Feedback Control over Quantum Sensing Based on Bose-Einstein Condensate Trapped in Two-Dimensional Ring Potential


Abstract views: 14 / PDF downloads: 7

Authors

  • Sergey Borisenok Abdullah Gül University

Keywords:

Bose-Einstein Condensate, Ring Potential Trapping, Weakly Interacting Regime, Feedback Control, Target Attractor

Abstract

Recent great progress in studying theoretical and especially experimental properties of Bose
Einstein condensate (BEC) creates a new era in developing and designing principally novel types of
quantum devices, including quantum sensors for measuring nonlinear interactions, external electrical and
magnetic fields, and other physical characteristics with high sensitivity. Here we discuss the application
of feedback control over a quantum sensor based on the Bose-Einstein condensate trapped in two
dimensional ring potential. For a weakly interacting regime, the dynamics of such a system are modeled
by three coupled complex differential master equations containing the parameter of interaction and the
chemical potential parameter. The last one plays the role of control variable in sensing protocol for two
body interaction. The goal of control is to minimize the effects of the higher energy levels in BEC by
driving their corresponding matrix density elements. The control algorithm is designed as Kolesnikov’s
feedback forming an artificial target attractor in the dynamical system. We re-formulate Kolesnikov’s
approach in the operator form to adapt it to quantum engineering processes. The control approach
proposed here can be efficiently extended to different sensing protocols for detecting external magnetic
fields, rotational components, and other physical characteristics of BEC interacting with the environment.

Downloads

Download data is not yet available.

Author Biography

Sergey Borisenok, Abdullah Gül University

Department of Electrical and Electronics Engineering, Faculty of Engineering,  Kayseri, Türkiye

Feza Gürsey Center for Physics and Mathematics, Boğaziçi University, Istanbul, Türkiye

References

B. B. Kadomtsev, M. B. Kadomtsev, , “Bose Einstein condensates”, Uspekhi Fizicheskih Nauk, vol. 167, pp. 649-664, June 1997. doi: 10.3367/UFNr.0167.199706d.0649

C. Townsend, W. Kettlerle, S. Stringari, “Bose-Einstein condensation”, Physics World, vol. 3, pp. 29-34, Mar. 1997.

P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, Basic Mean-Field Theory for Bose-Einstein Condensates, P. D. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, Eds. In: Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Atomic, Optical, and Plasma Physics, vol 45, Berlin, Heidelberg, Germany: Springer, 2008.

Yu. M. Poluektov, “A simple model of Bose–Einstein condensation of interacting particles”, Journal of Low Temperature Physics, vol. 186, pp. 347-362, Mar. 2017. doi: 10.1007/s10909-016-1715-5

D. S. Durfee, W Ketterle, “Experimental studies of Bose-Einstein condensation”, Optics Express, vol. 2, pp. 299-313, 1998. doi: 10.1364/oe.2.000299

M. J. Davis, C. W. Gardiner, “Growth of a Bose-Einstein condensate: a detailed comparison of theory and experiment”, Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 35, p. 733, Jan. 2002. doi: 10.1088/0953-4075/35/3/322

S. L. Cornish, D. Cassettari, “Recent progress in Bose-Einstein condensation experiments”, Philosophical Transactions of the Royal Society A, vol. 361, pp. 2699-2713, Nov. 2003. doi: 10.1098/rsta.2003.1278

K. Frye, S. Abend, W. Bartosch, et al., “The Bose-Einstein condensate and cold atom laboratory”, EPJ Quantum Technology, vol. 8, article 1, Jan. 2021. doi: 10.1140/epjqt/s40507-020-00090-8

C. Chen, R. G. Escudero, J. Minář, B. Pasquiou, S. Bennetts, F. Schreck, “Continuous Bose-Einstein condensation”, Nature, vol. 606, pp. 683-687, June 2022. doi: 10.1038/s41586-022-04731-z

M. Razeghi, Technology of Quantum Devices. New York, USA: Springer, 2010.

A. Zhang, G. Zheng, C. M. Lieber, Quantum Devices, In: Nanowires. Nano-Science and Technology. Cham: Springer, 2016.

S. E. Crawford, R. A. Shugayev, H. P. Paudel, P. Lu, M. Syamlal, P. R. Ohodnicki, B. Chorpening, R. Gentry, Y. Duan, “Quantum sensing for energy applications: Review and perspective”, Advanced Quantum Technologies, vol. 4, p. 2100049, June 2021. doi: 10.1002/qute.202100049

