GÜMÜŞ NANOPARTİKÜLLERİN BİYOMEDİKAL ALANINDA KULLANIMI
Abstract views: 34 / PDF downloads: 40
Keywords:
Gümüş nanopartikül, antimikrobiyal, diş, yara, kanser, ilaç dağıtım, biyomedikalAbstract
Bu araştırmada, gümüş nanopartiküllerin biyomedikal alandaki çeşitli kullanımlarını incelenmiştir.
Araştırmada gümüş nanopartiküllerin sentezi, karakterizasyonu ve biyomedikal uygulamalardaki rolü
ayrıntılı olarak ele alınmıştır. Özellikle, gümüş nanopartiküllerin antibakteriyel, anti-kanser terapötik,
teşhis, optoelektronik, su dezenfeksiyonu ve klinik-farmasötik uygulamalardaki potansiyeli üzerine
kapsamlı araştırmalar yapılmıştır. Araştırma, gümüş nanopartiküllerin yara iyileşmesi, ilaç iletimi ve
dağıtımı, diş hekimliği, kanser tedavisi, kemik rejenerasyonu ve periodontal tedavi dâhil olmak üzere çeşitli
tıbbi uygulamalardaki potansiyel kullanımlarını vurgulamıştır. Gümüş nanopartiküllerin sentezi için çeşitli
yöntemler ve stabilizatörlerin kullanımı incelenmiş; bu nanopartiküllerin fiziksel, kimyasal ve biyolojik
özellikleri ayrıntılı olarak karakterize edilmiştir. Gümüş nanopartiküllerin yaygın kullanımı ile ilgili olarak,
biyolojik üretim yöntemlerine olan ilgi artmaktadır. Gümüş nanopartiküllerin çeşitli tıbbi ortamlardaki
potansiyel biyomedikal uygulamaları, antimikrobiyal özellikleri ve farklı endüstrilerdeki potansiyel
kullanımları üzerine araştırmalar kapsamlı bir şekilde incelenmiştir.
Downloads
References
Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci. (2019) Feb 17;20(4):865.
doi: 10.3390/ijms20040865.
Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. (2020) Nov
;15(1):819-839. doi: 10.1515/biol-2020-0094.
Dorgham RA, Abd Al Moaty MN, Chong KP, Elwakil BH. Molasses-Silver Nanoparticles: Synthesis, Optimization,
Characterization, and Antibiofilm Activity. Int J Mol Sci. (2022) Sep 6;23(18):10243. doi: 10.3390/ijms231810243.
Sharma I, Gupta P, Kango N. Synthesis and characterization of keratinase laden green synthesized silver nanoparticles for
valorization of feather keratin. Sci Rep. (2023) Jul 18;13(1):11608. doi: 10.1038/s41598-023-38721-6.
Pryshchepa O, Pomastowski P, Rafińska K, Gołębiowski A, Rogowska A, Monedeiro-Milanowski M, Sagandykova G, Michalke
B, Schmitt-Kopplin P, Gloc M, Dobrucka R, Kurzydłowski K, Buszewski B. Synthesis, Physicochemical Characterization, and
Antibacterial Performance of Silver-Lactoferrin Complexes. Int J Mol Sci. (2022) Jun 26;23(13):7112. doi:
3390/ijms23137112.
Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine.
Artif Cells Nanomed Biotechnol. (2018);46(sup1):1210-1220. Epub 2018 Mar 13. doi: 10.1080/21691401.2018.1449118
Pavelić K, Kraljević Pavelić S, Bulog A, Agaj A, Rojnić B, Čolić M, Trivanović D. Nanoparticles in Medicine: Current Status
in Cancer Treatment. Int J Mol Sci. (2023) Aug 15;24(16):12827. doi: 10.3390/ijms241612827.
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci. (2022)
Jan 13;23(2):839. doi: 10.3390/ijms23020839.
Alarcon EI, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KG, González-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors
A, Griffith M, Scaiano JC. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared
silver nanoparticles. Biomaterials. 2012 Jun;33(19):4947-56. doi: 10.1016/j.biomaterials.2012.03.033.
