Comparative Isotherm and Kinetic Analysis of Acid Violet 7 (AV7) and Methylene Blue (MB) Adsorption onto MOF-5


Abstract views: 19 / PDF downloads: 9

Authors

  • Danial Moshtaghi Shafti Universiti Sains Malaysia
  • Irvan Dahlan Universiti Sains Malaysia
  • Azam Taufik Mohd Din Universiti Sains Malaysia

Keywords:

MOF, Dye, Pollutants, Adsorption, Removal, Isotherm, Kinetics

Abstract

One of the most critical issues in the field of wastewater contamination is the occurrence of
colored compounds, including dyes. Synthetic dyes, including acid violet 7 (AV7) and methylene blue
(MB), have been employed in a variety of applications. In this study, the adsorption of AV7 and MB dyes
was compared using an adsorbent prepared from MOF-5. The adsorption isotherm and kinetics were
employed for the respective analysis of AV7 and MB dyes. The adsorption isotherm and kinetics were best
described by the Henry and Freundlich isotherm and the elovich and pseudo-second-order kinetic models,
respectively, for AV7 and MB. The BET (Brunauer-Emmett-Teller) analysis was employed to ascertain the
specific area and pore volume of MOF-5. The findings of this study demonstrate that MOF-5 adsorbents
are effective at removing AV7 and MB from aqueous media.

Downloads

Download data is not yet available.

Author Biographies

Danial Moshtaghi Shafti, Universiti Sains Malaysia

School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Irvan Dahlan, Universiti Sains Malaysia

School of Chemical Engineering,  Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Azam Taufik Mohd Din, Universiti Sains Malaysia

School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia

References

Junejo, Y., Sirajuddin, Baykal, A., Safdar, M., & Balouch, A. (2024). A Novel Green Synthesis and Characterization of Ag NPs with its Ultra-Rapid Catalytic Reduction of Methyl Green Dye. Appl. Surf. Sci, 290, 499- 503. https://doi.org/10.1016/j.apsusc.2013.11.106.

Zarei-Chaleshtori, M., Correa, V., López, N., Ramos, M., Edalatpour, R., Rondeau, N., & Chianelli, R.R.(2014).Synthesis and Evaluation of Porous Semiconductor Hexanoates Nanotubes for Photolysis of Organic Dyes in Wastewater. Catalysts, 4, 346- 354, 2014. https://doi.org/10.3390/catal4040346.

Mallampati, R., Li, X., Adin, A., & Valiyaveettil S. (2015). Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Waterc ACS Sustain. Chem. Eng, 3, 1117 1124, 2015. https://doi.org/10.1021/acssuschemeng.5b00207.

Chi, Y., Geng, W., Zhao, L., Yan, X., Yuan, Q., Li, N., & Li X. (2012). Comprehensive study of mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles as a promising adsorbent. J. Colloid Interface Sci, 369, 366- 372. https://doi.org/10.1016/j.jcis.2011.12.051.

Fost, S. D., & Aly, M. O. (1981). Adsorption Processes for Water Treatment. Betterworth Publications, Stoneharm, Massachusetts, Mass, USA.

Ruthven, D. M. (1984). Principle of Adsorption and Adsorption Processes. JohnWilley and Sons, New Jersey, NJ, USA.

Tuttolomondo, M.V., Alvarez, G.S., Desimone, M.F., & Diaz L.E. (2014). Removal of azo dyes from water by sol–gel immobilized Pseudomonas sp. J.Environ.Chem.Eng.,2,131–136. https://doi.org/10.1016/j.jece.2013.12.003.

Khodaie, M., Ghasemi, N., Moradi, B., & Rahimi, M. (2013). Removal of methylene blue from wastewater by adsorption onto znclactivated corn husk carbon equilibrium studies. J. Chem.,1- 6. https://doi.org/10.1155/2013/383985.

Babuponnusami, A., & Muthukumar K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng., 2, 557- 572, 2014. https://doi.org/10.1016/j.jece.2013.10.011.

Peng, Q., Cong, H.L., & Yu B. (2018). Preparation of Polymeric Janus Microparticles with Hierarchically Porous Structure and Enhanced Anisotropy. J. Colloid Interface Sci., 522, 144–150. https://doi.org/10.1016/j.jcis.2018.03.066.

Yuan, H., Yu, B., Cong, H.L., Chi, M., Cheng, Y.Z., & Lv, C.X. (2018). Preparation of hierarchical highly ordered porous films of brominated poly (phenylene oxide) and hydrophilic SiO2/C membrane via breath figure method. Mater, pp,1,11. https://doi.org/10.3390/ma11040481.

Yu, B., Li, Z., Cong, H.L., Li, G.L., Peng, Q.H., & Yang, C.F. (2017). Synthesis and application of sulfonated Polystyrene, ferrosoferric oxide and diazo resin nanocomposite microspheres for highly selective removal of dyes. In: G Gibson, G Nguyen, M Sebastiani, S Xu, E Bourses (eds.), Volume 135. Mater. Des., Elsevier, 333- 342. https://doi.org/10.1016/j.matdes.2017.09.039.

