MAKİNE ÖĞRENME METOTLARININ MANTI KALİTESİNİN BELİRLENMESİNDE KULLANILABİLİRLİĞİ
Abstract views: 11 / PDF downloads: 12
Keywords:
CIE Lab Sistemi, Decision Tree, Gıda İşleme, Gıda Kalitesi, Makine Öğrenmesi, Mantı VerisetiAbstract
Geleneksel gıdalardan biri olan ve sevilerek tüketilen mantının, endüstriyel üretimdeki çeşitli
süreçlerde karşılaşılabilecek sorunlar nedeniyle kalitesi düşebilmektedir. Kalite kontrolde kullanılan CIE
Lab sistemi yani üç nokta yöntemi olarak da bilinen renk sistemine göre mantı üretiminde ürünün kalite
düşüşleri belirlenebilmektedir. Bu çalışmada mantı üretiminde ısıl işlem süresine göre oluşturulan mantı
veriseti (Mikrodalga seviyesi, L, a, b ve zaman) bazı Makine Öğrenmesi (MÖ) yöntemleri kullanılarak
işlenmiştir. Bu işlem sonucunda ise en yüksek f-score’un 87% ile DT (Decision Tree) sınıflandırıcısı ile
elde edildiği, bu sonucun ise 73% ile Linear çekirdek kullanılan SVM (Support Vector Machine) ve 71%
ile N_neighbours çekirdeği kullanan K-NN (K-Nearest Neighbor) tarafından takip edildiği görülmüştür.
Sonuç olarak, MÖ yöntemleri kullanılarak mantı üretim süreçlerinde ürün kalitesi ve güvenilirliğinin
arttırılabileceği görülmüştür.
Downloads
References
S. Gokmen, M. F. Aydin, A. Kocabas, A. Sayaslan, and A. Caglar, "A Study on Quality Criteria of Commercial Stuffed Pasta (Mantı), as Traditional Food," (in English), International Food Research Journal, vol. 22, no. 5, 2015/04/20/ 2015. [Online]. Available: http://www.ifrj.upm.edu.my/22%20(05)%202015/(40).pdf.
S. Karaman, O. Sağdiç, A. Kayacıer, and H. Yetim, "Kayseri Piyasasında Satılan Mantıların Bazı Mikrobiyolojik Özellikleri," ed. VAN: 2. Geleneksel Gıdalar Sempozyumu, 2022, pp. 862-865.
S. Uzunlu and I. Var, "Effect of Modified Atmosphere Packaging on the Refrigerated Storage of Mantı," (in English), Turkish Journal of Agriculture - Food Science and Technology, vol. 4, no. 1, pp. 36-40, 2016, doi: 10.24925/turjaf.v4i1.36-40.535.
S. Gökmen, A. Kocabaş, İ. Savran, A. Sayaslan, M. f. Aydın, and H. Yetim, "Effect of Infrared, Ultraviolet-C Radiations and Vacuum Drying on Certain Chemical and Microbial Characteristics of Stuffed Pasta (Manti)," (in English), Journal of Agricultural Sciences, vol. 25, no. 1, pp. 100-107, 2019, doi: 10.15832/ankutbd.539010.
Y. Zhang, "Food safety risk intelligence early warning based on support vector machine," Journal of Intelligent & Fuzzy Systems, vol. 38, pp. 6957-6969, 2020, doi: 10.3233/JIFS-179774.
K. Kangune, V. Kulkarni, and P. Kosamkar, "Grapes Ripeness Estimation using Convolutional Neural network and Support Vector Machine," in 2019 Global Conference for Advancement in Technology (GCAT), 18-20 Oct. 2019 2019, pp. 1-5, doi: 10.1109/GCAT47503.2019.8978341.
S. S. Deulkar and S. S. Barve, "An Automated Tomato Quality Grading using Clustering based Support Vector Machine," in 2018 3rd International Conference on Communication and Electronics Systems (ICCES), 15-16 Oct. 2018 2018, pp. 1128-1133, doi: 10.1109/CESYS.2018.8724084.
K. Tabassum, A. A. Memi, N. Sultana, A. W. Reza, and S. D. Barman, "Food and Formalin Detector Using Machine Learning Approach," International Journal of Machine Learning and Computing, vol. 9, no. 5, 2019.
V. Hemamalini et al., "Food Quality Inspection and Grading Using Efficient Image Segmentation and Machine Learning-Based System," Journal of Food Quality, vol. 2022, p. 5262294, 2022/02/11 2022, doi: 10.1155/2022/5262294.
S. Agustin and R. Dijaya, "Beef Image Classification using K-Nearest Neighbor Algorithm for Identification Quality and Freshness," Journal of Physics: Conference Series, vol. 1179, no. 1, p. 012184, 2019/07/01 2019, doi: 10.1088/1742-6596/1179/1/012184.
A. E. Ozalp and İ. Askerzade, "A data science study for determining food quality: an application to wine," (in English), Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, pp. 762-770, 2019, doi: 10.31801/cfsuasmas.469131.
B. Shaw, A. K. Suman, and B. Chakraborty, "Wine Quality Analysis Using Machine Learning," in Emerging Technology in Modelling and Graphics, Singapore, J. K. Mandal and D. Bhattacharya, Eds., 2020// 2020: Springer Singapore, pp. 239-247.
L. Buzura, M. L. Budileanu, A. Potarniche, and R. Galatus, "Python based portable system for fast characterisation of foods based on spectral analysis," in 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), 27-30 Oct. 2021 2021, pp. 275-280, doi: 10.1109/SIITME53254.2021.9663677.