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver
nanoparticles. Nano Lett. 2012 Aug 8;12(8):4271-5. doi: 10.1021/nl301934w.
Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, Huang Y. TAT-modified nanosilver for combating multidrug-resistant cancer.
Biomaterials. 2012 Sep;33(26):6155-61. doi: 10.1016/j.biomaterials.2012.05.035.
Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, Zhou W. Targeted silver nanoparticles for rheumatoid arthritis therapy via
macrophage apoptosis and Re-polarization. Biomaterials. (2021), 264:120390. doi: 10.1016/j.biomaterials.2020.120390.
Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, Wu J, Zhang X, Zhou X, Zhang Y, Zhao Y, Gu N. Anti-leukemia activity of
PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013
Oct;34(32):7884-94. doi: 10.1016/j.biomaterials.2013.07.015.
Yang EJ, Kim S, Kim JS, Choi IH. Inflammasome formation and IL-1β release by human blood monocytes in response to silver
nanoparticles. Biomaterials. 2012 Oct;33(28):6858-67. doi: 10.1016/j.biomaterials.2012.06.016.
Mani A, Vasanthi C, Gopal V, Chellathai D. Role of phyto-stabilised silver nanoparticles in suppressing adjuvant induced
arthritis in rats. Int Immunopharmacol. 2016 Dec;41:17-23. doi: 10.1016/j.intimp.2016.10.013.
Rao K, Roome T, Aziz S, Razzak A, Abbas G, Imran M, Jabri T, Gul J, Hussain M, Sikandar B, Sharafad S, Raza Shah M.
Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune
response and oxidative stress in adjuvant induced arthritic rats. J Mater Chem B. 2018, 6, 4486-4501. doi:10.1039/c8tb00672e
International Journal of Advanced Natural Sciences and Engineering Researches
Yilma AN, Singh SR, Dixit S, Dennis VA. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles
in mouse macrophages infected with live Chlamydia trachomatis. Int J Nanomedicine. 2013;8:2421-32. doi:
2147/IJN.S44090.
Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Gao B, Wei Y, Fu J, Sun J, Xiong W. Improved Immunoregulation of Ultra
Low-Dose Silver Nanoparticle-Loaded TiO2 Nanotubes via M2 Macrophage Polarization by Regulating GLUT1 and
Autophagy. Int J Nanomedicine. 2020 Mar 24;15:2011-2026. doi: 10.2147/IJN.S242919.
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for
management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond). (2023) Feb;18(3):279-302.
doi: 10.2217/nnm-2022-0248.
Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK. Fusion and binding inhibition” key target for HIV-1 treatment and pre
exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv (2017) 24(1), 608–621.
Dunn K, Edwards-Jones V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns. 2004 Jul;30
Suppl 1:S1-9. doi: 10.1016/s0305-4179(04)90000-9.
Lara HH, Ayala-Nu˜nez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against
HIV-1. J. Nanobiotechnol.(2010) 8(1), 1–10.
Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent. 2002 Apr;87(4):364-79.
doi: 10.1067/mpr.2002.123400.
Bolenwar A, Reche A, Dhamdhere N, Rathi S. Applications of Silver Nanoparticles in Dentistry. Cureus. (2023) Aug
;15(8):e44090. doi: 10.7759/cureus.44090.
Rai M, Ingle AP, Gade AK, Duarte MC, Duran N: Three Phoma spp. synthesised novel silver nanoparticles that possess excellent
antimicrobial efficacy. IET Nanobiotechnol. (2015), 9:280-7. doi: 10.1049/iet-nbt.2014.0068
Zhang Y, Zheng Y, Li Y, Wang L, Bai Y, Zhao Q, Xiong X, Cheng Y, Tang Z, Deng Y, Wei S. Tantalum Nitride-Decorated
Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application.
PLoS One. 2015 Jun 24;10(6):e0130774. doi: 10.1371/journal.pone.0130774.
Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics.
Appl Biochem Biotechnol. (2022) Sep;194(9):4187-4219. doi: 10.1007/s12010-022-03963-z.