Gonzalez-casamachin, D. A., Rosa, J. R., Lucio-Ortiz, C.J., Rio, D. D. H. D., Martínez-Vargas, D., Flores-Escamilla, G. A., Dávila Guzmán N.E., Ovando-Medina V. M., & Moctezuma-Velazquez, E.(2019).Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: synthesis, characterization, mass transfer effect evaluation and kinetic analysis. Chem. Eng. J., 373, 325–337, 2019. http://dx.doi.org/10.1016/j.cej. 2019.05.032.

Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O'Keefe, M., &Yaghi O. M. (2003). Hydrogen storage in microporous metal- organic frameworks. Science, 300, (5622). https://doi.org/10.1126/science.1083440.

Li, J.-R., Sculley, J., & Zhou, H.-C. (2012). Metal-Organic Frameworks for Separations. Chem. Rev., 112, 869–932. https://doi.org/10.1021/cr200190s.

Voorde, B.V.de, Bueken, B., Denayer, J., & De-Vos, D. (2014). Adsorptive Separation on Metal–Organic Frameworks in the Liquid Phase. Chem. Soc., 43, 5766,5788. https://doi.org/10.1039/C4CS00006D.

Ahmed, I., Khan, N.A., Hasan, Z., & Jhung, S.H. (2013). Adsorptive denitrogenation of model fuels with a porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: effect of acid site inclusion. J. Hazard. Mater., 250, 251, 37,44.https://doi.org/10.1016/j.jhazmat.2013.01.024.

Barea, E., Montoro, C., & Navarro, J. A. R. (2014). Toxic Gas Removal Metal–Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours. Chem. Soc. 43, 5419-5430. https://doi.org/10.1039/C3CS60475F.

Furukawa, H., Cordova, K., O'Keeffe, M., & Yaghi, O. (2013). The Chemistry and Applications of Metal- Organic Frameworks. Science, 341 (6149): 974. https://doi.org/10.1126/science.1230444

Hasan, Z., & Jhung, S. H. (2015). Removal of Hazardous Organics from Water Using Metal-OrganicFrameworks (MOFs): Plausible Mechanisms for Selective Adsorptions,” J. Hazard. Mater., 283, 329-339. https://doi.org/10.1016/j.jhazmat.2014.09.046.

Hasan, Z., Tong, M., Jung, B. K., Ahmed, I., Zhong, C., & Jhung, S. H. (2014). Adsorption of Pyridine over Amino-Functionalized Metal–Organic Frameworks: Attraction Via Hydrogen Bonding Versus Base Base Repulsion. J. Phys. Chem. C, 118, 21049- 21056. https://doi.org/10.1021/jp507074x.

Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295, 469- 472. https://doi.org/10.1126/science.1067208.

Elovich, S. Y., & Larionov, O. G. (1962). Theory of Adsorption from Solutions of Non Electrolytes on Solid (I) Equation Adsorption from Solutions and the Analysis of Its Simplest Form, (II) Verification of the Equation of Adsorption Isotherm from Solutions. Russ. Chem. Bull, 11, 191–197. https://doi.org/10.1007/BF00908016.

Aharoni, C., & Tompkins, F. (1970). Kinetics of adsorption and desorption and the Elovich equation. Adv. Catal., Volume 21, pp. 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5.

Nandi B.K., Goswami A., & Purkait M.K. (2009). Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater., vol. 161, no. 1, pp. 387- 395, 2009. http://dx.doi.org/10.1016/j.jhazmat.2008.03.110.

Ferreira, A., Mota, A., Oliveira, A., Rodrigues, F., Pacífico, S., Da Silva, J., Abagaro, B., Saraiva, G., De Castro, A., & Teixeira, R. (2019). Equilibrium and kinetic modelling of adsorption: Evaluating the performance of an adsorbent in softening water for irrigation and animal consumption. Rev. Virtual Quim, 11, 1752–1766. https://doi.org/10.1088/1755-1315/1024/1/012022

Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des., 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006.

Rania, F., & Yousef, N. S. (2015). Equilibrium and Kinetics studies of adsorption of copper (II) on natural Biosorbent. Int. J. Chem. Eng. Appl., vol. 6, no. 5.

Boyd, G.E., Adamson, A.W., Myers, L.S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites, II, Kinetics. J. Am. Chem. Soc., 69(11):2836-2848. https://doi.org/10.1021/ja01203a066.

Kiseler, A. V. C. (1958). Vapour adsorption in the formation of adsorbate Mollecule Complexes on the surface. Kolloid Zhur, vol. 20, pp. 338–348.

Davoundinejad, M., & Gharbanian, S. A. (2013). Modelling of adsorption isotherm of benzoic compounds onto GAC and introducing three new isotherm models using new concept of adsorption effective surface (AEC). Academic Journals, vol. 18, no. 46, pp. 2263–2275. https://doi.org/10.5897/SRE10.643.

