Design and kinematic analysis of spherical robot arm and pneumatic driven gripper
Abstract views: 100 / PDF downloads: 100
Keywords:
Spherical Robot, Gripper Design, Robot Kinematics, Robot Dynamics, Trajectory Planning, Industrial Robotic ArmAbstract
In this study, a global robotic arm was investigated. A pneumatic-controlled end-effector (gripper) design was developed for the gripping component of the robotic arm. The assembly of the completed robotic arm was simulated using a CAD program, addressing assembly conflicts and dimensional errors. Mechanical and electrical assemblies were carried out, and the connections to the microcontroller were established, rendering the robotic arm operational. To determine the coordinate values of the end effector and for the forward kinematic calculations of the robotic arm, the Denavit-Hartenberg method was employed. Inverse kinematic calculations were performed to compute the joint angle values necessary for the end effector to reach target coordinate values. The torque for each joint of the robotic arm was obtained using the Lagrange-Euler method, along with the overall mass matrix of the robotic arm, the inertia tensor of the links, the gravitational acceleration, and the Coriolis and centripetal force vectors. The dynamic equations derived from the Lagrange-Euler method and the trajectory planning equations were defined in the Matlab-Simulink environment. Graphs were generated in the Simulink section. The solid model designed in SolidWorks was imported into Matlab-Sim Mechanics for visual simulation. The kinematic equations and planned trajectory equations were integrated into the program. The equations within the program facilitated the position control of the robotic arm. The robotic arm underwent tests for repeatability and accuracy following the establishment of position control. Subsequently, the microcontroller connections were made to verify the precision of the end effector's coordinate values.
Downloads
References
. Ben-Ari, M., & Mondada, F. (2017). Elements of robotics. Springer Nature.
. Bejczy, A. K., & Paul, R. P. (1981, December). Simplified robot arm dynamics for control. In 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes (pp. 261-262). IEEE.
. Bernier, C. (t.y.). How Pneumatic End Effectors Work? Robotiq. https://blog.robotiq.com/bid/65604/How-Pneumatic-End-Effectors-Work
. Bingül, Z. ve Küçük, S. (2017a). Robot Kinematiği (3.). Umuttepe Yayınları.
. Bingül, Z. ve Küçük, S. (2017b). Robot Dinamiği ve Kontrolü (2.). Umuttepe Yayınları.
. Briot, S. ve Khalil, W. (2015). Dynamics Modeling of Parallel Robots. (S. Briot ve W. Khalil, Ed.) Mechanisms and Machine Science. Cham: Springer International Publishing. doi:10.1007/978-3-319-19788-3_8
. Cao, Y., Lu, K., Li, X., & Zang, Y. (2011). Accurate numerical methods for computing 2d and 3d robot workspace. International Journal of Advanced Robotic Systems, 8(6), 76.
. Chen, W. H., Chen, C. P., Tsai, J. S., Yang, J., & Lin, P. C. (2013). Design and implementation of a ball-driven omnidirectional spherical robot. Mechanism and Machine Theory, 68, 35-48.
. Diouf, A., Belzile, B., Saad, M., & St-Onge, D. (2024). Spherical rolling robots—Design, modeling, and control: A systematic literature review. Robotics and Autonomous Systems, 104657.
. Duran, M. A. ve Ankaralı, A. (2010). Üç Serbestlik Dereceli Puma Tipi Bir Manipülatörün PID Kontrolü. Selçuk-Teknik Dergisi, 9(1), 79-98.
. Eren, O. ve Kaftanoğlu, B. (2001). Altı Serbestlik Dereceli Bir Endüstriyel Robotun Tasarımı İmalatı ve Çalıştırılması. Makina Tasarım ve İmalat Dergisi, 4(2), 103-111.
. Fu, K. S., Gonzalez, R. C. ve Lee, C. S. G. (1987). Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill Book Company.
. Grippers for Robots. (t.y.).RobotWorx.
. Hartenberg, R. S. ve Denavit, J. (1955). A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, 215-221.
. Industrial Robots. (t.y.).Distrelec. 17 Şubat 2020, https://www.distrelec.de/en/industrial-robots/cms/knowhow-industrial-robots
. ISO 8373:2012(en), Robots and robotic devices—Vocabulary. (t.y.).
. Kumar, V. (2010). 50 Years of Robotics [From the Guest Editors]. IEEE Robotics Automation Magazine, 17(3), 8-8. doi:10.1109/MRA.2010.938493
. Mustafa, A. M. ve Al-Saif, A. (2014). Modeling, Simulation and Control of 2-R Robot. Global Journals Inc. (USA), 14(1), 49-54.
. Öztürk, M. (2014). Antropomorfik Robotların Dinamiği ve Adaptif Kontrol Uygulamaları: Matlab/simulink Modelleme.
. Samadikhoshkho, Z., Zareinia, K. ve Janabi-Sharifi, F. (2019). A Brief Review on Robotic Grippers Classifications. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 1-4. doi:10.1109/CCECE.2019.8861780
. Schilling, R. J. (2003). Fundamentals of Robotics: Analysis and Control (5.). Prentice Hall of India.
. Spong, M. W., Hutchinson, S. ve Vidyasagar, M. (2004). Robot Dynamics and Control (2.).
. Siciliano, B., Sciavicco, L., Villani, L. ve Oriolo, G. (2009). Robotics: Modelling, planning and control. London: Springer.
. Tonbul, T. ve Sarıtaş, M. (2013). Beş Eksenli Bir Edubot Robot Kolunda Ters Kinematik Hesaplamalar ve Yörünge Planlaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18(1), 145-167.
. Yavuz, E., Alıcı, M. ve Uyar, E. (2015). 3 Serbestlik Dereceli (3R) Bir Robot Manipülatörünün Kontrolü ve Görüntü İşlemeye Dayalı Nesne Taşınması Control of 3 DOF (3R) Robot Manipulator and Moving Objects Based on Image Processing (ss. 654-659).