S. Gokmen, "Effect of far-infrared (FIR) and microwave drying on some properties of stuffed pasta (manti)," (in English), Advances in Food Sciences, vol. 41, no. 4, pp. 92-98, 2019. [Online]. Available: https://www.cabdirect.org/globalhealth/abstract/20203333211.
N. Khediri, M. B. Ammar, and M. Kherallah, "Comparison of Image Segmentation using Different Color Spaces," in 2021 IEEE 21st International Conference on Communication Technology (ICCT), 13-16 Oct. 2021 2021, pp. 1188-1192, doi: 10.1109/ICCT52962.2021.9658094.
B. C. K. Ly, E. B. Dyer, J. L. Feig, A. L. Chien, and S. Del Bino, "Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement," Journal of Investigative Dermatology, vol. 140, no. 1, pp. 3-12.e1, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.jid.2019.11.003.
A. S. R. M. Sinaga, "Color-based Segmentation of Batik Using the L*a*b Color Space," Sinkron : jurnal dan penelitian teknik informatika, vol. 3, no. 2, pp. 175-179, 03/20 2019, doi: 10.33395/sinkron.v3i2.10102.
I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, "Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection," IEEE Access, vol. 6, pp. 33789-33795, 2018, doi: 10.1109/ACCESS.2018.2841987.
R. E. Caraka, Y. Lee, R. C. Chen, and T. Toharudin, "Using Hierarchical Likelihood Towards Support Vector Machine: Theory and Its Application," IEEE Access, vol. 8, pp. 194795-194807, 2020, doi: 10.1109/ACCESS.2020.3033796.
A. Tharwat, "Parameter investigation of support vector machine classifier with kernel functions," Knowledge and Information Systems, vol. 61, no. 3, pp. 1269-1302, 2019/12/01 2019, doi: 10.1007/s10115-019-01335-4.
I. Burman and S. Som, "Predicting Students Academic Performance Using Support Vector Machine," in 2019 Amity International Conference on Artificial Intelligence (AICAI), 4-6 Feb. 2019 2019, pp. 756-759, doi: 10.1109/AICAI.2019.8701260.
W. C. Leong, R. O. Kelani, and Z. Ahmad, "Prediction of air pollution index (API) using support vector machine (SVM)," Journal of Environmental Chemical Engineering, vol. 8, no. 3, p. 103208, 2020/06/01/ 2020, doi: https://doi.org/10.1016/j.jece.2019.103208.
H. Chen, C. Zhang, N. Jia, I. Duncan, S. Yang, and Y. Yang, "A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach," Fuel, vol. 290, p. 120048, 2021/04/15/ 2021, doi: https://doi.org/10.1016/j.fuel.2020.120048.
Z. Zhang, Z. Xu, J. Tan, and H. Zou, "Multi-class support vector machine based on the minimization of class variance," Neural Processing Letters, vol. 53, no. 1, pp. 517-533, 2021/02/01 2021, doi: 10.1007/s11063-020-10393-7.
M. T. García-Ordás, C. Benavides, J. A. Benítez-Andrades, H. Alaiz-Moretón, and I. García-Rodríguez, "Diabetes detection using deep learning techniques with oversampling and feature augmentation," Computer Methods and Programs in Biomedicine, vol. 202, p. 105968, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.cmpb.2021.105968.
E. D. van Asselt, M. Y. Noordam, M. G. Pikkemaat, and F. O. Dorgelo, "Risk-based monitoring of chemical substances in food: Prioritization by decision trees," Food Control, vol. 93, pp. 112-120, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.foodcont.2018.06.001.
V. Jain and A. Yadav, "Analysis of Performance of Machine Learning Algorithms in Detection of Flowers," in 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 4-6 Feb. 2021 2021, pp. 706-709, doi: 10.1109/ICICV50876.2021.9388599.
Z. Wang, C. Cao, and Y. Zhu, "Entropy and Confidence-Based Undersampling Boosting Random Forests for Imbalanced Problems," IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5178-5191, 2020, doi: 10.1109/TNNLS.2020.2964585.
M. Selek, F. Başçiftçi, and S. Örücü, "Designing medical expert system based on logical reduced rule for basic malaria diagnosis from malaria signs and symptoms," World Journal of Engineering, vol. 14, no. 3, pp. 227-230, 2017, doi: 10.1108/WJE-10-2016-0112.
B. Geyik and M. Kara, "Severity Prediction with Machine Learning Methods," in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 26-28 June 2020 2020, pp. 1-7, doi: 10.1109/HORA49412.2020.9152601.
P. Caroline Cynthia and S. Thomas George, "An Outlier Detection Approach on Credit Card Fraud Detection Using Machine Learning: A Comparative Analysis on Supervised and Unsupervised Learning," in Intelligence in Big Data Technologies—Beyond the Hype, Singapore, J. D. Peter, S. L. Fernandes, and A. H. Alavi, Eds., 2021// 2021: Springer Singapore, pp. 125-135.
C. Liu, "Drought Level Prediction with Deep Learning," in Computing and Data Science, Singapore, W. Cao, A. Ozcan, H. Xie, and B. Guan, Eds., 2021// 2021: Springer Singapore, pp. 53-65.
A. Karlekar and A. Seal, "SoyNet: Soybean leaf diseases classification," Computers and Electronics in Agriculture, vol. 172, p. 105342, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.compag.2020.105342.