S. Yardimci, “Strong Convergence in Topological Spaces,” Methods Funct. Anal. Topol., Vol. 24, no. 1, pp. 82-90, 2018.