Porenczuk A, Grzeczkowicz A, Maciejewska I, Gołaś M, Piskorska K, Kolenda A, Gozdowski D, Kopeć-Swoboda E, Granicka
L, Olczak-Kowalczyk D. An initial evaluation of cytotoxicity, genotoxicity and antibacterial effectiveness of a disinfection liquid
containing silver nanoparticles alone and combined with a glass-ionomer cement and dentin bonding systems. Adv Clin Exp
Med. 2019 Jan;28(1):75-83. doi: 10.17219/acem/76160.
Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L. Applications of Silver
Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci. 2021 Mar 2;22(5):2485. doi:
3390/ijms22052485.
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in
Dentistry. Int J Nanomedicine. (2020) Apr 17;15:2555-2562. doi: 10.2147/IJN.S246764.
de Castro DT, Do Nascimento C, Alves OL, de Souza Santos E, Agnelli JAM, Dos Reis AC. Analysis of the oral microbiome
on the surface of modified dental polymers. Arch Oral Biol.(2018);93:107–114. doi:10.1016/j.archoralbio.2018.06.005
Li Z, Sun J, Lan J, Qi Q. Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and
biofilm formation. Gerodontology. (2016);33(2):209–216. doi:10.1111/ger.12142
Dias HB, Bernardi MIB, Marangoni VS, de Abreu Bernardi AC, de Souza Rastelli AN, Hernandes AC. Synthesis,
characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater Sci Eng C. (2019);96:391-401.
doi:10.1016/j.msec.2018.10.063
International Journal of Advanced Natural Sciences and Engineering Researches
Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q, Yang X. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite
nanowires for dental application. Dent Mater. 2017 Jan;33(1):12-22. doi: 10.1016/j.dental.2016.09.038.
Ioannidis K, Niazi S, Mylonas P, Mannocci F, Deb S. The synthesis of nano silver-graphene oxide system and its efficacy against
endodontic biofilms using a novel tooth model. Dent Mater. (2019);35 (11):1614-1629. doi:10.1016/j.dental.2019.08.105
Mishra P, Tyagi S. Surface analysis of gutta percha after disinfecting with sodium hypochlorite and silver nanoparticles by
atomic force microscopy: an in vitro study. Dent Res J (Isfahan). (2018); 15 (4):242–247.
Hernández-Gómora AE, Lara-Carrillo E, Robles-Navarro JB, Scougall-Vilchis RJ, Hernández-López S, Medina-Solís CE,
Morales-Luckie RA. Biosynthesis of Silver Nanoparticles on Orthodontic Elastomeric Modules: Evaluation of Mechanical and
Antibacterial Properties. Molecules. 2017 Aug 25;22(9):1407. doi: 10.3390/molecules22091407.
Espinosa-Cristóbal LF, López-Ruiz N, Cabada-Tarín D, Reyes-López SY, Zaragoza-Contreras A, Constandse-Cortéz D,
Donohué-Cornejo A, Tovar-Carrillo K, Cuevas-González JC, Kobayashi T. Antiadherence and antimicrobial properties of silver
nanoparticles against streptococcus mutants on brackets and wires used for orthodontic treatments. Journal of Nanomaterials
Volume 2018, Article ID 9248527, 11 pages https://doi.org/10.1155/2018/9248527
Pokrowiecki R, Zaręba T, Szaraniec B, Pałka K, Mielczarek A, Menaszek E, Tyski S. In vitro studies of nanosilver-doped
titanium implants for oral and maxillofacial surgery. Int J Nanomedicine. 2017 Jun 6;12:4285-4297. doi: 10.2147/IJN.S131163.
Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. Antibacterial properties of silver nanoparticles grown in situ
and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. (2020);
(1):97–110. doi:10.1080/17435390.2019.1665727
Lampe I, Beke D, Biri S, et al. Investigation of silver nanoparticles on titanium surface created by ion implantation technology.
