Synthesis of Cobalt-Free, Low-Cost Layered LiNi0.6Mn0.2Fe0.2O2 (NMF622) Cathode Electrodes for Next Generation Lithium-Ion Batteries
Abstract views: 5 / PDF downloads: 2
Keywords:
LiNi0.6Mn0.2Fe0.2O2 (NMF622), Layered Cathode Material, Cobalt-Free, LiNi0.6Mn0.2Co0.2O2 (NMC622), Lithium IonAbstract
In this research, we synthesized LiNi0.6Mn0.2Fe0.2O2 (NMF622) cathodes by substituting iron for
cobalt in the cathode electrodes, which are typically associated with the chemistry of LiNi0.6Mn0.2Co0.2O2
(NMC622) cathode material used in lithium-ion batteries (LIBs). The production of NMF622 nanoparticles
was achieved using the sol-gel method, incorporating metal salts as key components for structure formation.
We meticulously examined the structure of NMF622 nanoparticles and electrodes through X-ray diffraction
(XRD) and field emission scanning electron microscopy (FESEM), revealing the absence of impurities in
the NMF622 nanopowders. Our FESEM analysis further determined particle sizes ranging from 30 to 110
nm. To evaluate the performance of NMF622 cathodes, we conducted galvanostatic charge and discharge
tests at a rate of 1C within the potential range of 2.0 to 4.6 volts. Notably, the NMF622 cathodes exhibited
various capacities at different rates, including 211.86, 206.07, 198.68, 191.56, 167.16, 154.99, 135.62,
115.96, 188.36, 195.36, 202.46, and 209.3 mAh/g at different C-rates. Electrochemical impedance tests
indicated that all resistance values increased with the number of cycles. This study represents a significant
development and evaluation of NMF cathodes, which are proposed as an alternative to NMC chemistry. As
a result, it led to a substantial 60% reduction in cell manufacturing costs compared to NMC chemistry.
Furthermore, the environmentally conscious choice of using iron instead of cobalt, along with the use of
water-soluble binders, contributed to a reduction in toxicity.
Downloads
References
A. D. Pasquier, I. Plitz, S. Menocal, G. Amatucci, ‘A Comparative Study of Li-ion Battery, Supercapacitor and Nonaqueous Asymmetric Hybrid Devices for Automotive Applications’, Journal of Power Sources 115 (2003) 171–178.
T. Ohzuku, R. J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries, J. Power Sources 174 (2) (2007) 449–456.
Z. Chang, Z. Chen, H. Tang, X. Z. Yuan, H. Wang, 2010. Synthesis and characterization of lamellar LiCoO2 as cathode materials for lithium-ion batteries. J. N. Mater. Electrochem. Syst. 13, 107–111.
R. Alcantara, G. F. Ortiz, J. L. Tirado, R. Stoyanova, E. Zhecheva, S. Ivanova, Fe3+ and Ni3+ impurity distribution and electrochemical performance of LiCoO2 electrode materials for lithium ion batteries, J. Power Sources 194 (2009) 494–501.
Y.C. Gonz´ alez, L. Alcaraz, F.J. Alguacil, L. Barbosa, J. Gonz´ alez, F.A.A. Lopez, ´ Study of the carbochlorination process with CaCl2 and water leaching for the extraction of Li, Co, and Ni from spent lithium-ion batteries, Batteries (2023).
Q. Yang, J. Huang, Y. Li, Y. Wang, J. Qiu, J. Zhang, H. Yu, X. Yu, H. Li, L. Chen, Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high voltage lithium ion batteries and lithium polymer batteries, J. Power Sources 388 (2018) 65–70.
J. Dul, B. Vis, G. Goertz, 2021. Necessary Condition Analysis (NCA) does exactly what it should do when applied properly: a reply to a comment on NCA. Socio. Methods Res. 50 (2), 926–936.