Brouers, F., & Al-Musawi, T. J. (2015). On the optimal use of isotherm models for the characterization of biosorption lead onto algae. J. Mol. Liq, vol. 212, pp. 46- 51. https://doi.org/10.1016/j.molliq.2015.08.054.

Wu, F.-C., Liu, B.-L., Wu, K.-T., & Tseng, R.-L. (2010). A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chem. Eng. J, vol. 162, no. 1, pp. 21–27. https://doi.org/10.1016/j.cej.2010.03.006.

Chan, L. S., Cheung, W. H., Allen, S. J., & McKay, G. (2012). Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin. J. Chem. Eng, vol. 20, no. 3, pp. 535–542. https://doi.org/10.1016/S1004-9541(11)60216-4.

Ng, J. C. Y., Cheung, W. H., & McKay, G. (2002). Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J. Colloid Interface Sci., vol. 255, no. 1, pp. 64–74. https://doi.org/10.1006/jcis.2002.8664.

Gimbert, F., Morin-Crini, N., Renault, F., Badot, P.-M., & Crini, G. (2008). Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J. Hazard. Mater., vol. 157, no. 1, pp. 34- 46. https://doi.org/10.1016/j.jhazmat.2007.12.072.

Sips, R. (1948). On the structure of a catalyst surface. J. CHEM. PHYS., vol. 16, no. 5, pp. 490–495. https://doi.org/10.1063/1.1746922.

Dilekoglu, M. F. (2016). Use of generic algorithm optimzation Techniques in the adsorption of phenol on Banana and grapetruit peels. J. Chem. Soc. Pak, vol. 38, no. 6.

Juang, R., Wu, F., & Tseng R. (1996). Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers. J. Chem. Eng. Data, vol. 41, no. 3, pp. 487–492. https://doi.org/10.1021/je950238g.

Melese, H., & Tsade, H. (2024). Cellulose based adsorbent for cationic methylene blue dye removal. Discovery Appl. Sci., 6, 46. https://doi.org/10.1007/s42452-024-05653-3.

Amrutha Jeppu, G., Girish, C.-R., Baakrishna, P., & Mayer, K. (2023). Multi-component Adsorption Isotherms: Review and Modeling Studies. Environ. Process,10, 38. https://doi.org/10.1007/s40710-023-00631-0.

Khatri, M., Ahmed, M.-E., Al-Juboori, R.-A., Khanzada, N.-K., & Hilal, N. (2024). Reusable environmentally friendly electrospun cellulose acetate/cellulose nanocrystals nanofibers for methylene blue removal. J. Environ. Chem. Eng.,12, No. 111788. https://doi.org/10.1016/j.jece.2023.111788.

Wang, J., & Guo, X. (2022). Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere, 309, No. 136732. https://doi.org/10.1016/j.chemosphere.2022.136732.

Zaidi, N.A.H.M., Lim, L.B.L. Usman, A. (2019). Enhancing adsorption of malachite green dye using base modified Artocarpus odoratissimus leaves as adsorbents. Environ. Technol. Innov., 13, pp.211-223. http://dx.doi.org/10.1016/j.eti.2018.12.002.

Şendal, K., Özgür, M.-U., & Gülen, J. (203). Biosynthesis of ZnO photocatalyst and its application in photo catalytic degradation of methylene blue dyestuff. J. Disper. Sci. Technol., 2023, 44, 2734−2747. https://doi.org/10.1080/01932691.2022.2125005.

Gülen, J., Akın, B., & Özgür, M. (2016). Ultrasonic-assisted adsorption of methylene blue on sumac leaves. Desalin. Water Treat., 57, 9286. https://doi.org/10.1080/19443994.2015.1029002.

Gülen, J., & İskeçeli, M. (2017). Removal of methylene blue by using porous carbon adsorbent prepared from carbonized chestnut shell. Mater. Test., 59, 188- 194. https://doi.org/10.3139/120.110984.

Mekuria, D., Diro, A., Melak, F., & Asere, T.-G. (2022). Adsorptive Removal of Methylene Blue Dye Using Biowaste Materials: Barley Bran and Enset Midrib Leaf. J. Chem., 1. https://doi.org/10.1155/2022/4849758.

Gülen, J., & Zorbay, F. (2017). Methylene Blue Adsorption on a Low Cost Adsorbent Carbonized Peanut Shell. Water Environ. Res., 89, 805. https://doi.org/10.2175/106143017X14902968254836.

Klobes, P., Meyer, K., & Munro, R.G. (2006). Porosity and Specific Surface Area Measurements for Solid Materials. Natl Inst. Stand. Technol., Spec. Publ., 960- 17. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=854263.

Downloads

Published

2024-10-02

How to Cite

Shafti, D. M., Dahlan, I., & Din, A. T. M. (2024). Comparative Isotherm and Kinetic Analysis of Acid Violet 7 (AV7) and Methylene Blue (MB) Adsorption onto MOF-5. International Journal of Advanced Natural Sciences and Engineering Researches, 8(9), 71–81. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2045

Issue

Section

Articles