Int J Nanomedicine. (2019);14:4709–4721. doi:10.2147/IJN.S197782
Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai RS. Biosynthesis, characterization and antibacterial efficacy of silver
nanoparticles derived from endophytic fungi against P. Gingivalis. J Clin Diagn Res. (2017);11 (9):ZC92.
doi:10.7860/JCDR/2017/24731.9963
Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, Kilianová M, Hradilová S, Froning JP, Havrdová
M, Prucek R, Zbořil R, Kvítek L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics
against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces. (2016);142:392–399. doi:10.1016/j.colsurfb.2016.03.
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety.
Theranostics. (2020) Jul 11;10(20):8996-9031. doi: 10.7150/thno.45413.
Soucacos PN, Johnson EO, Babis G. An update on recent advances in bone regeneration. Injury. (2008); 39: S1-S4.
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety.
Theranostics. (2020) Jul 11;10(20):8996-9031. doi: 10.7150/thno.45413.
Marsich E, Bellomo F, Turco G, Travan A, Donati I, Paoletti S. Nano-composite scaffolds for bone tissue engineering containing
silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med. 2013 Jul;24(7):1799-807.
doi: 10.1007/s10856-013-4923-4.
Qing T, Mahmood M, Zheng Y, Biris AS, Shi L, Casciano DA. A genomic characterization of the influence of silver
nanoparticles on bone differentiation in MC3T3-E1 cells. J Appl Toxicol. 2018 Feb;38(2):172-179. doi: 10.1002/jat.3528.
Zhang R, Lee P, Lui VC, Chen Y, Liu X, Lok CN, To M, Yeung KW, Wong KK. Silver nanoparticles promote osteogenesis of
mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015
Nov;11(8):1949-59. doi: 10.1016/j.nano.2015.07.016. Epub 2015 Aug 15.
Greulich C, Kittler S, Epple M, Muhr G, Köller M. Studies on the biocompatibility and the interaction of silver nanoparticles
with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394, 495–502 (2009). https://doi.org/10.1007/s00423
-0472-1.
International Journal of Advanced Natural Sciences and Engineering Researches
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in
human mesenchymal stem cells. Acta Biomater. 2011 Jan;7(1):347-54. doi: 10.1016/j.actbio.2010.08.003.
Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone
tissue engineering. Biomater Adv. (2022) Oct;141:213099. doi: 10.1016/j.bioadv.2022.213099.
Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM. Advances in Nanotechnology towards Development
of Silver Nanoparticle-Based Wound-Healing Agents. Int J Mol Sci. (2021) Oct 19;22(20):11272. doi: 10.3390/ijms222011272.
Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C. Nanoparticle-based dressing: The future of wound treatment? Trends
Biotechnol. (2017), 35, 770-784.
Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of nanomaterials in wound healing. Curr.Drug
Deliv. (2018), 16, 26-41.
Franková J, Pivodová V, Vágnerová H, Juránová J, Ulrichova J. Effects of silver nanoparticles on primary cell cultures of
fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. (2016), 14, e137-e142.
Du J, Wong KKY. Nanomaterials for Wound Healing: Scope and Advances; Elsevier Inc.: Amsterdam, The Netherlands, (2019);
pp.211-230.
Rigo C, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C, Cairns WR, Vindigni V, Azzena B, Barbante C, Zavan B. Active
silver nanoparticles for wound healing. Int J Mol Sci. 2013 Mar 1;14(3):4817-40. doi: 10.3390/ijms14034817.
Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK. Silver nanoparticles mediate differential responses in
keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010 Mar 1;5(3):468-75. doi:
1002/cmdc.200900502.
Chowdhury S, De M, Guha R, Batabyal S, Samanta I, Hazra SK, Ghosh, TK, Konar A, Sarbani H. Influence of silver
nanoparticles on post-surgical wound healing following topical application. European Journal of Nanomedicine, vol. 6, no. 4,
, pp. 237-247. https://doi.org/10.1515/ejnm-2014-0030
Franková J, Pivodová V, Vágnerová H, Juráňová J, Ulrichová J. Effects of silver nanoparticles on primary cell cultures of
fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. (2016); 14: 137-142.