S. Hildebrand, C. Vollmer, M. Winter, F.M. Schappacher, Al2O3, SiO2 and TiO2 as Coatings for Safer LiNi0.8Co0.15Al0.05O2 Cathodes: Electrochemical Performance and Thermal Analysis by Accelerating Rate Calorimetry, J. Electrochem. Soc. 164 (9) (2017) A2190–A2198.
J.B. Goodenough, K. S. Park, J. Am. Chem. Soc. 135 (4) (2013) 1167–1176.
X. Zhu, Z. Wang, Y. Wang, H. Wang, C. Wang, L. Tong, M. Yi, Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: thermal runaway features and safety management method. Energy 2019;169:868–80.
M. Chen, Z. Pan, X. Jin, Z. Chen, Y. Zhong, X. Wang, Y. Qiu, M. Xu, W. Li, Y. Zhang, Highly integrated all-manganese battery with supported oxide nanoparticles on cathode and anode by super-aligned carbon nanotubes, J. Mater. Chem. (2019).
C. Shen, H. Xu, L. Liu, H. Hu, S. Chen, L. Su, L. Wang, EDTA-2 Na assisted dynamic hydrothermal synthesis of orthorhombic LiMnO2 for lithium-ion battery, J. Alloys Compd. 830 (2020) 154599.
Q. Liu, Y. Li, Z. Hu, D. Mao, C. Chang, F. Huang, One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li-ion battery application, Electrochim. Acta 53 (2008) 7298-7302.
S. H. Liu, X. F. Qian, J. Yin, X. D. Ma, J. Y. Yuan and Z. K. Zhu, J. Phys. Chem. Solids, 64(2003)455. S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin elevated channel low-temperature poly-Si TFT,” IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.
K. Ariyoshi, H. Yamamoto, Y. Yamada, Relationship between changes in ionic radius and lattice dimension of lithium manganese oxide spinels during lithium insertion/extraction, Solid State Ionics 343 (2019) 115077.
H. J. Noh, S. Youn, C. S. Yoon, Y. K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8, 0.85) cathode material for lithium-ion batteries, J. Power Sources 233 (2013) 121–130.
J. Wang, J. Purewal, P. Liu, J. H. Garner, S. Soukazian, E. Sherman, A. Sorenson, L. Vu, H. Tataria, M. V. Verbugge, Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation, J. Power Sources 269 (2014) 937–948.
X. Fu, X. A. Zhou, D. Zhao, Y. Liang, P. Wang, N. Zhang, K. Tuo, H. Lu, X. Cai, L. Mao, S. Li, Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials, Electrochim. Acta 394 (2021), 139136.
L. Zhou, J. Liu, L. Huang, N. Jiang, Q. Zheng, D. Lin, Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance, J. Solid State Electrochem. 21 (12) (2017) 3467–3477.
A. Hammou, R. Petrone, D. Diallo, H. Gualous, Experimental analysis of the effects of discharge current-rates on the parameters of the electrical equivalent circuit for NMC and LCO Li-ion batteries, in: IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, pp. 1–6.
M.A. Rajaeifar, P. Ghadimi, M. Raugei, Y. Wu, O. Heidrich, Challenges and recent developments in supply and value chains of electric vehicle batteries: a sustainability perspective, Resour. Conserv. Recycl. 180 (2022), 106144.
S. Wang, C. Wang, F. Lai, F. Yan, Z. Zhang, Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: effect of reductants and ammonium salts, Waste Manag. vol. 102 (2020) 122–130.
S. Windisch-Kern, A. Holzer, L. Wiszniewski, H. Raupenstrauch, 2021. Investigation of potential recovery rates of nickel, manganese, cobalt, and particularly lithium from NMC-type cathode materials (LiNixMnyCozO2) by carbo-thermal reduction in an inductively heated carbon bed reactor. Metals 11 (11), 1844.