V. Chugh, A. Basu, A. Kaushik, A. K. Basu, “Progression in quantum sensing/bio-sensing technologies for healthcare”, ECS Sensors Plus, vol. 2 p. 015001, Mar. 2023. doi: 10.1149/2754-2726/acc190

G. Pelegrí, J, Mompart, V. Ahufinger, “Quantum sensing using imbalanced counter-rotating Bose-Einstein condensate modes”, New Journal of Physics, vol. 20, p. 103001, Oct. 2018. doi: 10.1088/1367-2630/aae107

A. A. Kolesnikov, Synergetic Control Methods of Complex Systems. Moscow, Russia: URSS Publ., 2012.

A. A. Kolesnikov, “Introduction of synergetic control”, in Proc. 2014 American Control Conference (ACC), Portland, Oregon, USA, pp. 3013-3016, June 4-6, 2014. doi: 10.1109/ACC.2014.6859397

S. Borisenok, “Ergotropy of quantum battery controlled via target attractor feedback”, IOSR Journal of Applied Physics, vol. 12, pp. 43-47, July 2020. doi: 10.9790/4861-1203034347

S. Borisenok, “Ergotropy of Bosonic quantum battery driven via repelling feedback algorithms”, Cybernetics and Physics, vol. 10, pp. 9-12, June 2021. doi: 10.35470/2226-4116-2021-10-1-9-12

S. Borisenok, “Control over amplification in exciton polariton condensate”, European Journal of Science and Technology, vol. 39, pp. 80-84, July 2022. doi: 10.31590/ejosat.1140766

C. M. Dion, E. Cancès, “Ground state of the time-independent Gross-Pitaevskii equation”, Computer Physics Communications, vol. 177, pp. 787-798, Nov. 2007. doi: 10.1016/j.cpc.2007.04.007

J. Rogel-Salazar, “The Gross-Pitaevskii Equation and Bose-Einstein condensates”, European Journal of Physics, vol. 34, p. 247, Jan. 2013. doi: 10.1088/0143-0807/34/2/247

R. K. Bhaduri, S. M. Reimann, S. Viefers, A. G. Choudhury, M. K. Srivastava, “The effect of interactions on Bose-Einstein condensation in a quasi two-dimensional harmonic trap”, Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 33, p. 3895, Oct. 2000. doi: 10.1088/0953-4075/33/19/304

[23] A. Burchianti, C. D’Errico, L. Marconi, F. Minardi, C. Fort, M. Modugno, “Effect of interactions in the interference pattern of Bose-Einstein condensates”, Physical Review A, vol. 102, p. 043314, Oct. 2020. doi: 10.1103/PhysRevA.102.043314

S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmiedmayer, I. Bar-Joseph, “Sensing electric and magnetic fields with Bose-Einstein condensates”, Applied Physics Letters, vol. 88, p. 264103, June 2006. doi: 10.1063/1.2216932

S. P. Alvarez, P. Gomez, S. Coop, R. Zamora-Zamora, C. Mazzinghi, M. W. Mitchell, “Single-domain Bose condensate magnetometer achieves energy resolution per bandwidth below ħ”, Proceedings of the National Academy of Sciences (PNAS), vol. 119, p. e2115339119, Feb. 2022. doi: 10.1073/pnas.211533911

L. Wu, L. Li, J. Zhang, D. Mihalache, B. A. Malomed, W. M. Liu, “Exact solutions of the Gross-Pitaevskii equation for stable vortex modes in two-dimensional Bose-Einstein condensates”, Physical Review A, vol. 81, p. 061805(R), June 2010. doi: 10.1103/PhysRevA.81.061805

Downloads

Published

2024-10-13

How to Cite

Borisenok, S. (2024). Feedback Control over Quantum Sensing Based on Bose-Einstein Condensate Trapped in Two-Dimensional Ring Potential . International Journal of Advanced Natural Sciences and Engineering Researches, 7(10), 207–211. Retrieved from https://as-proceeding.com/index.php/ijanser/article/view/2085

Issue

Section

Articles