D. Cao, Q. Li, X. Sun, Y. Wang, X. Zhao, E. Cakmak, W. Liang, A. Anderson, S. Ozcan, H. Zhu, Amphipathic binder integrating ultrathin and highly ionconductive sulfide membrane for cell-level high-energy-density all-solid-state batteries, Adv. Mater. 33 (52) (2021), 2105505.
K. M€ arker, P.J. Reeves, X. Chao, K.J. Griffith, C.P. Grey, Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling, Chem. Mater. 31 (2019) 2545e2554.
N. Manousi, V. Alampanos, I. Priovolos, A. Kabir, K.G. Furton, E. Rosenberg, G. A. Zachariadis, V.F. Samanidou, Exploring sol–gel zwitterionic fabric phase sorptive extraction sorbent as a new multi-mode platform for the extraction and preconcentration of triazine herbicides from juice samples, Food Chem. 373 (2022) 131517.
G. Qian, J. Zhang, S.-Q. Chu, J. Li, K. Zhang, Q. Yuan, Z.-F. Ma, P. Pianetta, L. Li, K. Jung, Y. Liu, Understanding the Mesoscale Degradation in Nickel-Rich Cathode Materials through Machine-Learning-Revealed Strain-Redox Decoupling, ACS Energy Lett. 6 (2) (2021) 687–693.
J. Sicklinger, M. Metzger, H. Beyer, D. Pritzl, H.A. Gasteiger, Ambient Storage Derived Surface Contamination of NCM811 and NCM111: Performance Implications and Mitigation Strategies, J. Electrochem. Soc. 166 (2019) A2322–A2335.
J. Lim, T. Hwang, D. Kim, M. Park, K. Cho, M. Cho, Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material, Sci. Rep.- UK 7 (2017) 39669.
Molenda, M., Dziembaj, R., Podstawka, E., Proniewicz, L. M. (2005). Changes in local structure of lithium manganese spinels (Li:Mn = 1:2) characterised by XRD, DSC, TGA, IR, and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 66, 1761-1768.
Gao, T., Fjellvag, H., Norby, P., A comparison study on Raman scattering properties of a and b-MnO2. Analytica Chimica Acta, 648, 235–239, 2009.
Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(1–2), 47-57. 2007.
Molenda, M., Dziembaj, R., Podstawka, E., Proniewicz, L. M. (2005). Changes in local structure of lithium manganese spinels (Li:Mn = 1:2) characterised by XRD, DSC, TGA, IR, and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 66, 1761-1768.
Gao, T., Fjellvag, H., Norby, P., A comparison study on Raman scattering properties of a and b-MnO2. Analytica Chimica Acta, 648, 235–239, 2009.
Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(1–2), 47-57. 2007.
Tuinstra, F., Koenig, J.-L., Raman spectrum of graphite, J. Chem. Phys., 53, 1126–1130, 1970.
Malard, L.-M., Pimenta, M.-A., Dresselhaus, G., Dresselhaus, M.-S., C, Phys. Rep., 473, 51-87, 2009.
Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. Eklund, P.C., Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano Lett., 6, 2667–2673, 2006.
K. Shaju, G. S. Rao, and B. Chowdari, Electrochimica Acta, 48(2), 145 (2002).
H. Cao, Y. Zhang, J. Zhang, B. Xia, ‘Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries’, Solid State Ion. 2005, 176, 1207–1211.
J. M. Zheng, Z. R. Zhang, X. B. Wu, Z. X. Dong, Z. Zhu, Y. Yang, ‘The Effects of AlF3 Coating on the Performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Positive Electrode Material for Lithium-Ion Battery’. J. Electrochem. Soc. 2008, 155, A775–A782.
X. He, C. Y. Du, B. Shen, C. Chen, X. Xu, Y. Wang, P. Zuo, Y. Ma, X. Cheng, G. Yin, ‘Electronically conductive Sb-doped SnO2 nanoparticles coated LiNi0.8Co0.15Al0.05O2 cathode material with enhanced electrochemical properties for Li-ion batteries’, Electrochimica Acta. 2017, 236:273-279.